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Abstract In this paper, we consider modeling data lying on
multiple continuous manifolds. In particular, we model the
shape manifold of a person performing a motion observed
from different viewpoints along a view circle at a fixed
camera height. We introduce a model that ties together the
body configuration (kinematics) manifold and visual (obser-
vations) manifold in a way that facilitates tracking the 3D
configuration with continuous relative view variability. The
model exploits the low-dimensionality nature of both the
body configuration manifold and the view manifold, where
each of them are represented separately. The resulting rep-
resentation is used for tracking complex motions within a
Bayesian framework, in which the model provides a low-
dimensional state representation as well as a constrained dy-
namic model for both body configuration and view varia-
tions. Experimental results estimating the 3D body posture
from a single camera are presented for the HUMANEVA
dataset and other complex motion video sequences.
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1 Introduction

Human motion analysis is a challenging computer vision
problem with wide interest emanating from various potential
real-world applications, such as visual surveillance, human-
machine interface, video archival and retrieval, computer
graphics animation, autonomous driving, and virtual real-
ity. Despite the high-dimensionality of the human body con-
figuration space, many human activities lie intrinsically on
low-dimensional manifolds (Elgammal and Lee 2007). Ex-
ploiting this property is essential for constraining the solu-
tion space for many problems, such as tracking, posture esti-
mation, and activity recognition. Recently, increasing inter-
est has been placed on learning low-dimensional representa-
tions for the manifolds of the body configuration during mo-
tions, as in Elgammal and Lee (2004a), Sminchisescu and
Jepson (2004), Urtasun et al. (2005), Christoudias and Dar-
rell (2005), Morariu and Camps (2006) for tracking and pos-
ture estimation. We can discriminate between approaches
that learn joint angle configuration manifolds (e.g., Urtasun
et al. 2005), with the goal of creating a better dynamic model
for tracking, and approaches that focus on modeling the vi-
sual manifold (e.g. Elgammal and Lee 2004a; Christoudias
and Darrell 2005) with the aim of inference of configuration
from visual input.

The goal of this paper is to model the visual manifold
of an articulated object observed from different viewpoints.
Modeling visual manifolds is a challenging task. In particu-
lar, we focus on modeling human motion observed from dif-
ferent viewpoints. Traditionally, generative model-based ap-
proaches have been used for tracking and posture estimation.
These approaches utilize a 3D body model and a camera
model, and the problem is formulated as a search problem
in high-dimensional spaces (articulated body configuration
and geometric transformation). Alternatively, discriminative
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mappings have also been introduced. The model introduced
here is generative. However, it generates observations for a
certain motion observed from different viewpoints without
any explicit 3D body model. This is achieved through mod-
eling the visual manifold corresponding to different postures
and views.

Modeling the visual manifolds for rigid objects under dif-
ferent views and illuminations has been studied in Murase
and Nayar (1995) for object recognition. However, dealing
with articulated objects is more challenging. Consider the
simple example of observing a human performing a periodic
motion, such as walking, from different viewpoints along a
view circle. For a given viewpoint, it has been shown in El-
gammal and Lee (2004a) that, the observed motion lies on a
low-dimensional manifold (one dimensional for gait). This
corresponds to the configuration manifold observed from
a single viewpoint. Given a single body posture observed
from different viewpoints along a viewing circle, the ob-
servations will lie on a one-dimensional manifold as well.
That is the view manifold for that particular posture. In
other words, each posture has its own view manifold, and
each view has its own configuration manifold. If both the
motion and the view are one-dimensional manifolds (e.g.,
gait observed from a view circle), then this product space is
equivalent to a torus manifold (Lee and Elgammal 2006). In
this previous work, a torus was used to model such a two-
dimensional manifold (configuration × view) jointly. How-
ever, the approach in Lee and Elgammal (2006) is limited to
the particular setting of a one-dimensional motion. The fun-
damental question we address here is: How to learn a rep-
resentation of a view manifold that is invariant to the body
posture and, therefore, exhibits the one-dimensional behav-
ior expected due to the camera setting.

The contribution of this paper can be summarized in the
following goals that we achieve:

I To model the posture, view, and shape manifolds of an
observed motion with three separate low-dimensional
representations: (1) a view-invariant, shape-invariant
configuration manifold; (2) a configuration-invariant,
shape-invariant view manifold; (3) a configuration-
invariant, view-invariant shape representation.

II To model the view and posture manifolds in a general
setting, in which the motion is not assumed to be one
dimensional. We show results with complex motions.

III To link the configuration manifold learned from 3D
motion-captured data with the visual manifold. A dis-
tinguishing feature of our work here is that we utilize
both the input (visual) and output (kinematic) manifolds
to constrain the problem. We model the kinematic man-

ifold and the observation manifold, tied together with a
parameterized generative mapping function.1

We consider tracking and inferring the view and body
configuration of a human motion from a single monocular
camera. In this setting, a person can change his/her pose
with respect to the camera while being tracked (equivalently,
the camera can be moving). In this paper, we limit the view
variability to a one-view circle (we use different viewpoints
at a fixed camera height as an example of a view circles).
However, this is not a theoretical limitation of the approach
but rather a practical choice. Our main goal is to model a
person’s pose with respect to the camera and not the cam-
era’s motion. The camera is typically fixed and mounted at a
fixed height in many applications, and the person can change
his/her orientation with respect to the camera. Our experi-
mental results, in which no camera calibration is assumed,
reveal that a one-view circle provides a good approximation
of the expected viewpoint variability in such scenarios.

The paper’s organization is as follows: After literature re-
view on human motion analysis in Sect. 2, Sect. 3 summa-
rizes the framework. Sections 4 and 5 describe the learning
procedure. A Bayesian tracking framework using the pro-
posed generative model is presented in Sect. 6. Section 7
shows experimental results for different motions with vary-
ing complexity.

2 Related Work

In the last two decades, extensive research has been per-
formed on understanding human motion from image se-
quences. We refer the reader to the excellent surveys cov-
ering this topic, such as Aggarwal and Cai (1999), Gavrila
(1999), Moeslund et al. (2006). The problems of tracking
and recovery of body configuration have been tradition-
ally addressed through generative model-based approaches,
e.g., O’Rourke (1980), Hogg (1983), Rohr (1994), Rehg
and Kanade (1995), Gavrila (1996), Kakadiaris and Metaxas
(1996), Sidenbladh et al. (2000). In such approaches, ex-
plicit 3D articulated models of the body parts, joint angles
and their kinematics (or dynamics), as well as models for
camera geometry and image formation are used. Recovering
body configuration in these approaches involves searching
high dimensional spaces (body configuration and geometric
transformation). Partial recovery of body configuration can
also be achieved through view-based representations (mod-
els), e.g. Darrell and Pentland (1993), Campbell and Bobick
(1995), Shakhnarovich et al. (2002), Yacoob (1999). In such
case, constancy of the local appearance of individual body

1Since we use kinematic data to learn the configuration manifold, in
this paper we use the terms kinematic manifold and configuration man-
ifold interchangeably.
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parts is exploited. The main limitation with such approaches
is that they deal with limited view configurations, i.e., single
view or a small set of discrete views.

Alternatively, discriminative approaches have been pro-
posed where recovering body posture can be achieved di-
rectly from the visual input by posing the problem as a su-
pervised learning problem through searching a pre-labelled
database of body posture (Mori and Malik 2002; Grauman
et al. 2003; Shakhnarovich et al. 2003) or through learning
regression models from input to output (Rosales et al. 2001;
Grauman et al. 2003; Agarwal and Triggs 2004; Sminchis-
escu et al. 2005). All these approaches pose the problem as a
regression problem, where the objective is to learn an input-
output mapping from input-output pairs of training data.
Such approaches have great potential for solving the initial-
ization problem for model-based vision. However, these ap-
proaches are challenged by the existence of a wide range
of variability in the input domain. Another challenge is the
high dimensionality of the input and output spaces of the
mapping, which makes such mapping hard to generalize.

Despite the high dimensionality of both the human joint
angle space and the visual input space, many human activi-
ties lie on low dimensional manifolds. In the last few years,
there have been increasing interest in exploiting such a fact
by using intermediate activity-based manifold representa-
tions (Brand 1999; Elgammal and Lee 2004a; Sminchisescu
and Jepson 2004; Rahimi et al. 2005; Urtasun et al. 2005;
Morariu and Camps 2006; Moon and Pavlovic 2006; Ur-
tasun et al. 2006). In our earlier work (Elgammal and Lee
2004a, 2007), the visual manifolds of human silhouette de-
formations, due to motion, have been learned explicitly and
used for recovering 3D body configuration from silhouettes
in a closed-form. In that work, knowing the motion provided
a strong prior to constrain the mapping from the shape space
to the 3D body configuration space. However, the approach
proposed in Elgammal and Lee (2004a) is a view-based ap-
proach; the manifold was learned for discrete views. In con-
trast to Elgammal and Lee (2004a), in this paper the mani-
fold of both the configuration and view is learned in a con-
tinuous way. In Sminchisescu and Jepson (2004), manifold
representations learned from the body configuration space
were used to provide constraints for tracking. In both Elgam-
mal and Lee (2004a) and Sminchisescu and Jepson (2004)
learning an embedded manifold representation was decou-
pled from learning the dynamics and from learning a regres-
sion function between the embedding space and the input
space. In Urtasun et al. (2006), coupled learning of the rep-
resentation and dynamics was achieved through introduc-
ing Gaussian Process Dynamic Model (Wang et al. 2005)
(GPDM) in which a nonlinear embedded representation and
a nonlinear observation model were fitted through an opti-
mization process. GPDM is a very flexible model since both
the state dynamics and the observation model are nonlinear.

Similarly, in Moon and Pavlovic (2006), Lin et al. (2006),
Li and Tian (2007), models that coupled learning dynamics
with embedding were introduced.

Manifold-based representations of the motion can be
learned from kinematic data, to learn the body-configuration
manifold, or from visual data to learn the visual manifold.
The former fits generative model-based approaches and pro-
vides better dynamic-modeling for tracking, e.g., Sminchis-
escu and Jepson (2004), Urtasun et al. (2005). Learning
motion manifolds from visual data, as in Elgammal and
Lee (2004a), Christoudias and Darrell (2005), Morariu and
Camps (2006), provides useful representations for recovery
and tracking of body configurations from visual input with-
out the need for explicit body models. The approach we in-
troduce in this paper learns a representation for both the vi-
sual manifold and the kinematic manifold. Learning a repre-
sentation of the visual motion manifold can be used in a gen-
erative manner as in Elgammal and Lee (2004a) or as a way
to constrain the solution space for discriminative approaches
as in Tian et al. (2005). The representation we introduce in
this paper can be used as a generative model for tracking.

Also related to this paper is the research on multilinear
models which extends subspace analysis to decompose mul-
tiple orthogonal factors using bilinear models and multilin-
ear tensor analysis (Tenenbaum 2000; Vasilescu and Ter-
zopoulos 2002). Tenenbaum (2000) formulated the sepa-
ration of style and content using a bilinear model frame-
work (Magnus and Neudecker 1988). In Vasilescu and Ter-
zopoulos (2002), multilinear tensor analysis was used to
decompose face images into orthogonal factors controlling
the appearance of the face including geometry (people), ex-
pressions, head pose, and illumination. N-mode SVD (Lath-
auwer et al. 2000) is used to fit multilinear models. Multi-
linear tensor analysis was also used in Vasilescu (2002) to
factorize human motion styles. The applications of bilinear
and multilinear models in Tenenbaum (2000), Vasilescu and
Terzopoulos (2002), Vasilescu (2002) to decompose varia-
tions into orthogonal factors were performed in the orig-
inal observation space. In contrast, in Elgammal and Lee
(2004b), bilinear and multilinear analysis were used in the
space of the mapping functions between a central represen-
tation and the observations to decompose variation factors
in such functions. In this paper, we used a similar approach
to decompose shape “style” variabilities in the space of the
mapping functions between the embedded manifold repre-
sentation and visual observations.

3 Framework

We consider two manifolds: (1) the body configuration man-
ifold during motion in the kinematic space, and (2) the visual
input (observation) manifold of the same motion observed



Int J Comput Vis (2010) 87: 118–139 121

Fig. 1 Example of a complex
motion from different views:
(a) Example postures from a
ballet motion. The 8th, 16th,
. . . , 360th frames are shown
from a sequence. (b) Sampled
shapes from different views and
postures. Rows: different views
(30◦, 90◦, . . . , 330◦). Columns:
body postures at frames 25th,
50th, . . . , 375th. (c) Visual
manifold embedding using LLE,
combining both the view and
body configuration variations

from different viewpoints along a view circle at a fixed cam-
era height. It is clear that the kinematic manifold can be em-
bedded using nonlinear dimensionality reduction techniques
to achieve a low-dimensional representation of the manifold
that can be used for tracking. For example, Gaussian Process
Dynamic Models (GPDM) (Wang et al. 2005) achieve such
embedding in addition to learning a dynamic model for such
manifolds. The challenge lies in the visual manifold, since
it involves variability in both the body configuration and
view. Embedding such a complex manifold will not result
in any useful representation that can be used for inferring
the configuration and view separately. This can be noticed
in Fig. 1(c), where LLE (Roweis and Saul 2000) is used to
embed the visual manifold of a ballet motion from different
views. Any other nonlinear dimensionality reduction tech-
nique can be applied with qualitatively similar results. Here
we summarize our approach:

(1) Using joint angle data, we obtain an embedding of the
kinematics, which represents the motion manifold in-
variant to the view. We learn a parameterization of the
motion manifold in the embedding space and learn the
dynamics by learning a flow field.

(2) Given view-based observation, from different view-
points, we learn view-based nonlinear mapping func-
tions from the embedded kinematic manifold to the ob-
servations in each of the views.

(3) Given the view-based mapping function coefficients,
we factorize the view factor arranged as a tensor using
higher order singular value decomposition (HOSVD)
(Lathauwer et al. 2000).

(4) Given the view factors, we explicitly model the view
manifold in the coefficient space, which leads to a rep-

resentation of the view manifold that is invariant to body
configuration.

(5) We also factorize the variability of different people’s
shapes within the same model.

These procedures result in two low-dimensional embed-
dings, one for body configuration and one for the view, as
well as a generative model that can generate an observation
given the two manifolds’ parameterizations. This fits per-
fectly into the Bayesian tracking framework, because it di-
rectly provides: (1) a low-dimensional state representation
for each of the view and the body configuration, (2) a con-
strained dynamic model, since the manifolds are modeled
explicitly, and (3) an observation model, which comes di-
rectly from the generative model used.

4 Learning Configuration and View Manifolds

4.1 Learning View-Invariant Configuration Manifold

As a common representation of the body configuration in-
variant to viewpoint, we use an embedding of the kinematic
manifold. This embedding represents the body configuration
in a low-dimensional space. The kinematic manifold embed-
ding is also invariant to different people’s shapes and appear-
ances. We can obtain a low-dimensional representation of
the kinematic manifold by applying nonlinear dimensional-
ity reduction to motion-captured data using approaches such
as LLE (Roweis and Saul 2000), Isomap (Tenenbaum et al.
2000), GPLVM (Lawrence 2004). The choice of the embed-
ding technique is orthogonal to the proposed framework. In
particular, without loss of generality, we used LLE in this
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Fig. 2 Configuration and View Manifolds for Gait: (a) Embedded
kinematic manifold. (b), (c) Configuration-invariant view manifold
(the first three dimensions from different views are shown)

paper. Alternatively, embedding approaches which use tem-
poral information (Lin et al. 2006; Li and Tian 2007) can
also be used. Since we need to achieve an embedding of the
kinematics, invariant to the person’s transformation with re-

spect to the world coordinate system, we represent the kine-
matics using the body’s joint locations in a human-centered
coordinate system. We aligned for a global transformation
in advance so as to count only motion due to body configu-
ration changes.

Figure 2(a) shows an embedded kinematic manifold for
a gait motion (three walking cycles from one person). For
a periodic motion like gait, the embedding shows the kine-
matic manifold as a one-dimensional twisted closed man-
ifold as expected. Gait is fundamentally a one-dimensional
manifold (factoring out all other sources of variability). Vari-
ations on the motion (or different style) would add different
twists to such a manifold (Elgammal and Lee 2004b) and
increase embedding dimension. Without counting style vari-
ations, the kinematic manifold for the gait motion can be
embedded free of intersection in a three-dimensional Carte-
sian coordinate as in Fig. 2(a). For more complex motions,
the manifold is not necessarily one-dimensional. However,
we can always achieve an embedding of the kinematic man-
ifold in a low-dimensional Euclidean space. Figures 3(a),
(b) show an example embedding for the ballet dance routine
data shown in Fig. 1.

4.2 Learning Posture-Invariant View Manifold

Given an embedding of the kinematic manifold, we can
achieve a representation of different views by analyzing the
coefficient space of nonlinear mappings between the kine-
matic manifold embedding and view-dependent observation
sequences. Elgammal and Lee (2004b) introduced a frame-
work to separate “style” factors in the space of the co-
efficients of nonlinear functions that map from a unified
“content” manifold and style-dependent observations. In our
case, we consider the kinematic manifold embedding as the
“content” manifold and the view is considered as a “style”
factor. “Style” variations are factorized in the space of the
nonlinear mapping coefficients from an embedded manifold
to the view-dependent observations. Unlike (Elgammal and
Lee 2004b), the view (a style factor) in our case lies on a
continuous manifold. Unlike (Elgammal and Lee 2004b), in
which the content manifolds were view-dependent, the use
of the kinematic manifold in our case provides a view invari-
ant content representation. Differences between the view-
dependent observed data will, therefore, be preserved in the
nonlinear mapping of each view-dependent input sequence.

Given a set of N body configuration embedding coordi-
nates on the kinematic manifold, X = {x1 · · ·xN }, and their
corresponding view-dependent shape observations (silhou-
ettes) Y k = {yk

1 · · ·yk
N } for each view k where k = 1, . . . , V ,

we can fit view-dependent regularized nonlinear mapping
functions in the form of a generalized radial basis function
satisfying

yk
i = Bkψ(xi ), (1)
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Fig. 3 Configuration and View
Manifolds for a ballet Motion:
(a), (b) Embedded kinematic
manifold in 2D.
(c) One-dimensional
configuration-invariant view
manifold embedding (the first
three dimensions are shown).
(d), (e) Velocity field and its
interpolation on the
configuration manifold. (f) Prior
probabilistic distribution of
body configuration on the
kinematic embedding

for each view k. Here, each observation y is represented
as a D dimensional vector, and we denote the embed-
ding space dimensionality by e. ψ(·) is an empirical ker-
nel map (Schlkopf and Smola 2002) ψNc(x) : R

e → R
Nc

defined using the Nc kernel functions centered around ar-
bitrary points {zi ∈ R

e, i = 1, . . . ,Nc} along the kinematic
manifold embedding, i.e.,

ψNc(x) = [φ(x,z1), . . . , φ(x,zNc)]�, (2)

where φ(·, ·) is a radial basis function (we use a Gaussian
function). The coefficient matrices Bk can be obtained by
solving a linear system for each view, k, in the form

[yk
1 · · ·yk

N ] = Bk[ψ(x1), . . . ,ψ(xN)].

To avoid overfitting to the training data, regularization is
needed. Regularizing the RBF mapping in (1) is a standard
procedure and can be achieved by adding a regularization
term to the diagonal of the matrix [ψ(x1), . . . ,ψ(xN)] (Pog-
gio and Girosi 1990).

Each D × Nc matrix Bk is a view-dependent coefficient
matrix that encodes the view variability. Given such view-
dependent mapping coefficients, we can fit a model in the
form

yk
i = A ×1 vk ×2 ψ(xi ), (3)

where A is a third-order tensor with dimensionality D ×
V × Nc and ×j is the mode-j tensor multiplication (Lath-
auwer et al. 2000). This equation represents a generative
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model for synthesizing an observation vector yk
i ∈ R

D of
view k given a view vector vk , and body configuration rep-
resented by the embedding coordinate xi ∈ R

e on the kine-
matic manifold embedding. To fit such a model, the view-
dependent coefficient matrices Bk, k = 1, . . . , V are stacked
as columns in a (DNc) × V matrix C, and then the view
factors are decomposed by fitting an asymmetric bilinear
model (Tenenbaum 2000), i.e., C = A · [v1 · · ·vV ]. The
third-order (D × V × Nc) tensor A in (3) is the tensor rep-
resentation of the matrix A, which can be obtained by un-
stacking its columns.

The resulting representation of the view variations is dis-
crete and high-dimensional. The dimensionality of the view
vector in (3) depends on the number of views, i.e., V dimen-
sional. This high-dimensional representation is not desirable
as a state representation for tracking. The dimensionality can
be reduced when fitting the asymmetric model by decreas-
ing the number of view bases. Figures 2(b), (c) and Fig. 3(c)
show the embedded posture-invariant view manifold in the
mapping coefficient space for gait and ballet motion, respec-
tively. They clearly show a one-dimensional manifold that
preserves the proximity between nearby views. Here, the
first three dimensions are shown. The actual view manifold
can then be explicitly represented as shown in Sect. 5.1.

4.3 Learning Observation Shape Variability

The model in (3) can be further generalized to model people
of different shapes by including a variable for shape style
variability between different people. The use of the kine-
matic manifold provides a representation invariant to obser-
vation variability, which allows us to generalize the model.
Given the view-dependent shape observations for different
people, we can fit view- and person-dependent mapping
functions in the form of (1). This yields a set of coefficient
matrices Bkl for each person l and view k. Given such coef-
ficient matrices, we can fit a generalized model in the form

ykl
i = D ×1 sl ×2 vk ×3 ψ(xi ), (4)

where D is a forth-order tensor with dimensionality D ×
S × V × Nc. This equation represents a generative model
for synthesizing an observation vector ykl

i ∈ R
D of a view k,

shape style l, and configuration i given a view vector
vk ∈ R

V , shape style vector sl ∈ R
S , and body config-

uration represented by an embedding coordinate xi ∈ R
e

on the kinematic manifold embedding. Fitting such model
can be achieved using HOSVD (Lathauwer et al. 2000;
Vasilescu and Terzopoulos 2002).

5 Parameterizations of View and Configuration
Manifolds

5.1 Parameterizing the View Manifold

Given the view space defined by the decomposition in (3),
different view vectors are expected to lie on a low-dimen-
sional nonlinear manifold. Obviously, a linear combination
of view vectors in (3) will not result in valid view vectors.
We need to explicitly model the view manifold in the coef-
ficient space to be able to predict and synthesize new views.
Therefore, we model view variations as a one-dimensional
nonlinear manifold. We employ a one-dimensional contin-
uous variable using spline fitting with third-level paramet-
ric continuity (C2) constraints between the last and the first
sample views, since the view manifold is presumed to be
closed. As a result, we represent the view manifold with
a one-dimensional view parameter θ and a spline function
gv : R → R

V that maps from the parameter space into the
factorized view space. In this representation, a certain view
vt can be represented as vt = gv(θt ). Figures 2(b), (c) and
Fig. 3(c) show a spline-parameterized one-dimensional view
manifold embedded in three-dimensional space. Since the
training data are sampled at equidistance viewpoints along
a view circle, the data are represented using equidistance
points in the spline parameter space, i.e., the parameter θ

linearly relates to the physical view location. This repre-
sentation of the view manifold can be directly extended to
a two-dimentional parameterization for the case where the
view changes along a part of (or a whole) a view sphere.

5.2 Parameterizing the Configuration Manifold

In general, we make no assumptions regarding the dimen-
sionality of the body configuration manifold. However, we
discriminate between two cases: (1) the case of a one-
dimensional motion, which can be a periodic closed trajec-
tory (e.g., walking or running) or a non-periodic open tra-
jectory (e.g., golf swings or tennis serves), and (2) the case
of a general motion where the actual configuration manifold
dimensionality is unknown, as in dance or aerobics. In both
cases we parameterize the body configuration with a para-
meter β and a function gb(·) which maps from the parameter
space to the kinematic manifold embedding space.

For one-dimensional motions, the kinematic manifold
can be represented using a one-dimensional spline parame-
ter βt ∈ R and a spline function gb : R → R

e that maps
from a parameter space into the embedding space and sat-
isfies xt = gb(βt ). Here xt ∈ R

e denotes the embedding
space coordinate, and βt denotes the parameter at time t .
Since the motion is one-dimensional manifold motion, the
parameter βt fully describes the intrinsic body configura-
tion. Using the spline parameter is advantageous over em-
bedding xt because it produces a constant-speed dynamic
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model. Equidistance time steps in the training data (frame
rate) corresponds to equidistance steps in the spline parame-
ter space, which transforms nonlinearly to variable steps in
the embedding space. The parameter βt will change at a con-
stant speed between frames, whereas the embedding xt will
change in variable steps on the manifold. This can be seen in
the results in Fig. 4(f) and Fig. 9(d). Now, we can represent
the view and body configuration manifolds using two con-
tinuous parameters θt and βt and generate new observations
jointly as:

yv
t = A ×1 gv(θt ) ×2 ψ(gb(βt )). (5)

Any combination of view manifold parameter θt and body
configuration manifold parameter βt can generate a new im-
age using (5).

For complex motions like aerobics or dance, in which
the manifold dimensionality is unknown, a two-dimensional
embedding space is used to represent the manifold. In this
case, the body configuration parameter space is the same as
the kinematic embedding space. To be consistent with the
notation used in (5), we denote the body configuration para-
meter at time t by βt ∈ R

2. In this case, the function gb(·), is
defined as gb : R

2 → R
2 where gb(βt ) = xt . In such cases,

the kernel function centers in (2) are fit to the embedded
manifold through fitting a Gaussian mixture model.

To learn the dynamics in such cases, we learn a flow field
in the embedding space. Given a sequence of N body config-
uration embedding coordinates on the kinematic manifold,
X = {x1 · · ·xN }, xt ∈ R

2, we can directly obtain flow vec-
tors, which represent the velocity in the embedding space, as
v(xt ) = xt − xt−1. Given this set of flow vectors, we esti-
mate a smooth flow field over the whole embedding domain,
where the flow v(x) at any point x in the space can be esti-
mated as

v(x) =
N∑

i=1

bik(x,xi )

using Gaussian kernels k(·, ·) and linear coefficients bi that
can be obtained by solving a linear system similar to that
used to fit (1) (Elgammal and Lee 2007). The smooth flow
field is used to estimate how the body configuration will
change in the embedding space. This smooth flow field is
used in tracking to propagate the particles. Figures 3(d), (e)
shows an example of the motion flow field for a ballet dance
motion.

5.3 Parameterizing the Shape Space

The shape variable s in (4) can be high-dimensional. To con-
strain the shapes generated by the model in (4), we represent
any shape as a linear convex combination of the shape clus-
ters in the training data. The shape style vector st is written

as a linear combination of Q shape style vectors sq in the
shape space such that

st =
Q∑

q=1

w
q
t sq,

Q∑

q=1

w
q
t = 1, ∀q w

q
t > 0.

The shape state at time t is denoted by λt and represented
by the coefficients w

q
t , i.e., λt = [w1

t , . . . ,w
Q
t ]�.

Overall, our generative model can be described as

yt = D ×1 (Sλt ) ×2 gv(θt ) ×3 ψ(gb(βt )), (6)

where xt is the embedded representation of the body con-
figuration, D is forth-order tensor in (4). The matrix S =
[s1, . . . sQ] contains the shape style vectors representing the
shape style space.

6 Tracking on the Manifold Using Particle Filtering

The Bayesian tracking framework enables recursive update
of the posterior P(Xt |Y t ) of the object state Xt given all
observations Y t = Y 1,Y 2, . . . ,Y t up to time t :

P(Xt |Y t ) ∝ P(Y t |Xt )

×
∫

Xt−1

P(Xt |Xt−1)P (Xt−1|Y t−1)dXt−1.

(7)

We can update the state posterior based on the observa-
tion likelihood estimation with the transition probability
P(Xt |Xt−1) (the dynamic model), the previous time step
state posterior P(Xt−1|Y t−1), and the observation (mea-
surement) model P(Y t |Xt ).

The generative models in (6) fits directly to the Bayesian
tracking framework to generate observation hypothesis from
the state Xt . The state is represented by the view para-
meter θt , configuration parameter βt , and shape parameter
λt , i.e., Xt = (θt , βt , λt ). We use a particle filter to real-
ize the tracker. Separate particle representations for the view
manifold, configuration manifold, and shape space are used.
We assume independence of each substate as each substate
comes from the decomposition of multiple orthogonal fac-
tors by HOSVD. We represent the body configuration with
Nβ particles, the viewpoint with Nθ particles, and the shape
style with Nλ particles.

For a body configuration particle i, view particle j , and
style particle k, the observation probability can be computed

P(yt |θ(j)
t , β

(i)
t , λ

(k)
t ) = N(D ×1 (Sλ

(k)
t ) ×2 gv(θ

(j)
t )

×3ψ(gb(β
(i)
t )),�), (8)

with observation covariance � to update the particles’
weights. To propagate the particles, we use a flow field to
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propagate the body configuration particles and a random
walk to propagate both the view and shape particles. We
evaluate the performance with and without dynamics in
Sect. 7.4.1. For one-dimensional motions, we use a con-
stant speed dynamic model, which is directly followed by
construction from the spline fitting and leads to superior
tracking results.

In actual computation, the nonlinear mapping coefficient
matrix between a sample state and a corresponding sample
observation depends on the view vector v

(j)
t = gv(θ

(j)
t ) and

the style vector s
(k)
t = Sλ

(k)
t . For a given view vector and

style vector, a mapping coefficient matrix can be computed
by partial evaluation of the product D ×1 s

(k)
t ×2 v

(j)
t . Using

such a mapping coefficient matrix we can obtain Nβ shape
hypotheses corresponding to the Nβ body configuration par-
ticles. Each substate’s posterior is evaluated in a sequential
manner. For updating the configuration substate posterior,
the MAP estimate of the style and view distributions in the
previous frame are used, assuming that the style and view
change smoothly. Similarly, given a view and body configu-
ration MAP estimates, we can estimate style substate poste-
rior. Similarly, the view substate posterior can be estimated.
This procedure reduces the required particle number from
Nβ × Nθ × Nλ to Nβ + Nθ + Nλ.

7 Experimental Results

We evaluated the performance of the proposed approach
with different types of motions using both synthetic and real
data. First we will describe the shape and body configuration
representations we used in our experiments. We divide the
description of the experiments according to the dimension-
ality of the motion manifold. Even though the same frame-
work can be applicable to motion manifolds of different
dimensionality, the dynamic models and prior probabilis-
tic distribution are more complicated with high-dimensional
motion manifolds. We evaluate the performance of the ap-
proach in tracking with different settings in Sect. 7.4. In all
the experiments, the testing was done using a single uncali-
brated camera.

7.1 Shape and Body Configuration Representation

7.1.1 Shape Representation: Implicit Signed-Distance
Function

For training the model, we use normalized shapes to repre-
sent shapes in a manner invariant to both the distance from
the camera (silhouette image size) and the body transla-
tion in an observed image space. The extracted foreground
shapes are normalized by scaling its vertical axis to a fixed
silhouette height and re-centering its horizontal axis. We

represent each shape instance as a level-set represented us-
ing an implicit function y(x) at each pixel x, such that
y(x) = 0 on the contour, y(x) > 0 inside the contour, and
y(x) < 0 outside the contour. In particular we used a signed
distance function. Such a representation imposes smooth-
ness on the distance between shapes. Given such a represen-
tation, the input shapes are points y ∈ RD where D is the di-
mensionality of the input space. We use a 6000-dimensional
vector (D = 6000) for shape representation from an implicit
function of size 100 × 60 representing the normalized sil-
houettes. The model in (6) generates shapes in an implicit
function form with the same dimensionality. The generated
shapes can be used to evaluate observations in different for-
mats: (1) the observation can be in the form of background
subtracted silhouettes, (2) the observation can be edge frag-
ments extracted using any edge or boundary detectors where
a suitable metric can be used to evaluate the observation
(we used a probabilistic form of edge-oriented chamfer dis-
tance), (3) the model can also be used within a level-set seg-
mentation and tracking framework since the generated sil-
houettes are in the form of level-sets.

7.1.2 Body Configuration Representation: Body-Centered
Coordinate

We represent the body configuration as a set of joints’ loca-
tions in a body-centered coordinate system. Therefore, the
body configuration is invariant to body rotations and body
translations. We used a body model containing 23 joints,
i.e., the kinematic space is 69 dimensional. Motion-captured
data usually fits a 3D model to global marker locations that
vary with body transformation. If the motion-captured data
has a root node representing global transformations (e.g.
BVH format), it is easy to achieve a body-centered coor-
dinate representation by simply removing the global trans-
formation (i.e., assigning zero or constant values for global
translation and rotation parameters). When we have a global
transformation and location for each joint angle without a
root node (as in the HUMANEVA dataset), we can achieve a
similar representation that is invariant to the global transfor-
mation by applying the inverse of the global transformation.
We perform this transformation on a node (such as pelvis)
that can be considered a root node for all other nodes of the
given frame.2

To evaluate the 3D configuration estimation, the embed-
ded body configuration is mapped to a 3D joint location
space by learning an RBF mapping from the embedding
space to the joint location space. 3D reconstruction error
for a given body configuration is computed from the average

2Since we use a body-centered coordinate system, we cannot directly
use the evaluation routine supported in the HUMANEVA database.
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Table 1 Training and
evaluation dataset type Experiment Training dataset Evaluation dataset Observed shapes

Golf swing synthetic synthetic silhouette

HUMANEVA synthetic real silhouette

Ball passing synthetic real silhouette

Circular tracking (RU) synthetic real edges

Shape adaptive tracking (RU) real real silhouette

Table 2 Average error of
normalized 3D body posture
estimation from single camera

Subject Start End Duration Cycle Mean error

S1 76 534 459 6 26.16 mm

S2 21 436 416 5 37.11 mm

S3 91 438 348 5 40.47 mm

Average 407.6 5.3 32.91 mm

absolute distance between individual markers and the recov-
ered 3D joint location, similar to the Brown HUMANEVA
dataset (Sigal 2006).

7.2 Evaluation for One-Dimensional Motion Manifolds

We evaluated the approach using different one-dimensional
manifold motions, such as locomotion, golf swings, ball
passing, etc. We used both synthesized data and real-data
for evaluating the proposed approach in 3D body posture
reconstruction from a single camera. The synthesized data
facilitate quantitative analysis of the configuration and view
estimation. The HUMANEVA dataset provides ground truth
data for quantitative evaluation. To fit our model, we need
not only ground truth data for 3D joint locations but also
visual data from multiple views. Since the HUMANEVA
database did not provide visual data sampled along a view
circle, we used motion-captured data similar to the evalua-
tion data in the HUMANEVA-I dataset to acquire dynamic
shape images from multiple views. We used graphics soft-
ware (Poser®) to render the synthetic input sequences re-
quired to train the model. In addition, we captured mul-
tiple view locomotion sequences from different people to
model the style variations of the visual manifold. Table 1
summarizes the types of data used for training and evalua-
tion.

7.2.1 Brown HUMANEVA Dataset

We tested the 3D body posture estimation accuracy using
the Brown HUMANEVA dataset (Sigal 2006), which pro-
vides ground truth data for 3D joint locations for different
types of motions. We used three circular-trajectory walking
sequences, which have continuous view variations with re-
spect to the camera. We normalized the original joint loca-
tions in the HUMANEVA dataset into a body-centered co-
ordinate system. We trained the model using synthetic data

with 12 discrete views rendered based on our own motion-
captured walking sequences. Although 12 discrete views are
used for training, the estimation of the view parameter is
continuous along the learned one-dimensional view man-
ifold. The evaluation is done using a single camera. We
did not fit the model from any of the subjects in the HU-
MANEVA dataset. For the estimation of the 3D body pos-
ture, we selected one cycle from the training sequence to
learn the mapping from the embedded kinematic manifold
to the 3D kinematic space. Figures 4(e), (f), (d) shows the
estimated view, body configuration, and 3D body posture.
As can be noticed, the estimated configuration and view pa-
rameters fit very well to a constant speed linear dynamic
system. Figure 4(g) shows the average error for all joints
per frame. The large error around frame 350 corresponds
to a frontal view of the subject which is ambiguous for re-
covering the body posture. The average error of all joints
for the three subjects is 32.91 mm. Table 2 shows the av-
erage error, frame duration, and number of cycles for each
subject. Figure 5 compares the ground truth joint location
(blue, *) and estimated joint location (red, O) of the lower
left leg distal. The tracking is achieved using only 30 par-
ticles for estimation of the configuration parameter and 30
particles for estimation of the one-dimensional view para-
meter.

7.2.2 Golf Swing: One Dimensional Open Manifold

A golf swing is a one-dimensional non-periodic motion. Fig-
ure 6(i) shows the embedding of a golf swing kinematic
manifold. We collected 12 discrete views of a golf swing
sequence (108 frames each) and learned a one-dimensional
parameterization of the view manifold (Fig. 6(j)). We tested
the performance with a synthetic sequence, which has a con-
tinuous constant speed camera motion during the golf swing
motion. The estimated view in Fig. 6(e) correctly reflects the
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Fig. 4 A walking sequence
from HUMANEVA: (a) Input
raw images. (b) Input
silhouettes. (c) Synthesized
silhouettes after view and body
configuration estimation.
(d) Reconstructed 3D postures.
(e) Estimated view parameter.
(f) Estimated body configuration
parameter. (g) Joint location
error in each frame (in mm)

Fig. 5 Evaluation of joint
location estimation
(HUMANEVA): Estimated joint
locations and ground truth for
each frame: x and z values for
Lower left leg distal
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Fig. 6 Golf swing:
(a) Rendered input for a view
variant sequence. (b) Input
silhouettes. (c) Output
silhouettes generated based on
the estimated view and
configuration parameters.
(d) Estimated body
configuration parameter.
(e) Estimated view parameter.
(f) True 3D body posture from
motion-captured data.
(g) Reconstructed 3D body
posture. (h) Errors in estimated
3D body posture (in mm).
(i) Embedding of the kinematic
manifold. (j) Configuration
invariant view manifold of the
motion

constant change of the camera view. Note that only 12 views
are learned; all intermediate views were correctly estimated.
The offset in the estimated view comes from the additional
body rotation in the original motion-captured data, because
our body-centered model removed the body rotation. We
used 30 particles for tracking the body configuration para-
meter β and 30 particles for tracking the view parameter θ .
In Fig. 6(e), the large dip in the viewpoint estimation in the
first few frames is a visualization effect. The view is para-

meterized from 0 to 1, corresponding to 0 to 2π on a circle,
i.e., 0 is the same as 1. The apparent dip is just because we
visualize the scale as from 0–1 on a line instead of a circle.
Figure 6(h) shows the reconstruction of the 3D body pos-
ture from the estimated body configuration parameter. The
average error in the estimated 3D body posture is 94.36 mm.
We also tested the performance of the 3D body posture es-
timation during a tilt camera motion, as will be described in
Sect. 7.4.
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Fig. 7 Basketball pass:
(a) Captured images (frame
number: 6,12, . . . ,96).
(b), (c) Extracted silhouettes
and corresponding implicit
shape representations.
(d) Reconstructed 3D body
posture based on estimated
configuration parameters

7.2.3 Basketball Pass Motion

A basketball pass motion, similar to many other simple sport
activity primitives, is a one-dimensional manifold motion
(when we consider a single cycle). Because there are many
camera motions and human body rotations in the arbitrary
views of sport video sequences, modeling actions in arbi-
trary views is crucial for general sport activity tracking and
recognition. In our experiment, we fit the model using syn-
thetic data generated from 12 views using motion-captured
data. For evaluation, we used real video data from an arbi-
trary. Sample results are shown in Fig. 7. The proposed ap-
proach reliably estimated the change of the body configura-
tion in spite of noisy silhouette inputs as shown in Fig. 7(d).
Notice that one of the arms is inside the body silhouette,
which makes this example challenging.

7.2.4 Edge-Based Tracking

As mentioned earlier, the proposed model generates dy-
namic shapes in an implicit function representation and can
track motion from video data without the need for back-
ground subtraction. Instead, edge detector can be used to
represent the visual observation. Figure 8 shows an exam-
ple of tracking using detected edges. Figure 8(b) shows the
edges detected using a Canny edge detector. Typically, the
detected edges are fragmented, and the outdoor environment
generates many additional edges from the cluttered back-
ground.

Our model, however, can estimate view and body con-
figuration parameters as shown in Fig. 8(d) with visually
acceptable accuracy. In the case of edge-based tracking,
since no foreground is segmented, we need to estimate the
global transformation. A total of 650 particles were used to
estimate global transformation (scale and translation). We
estimate the global transformation parameter by Chamfer

matching to the normalized shape given the estimated view
and body configuration. After selecting the best matching,
we further estimated the view and style parameters. Fig-
ure 8(e) shows the reconstructed 3D posture from the es-
timated body configuration parameters.

7.2.5 Style-Adaptive Tracking

We captured eight different views of four subjects walking
on a treadmill to fit our model with shape style factoriza-
tion. After extracting foreground silhouettes from one cy-
cle for each subject, we fit the model in (4). We tested the
model on outdoor sequences, in which people were walking
in S-shaped trajectories. In the shown sequence, the subject
walks for nine gait cycles, which were successfully tracked,
as shown in Fig. 9. Figure 9(e) shows the estimated view,
which exhibits a directional change due to the S-shape walk-
ing trajectory. The estimated view parameter decreased from
1 to 0.5 (180 degree counter-clockwise variations), and then
it changed back from 0.5 to 1 (180 degree clockwise varia-
tions). This variation simulates the actual S-shape walking
pattern. The estimated style starts from an average shape
style and gradually fits the observed model by a combina-
tion of the styles used in training as shown Fig. 9(f).

7.3 Estimation from General Motion Manifolds

Many interesting activities like dancing, aerobics, and sport
activities are high-dimensional in their kinematic manifolds.
Even simple sport motions like catching and throwing can-
not be parameterized by a one-dimensional manifold due to
the variability in the body configuration during repeated cy-
cles of the motion. When we catch and throw a ball repeat-
edly in the air, for example, the catch action changes accord-
ing to the falling ball location. In this section, we describe
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Fig. 8 (Color online)
Edge-based tracking: (a) Raw
input images. (b) Input edges.
(c) Synthesized silhouettes after
view and body configuration
estimation. (d) Estimated body
configuration (blue, *) and view
(red, O) parameters.
(e) Reconstructed 3D postures

experiments on estimating the 3D body posture and view pa-
rameters for catch/throw, ballet, and dancing sequences. In
each case the model is fitted from synthetic data generated
from Poser®, and it is tested using other synthetic sequences
under different conditions.

7.3.1 Catch/Throw Motion

We used catch and throw sequences with variations of the
motion in each catch and throw cycle. These are represented
as different trajectories in the body configuration embedding
space. We used 90 and 60 particles for configuration and
view tracking with a particle filter. Figure 10 shows the re-
sults with details in the caption. Figure 10(f) shows the esti-
mated view for the test sequence shown in Fig. 10(b), which
exhibits camera motion with a constant speed.

7.3.2 Ballet Motion

Ballet motion exhibits frequent body rotations, and the
motion is very complicated since both the arms and legs
are moving independently. However, the motion is still
constrained by the physical dynamics of the motion. Fig-
ure 3 shows the two-dimensional body configuration embed-
ding, flow field, and prior models for a ballet motion. Fig-
ures 11(e), (f) show the reconstruction of the 3D body pos-
ture based on the estimated body configuration and average

errors in each frame. Figure 11(g) shows the estimated view
variations and true body rotations in the motion-captured
data. Since our model use body centered coordinates that are
computed by removing both translation and rotation from
the body center (root in the motion-captured data), the body
rotation is measured as the variation of view in the opposite
direction. The average error in view estimation was 23.1◦.
This accuracy level reflects good performance considering
the fast body rotation and given the ambiguity from a single
camera view. Figure 11(h) shows the differences between
estimated view variations and actual body rotations in each
frame.

7.3.3 Aerobic Dancing Sequence

Many complex motions can be represented by a combina-
tion of simple, primitive motions. In particular, contempo-
rary dance sequences can be divided into simple dance steps.
Here, we look at a dance sequence that combines two primi-
tive dance steps: left-leg-up and right-leg-up. Two primitive
motions are clustered separately in the embedding space,
as shown in Figs. 12(a), (b). Left-leg-up is represented by
the bottom horizontal cluster and right-leg-up is represented
by the diagonal cluster. We used locally linear embedding
(LLE) (Roweis and Saul 2000) to learn a two-dimensional
embedding for the dancing sequence. Then, we fit view-
dependent dynamic shape contour models from 12 synthetic
views.
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Fig. 9 Tracking with shape
variability in addition to view
variations: (a) Input images.
(b) Input silhouettes.
(c) Estimated output silhouettes.
(d) Estimated body
configuration parameter.
(e) Estimated view parameter.
(f) Estimated style weights.
(g) Reconstructed 3D body
posture

We tested the performance of the view and body configu-
ration estimations using two types of synthetically rendered
data, one with fixed camera and the other with rotating cam-

era. Figures 12(g), (h) show the view and body configuration
estimation results for a fixed view. The estimated embedded
body configuration switches between the two clusters in the
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Fig. 10 Catch/throw motion
(Evaluation): (a) Rendered
image sequence (frames 3, 25,
47, 69, . . . , 333). (b) A test
sequence with a moving camera.
(c) Estimated shapes after view
and configuration estimation.
(d) Two-dimensional
configuration manifold
embedding and selected basis
points.
(e) Configuration-invariant view
manifold in a 3D space.
(f) Estimated view. (g) Motion
flow field on the embedding
space

embedding space according to the primitive motion type:
left-leg-up or right-leg-up. Figure 13 shows the evaluation
with view variations from 0◦ to 90◦.

7.4 Comparative Evaluation

This section describes several experiments that show the
effect of different choices and parameter settings on the
performance. In Sect. 6, we presented the use of the pro-
posed approach for tracking and inferring body configura-
tion within a Bayesian framework as in (7). However, the
actual performance will be different for different settings.
We tested performance with and without dynamic models;
and with and without prior models. In addition, we evaluated
the effect of camera tilt motion in addition to camera rota-
tion in Sect. 7.4.2. Finally, we compared the performance of
our approach to that of other approaches in Sect. 7.4.3.

7.4.1 Effects of Dynamics and Prior Models

In this experiment, we evaluated the difference of tracking
performance with and without prior models and with and

without dynamics. By a prior model we mean to use the
density of the kinematic embedding as a prior probability
distribution in the sampling process in the particle filter. By
dynamics, we mean the flow field in the embedding space
as described earlier. We selected 64 frames with fast body
rotations from a ballet sequence. We used 150 and 60 parti-
cles for body configuration and view, respectively. Table 3
shows performance under different conditions. In our ex-
periments, the prior model does not improve performance
for body configuration estimation. This is because the prior
model is based on a small number of training samples and
may over-constrain the searching space for the body con-
figuration. In general, using dynamics improves the results.
According to this experiment, the prior distribution did not
improve the estimation. The best performance arises when
we use a dynamic model without a prior distribution con-
straints, and it has an average error of 85.88 mm for the joint
locations in each frame. Figure 14 shows an example plot
of joint locations comparing the ground truth and estimated
body location.
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Fig. 11 A ballet motion:
(a) A test input sequence
(rendered). (b) A test image
sequence (silhouette).
(c) Estimated silhouette
(generated from MAP
estimation). (d) Ground truth 3D
body posture (in body centered
coordinates). (e) Estimated 3D
body posture (generated from
the estimated body
configuration). (f) Average error
in the joint location estimation
for each frame. (g) Ground truth
body rotation (from rotation of
root in the motion-captured
data), estimated view
coordinates (Body rotation is
measured by view rotation in
the opposite direction.), and
absolute error between the true
and estimated rotation

Table 3 Average errors in posture estimation in the ballet sequence

Without dynamics With dynamics

Without prior 87.49 85.88

With prior 161.49 100.77

7.4.2 Vertical Camera Motion: Robustness to Camera
Height

Our model assumes a one dimensional view manifold and
uses sample sequence data along a view circle with a fixed
height. In this experiment, we evaluated the robustness of
body configuration estimation during change of the view
height. We controlled the camera tilt in addition to the cam-
era rotation along the view circle used for training. For this
experiment, we choose the golf swing sequence used in

Sect. 7.2.2. The original experiment has a 180 degree view
rotation during the golf swing. We added tilt camera motion
in addition to the continuous camera rotation along the view
circle. Table 4 shows the estimated error of the 3D body
configuration according to the camera tilt parameter. The
average errors increase rapidly after 30 degree camera tilt
motion and lost tracking after 40 degree as shown in Table 4
and Fig. 15(d).

7.4.3 Evaluation of 3D Posture Estimation with Different
Approaches

We evaluated the performance of the proposed approach rel-
ative to other approaches for inferring 3D body posture.
A nearest-neighbor (NN) search, Bayesian tracking using
a torus manifold embedding (Elgammal and Lee 2009),
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Fig. 12 Dancing sequence
evaluation with a fixed view
camera: (a) Manifold
embedding of a dancing
sequence. (b) Sample body
postures on the embedded
manifold. (c) Input image
frames (rendered). (d) Input
silhouettes for testing from a
fixed view. (e) Ground truth 3D
body posture. (f) Reconstructed
silhouettes. (g) Estimated view
parameters. (h) Average
location error for all joints

direct inferring body posture using a torus manifold em-
bedding (Lee and Elgammal 2006), and embedded repre-
sentation using a Gaussian process latent variable model
(GPLVM) (Lawrence 2004) was used.

Synthetic and real locomotion data were used for the
evaluation. For the synthetic data, we generated 12 discrete
views of a walking sequence along a view circle. We col-
lected one cycle with 40 frames for each view. For testing,
we used synthetic three cycle walking sequences with con-
tinuous view variations. For the real data, we used a subject
walking sequence from the HUMANEVA database used in
Sect. 7.2.1. Subject S1 was used in this experiment.

For the case of NN, the 3D posture is directly obtained
from the nearest training instance. For the case of GPLVM,
we obtained an embedding of the visual manifold from the
training data. GPLVM gave an embedding space of the data
and a mapping function, which can directly be used to iden-

tify the embedding coordinate for any input image silhou-
ette. We used the provided optimization routine to find the
embedding points for a given input. For all the cases (except
NN), to compare the performance of the 3D posture esti-
mation, we learned a nonlinear mapping from embedding
points to the corresponding 3D body posture using an RBF
mapping similar to that used in Elgammal and Lee (2004b).

The average error is shown in Table 5. The proposed ap-
proach produces better performance than other approaches
in real data. NN shows relatively good results in this exper-
iment, because the test data does not have any noise and the
training posture and view have dense samples. GPLVM ex-
hibited some problems in this experiment due to ambiguity
of the body posture in different views. It should be noted
that the goal of this experiment is to compare different rep-
resentations for embedding the visual manifold. The same
approaches compared here can be used in different ways for
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Fig. 13 Dancing sequence
evaluation with a camera
rotation: (a) Silhouettes for a
rotating view. (b) Reconstructed
silhouettes. (c) Estimated view
parameters. (d) Average
location error for all joints

Fig. 14 Evaluation of joint
location estimation (Ballet):
estimated joint locations and
ground truth for each frame:
x and z values for Left Wrist

Fig. 15 3D reconstruction with
camera tilt motion: (a) 3D
reconstruction in 10◦, (b) 30◦,
(c) 50◦. (d) Average
reconstruction errors for all
joints

Table 4 Average errors in
posture estimation from a tilted
camera for a golf swing

Tilt angle (degrees) 10 20 30 40 50 60

3D posture reconstruction error (mm) 64.51 77.56 94.65 139.16 247.32 275.74
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Table 5 Average error (in mm)
in normalized 3D body posture
estimation

Approaches Proposed NN Torus Torus GPLVM

tracking inverse map

(Elgammal and Lee 2009) (Lee and Elgammal 2006)

Synthetic data 20.06 21.84 16.18 62.48 47.24

HUMANEVA data 26.16 48.49 38.21 76.56 81.79

tracking. For example, GPLVM was earlier used (Urtasun et
al. 2005, 2006) to embed the kinematic manifold within a
model-based approach and was shown to achieve good re-
sults.

8 Conclusions

In this paper, we introduced an approach for explicit mod-
eling of body configuration and viewpoint with two sepa-
rate low-dimensional embedded representations. The body
configuration is embedded from kinematic data that is view-
point invariant. The viewpoint manifold is represented in a
posture-invariant manner. As a result, we have created a gen-
erative model that parameterizes the motion, view, and shape
style. The model is appropriate for tracking and posture es-
timation of complex motion from uncalibrated stationary or
moving cameras. We have provided several sets of experi-
mental results and quantitative evaluations for a wide vari-
ety of motions, including simple (gait and golf swings) and
complex (aerobics and ballet dancing) motions. Our model
can initialize, track, and recover the parameters, which are
useful for human motion analysis and recognition, for view
and 3D configuration even with a moving camera. The re-
sults show a good tracking of both configuration and view
when only 30 particles are used for each.

The approach presented here provides a parameterized
generative function that generates dynamic shapes of a cer-
tain motion from different views and different shape styles
where the motion and the viewpoint are parameterized sep-
arately. An important feature of the model is that it does not
use a 3D model. In training, we used a 3D model to render
data, however, in principle this is not required. From per-
ceptual point of view, the model we introduce here, as well
as in our previous work (Elgammal and Lee 2004a, 2004b,
Lee and Elgammal 2005, 2006), provides a computational
theory that is inline with view-based object representation.
We can track, recognize the body posture and viewpoint of
an articulated object in a continuous manner using a model
that is learned from discrete views without the need for a
3D model representation. The limitation of the proposed
approach is the requirement of training data from different
views, which might be hard to get. In addition, as we did not
use 3D model, the accuracy of 3D reconstruction is limited
and comes from the interpolation of 3D configuration from

trained data in the body-centered coordinate. So, if any body
posture is very different from our trained data, we cannot es-
timate the body pose accurately.

We showed results using simple to complex motions.
However, dealing with complex motions is still a challenge.
It is hard to obtain an unambiguous embedded representa-
tion of complex motion in general. However, we believe that
any complex motion can be decomposed into motion primi-
tives which are intrinsically low in dimensionality. Segment-
ing complex motion into motion primitives is an active re-
search direction that we are pursuing. Given this view, the
representation presented in this paper can be useful for mod-
eling more complex motions. Also, complex human motion
can be dealt with through hierarchal models where differ-
ent latent representations for different body joints can be
achieved.

One of the ultimate goals of posture estimation research
is to be able to build vision systems that can replace the cur-
rent marker-based motion-captured systems. This paper fo-
cuses on investigating the use of manifold structures for both
the posture and view estimation from a single uncalibrated
camera. The use of an embedded configuration manifold as
a constraint on the motion helps achieve an efficient solu-
tion. However, such a constraint would limit the accuracy
of the posture recovery. Our vision is that the proposed ap-
proach (similarly, other manifold-based approaches) can be
used as an initialization step to efficiently recover an initial
body posture, which then can be used as an initial solution
for a more sophisticated model-based nonlinear optimiza-
tion technique.

The experiments shown in this paper use a single camera
to recover the posture, extensions to use multiple cameras
is straightforward since the approach separates the config-
uration space from the view space. For multiple cameras,
a shared body configuration and view tracker can be used.
The multiple camera geometry would provide an additional
constraint on the viewpoint estimation, since the different
viewpoints should to be consistent. From the experiment re-
sults, it is clear that most of the errors happen because of
the inherent ambiguity of the body posture recovery from
a single view. Extending the approach to multiple cameras
is expected to enhance the accuracy of results by resolving
such ambiguities.
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