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Abstract The explosion of the Internet provides us with a
tremendous resource of images shared online. It also con-
fronts vision researchers the problem of finding effective
methods to navigate the vast amount of visual information.
Semantic image understanding plays a vital role towards
solving this problem. One important task in image under-
standing is object recognition, in particular, generic object
categorization. Critical to this problem are the issues of
learning and dataset. Abundant data helps to train a robust
recognition system, while a good object classifier can help
to collect a large amount of images. This paper presents a
novel object recognition algorithm that performs automatic
dataset collecting and incremental model learning simulta-
neously. The goal of this work is to use the tremendous re-
sources of the web to learn robust object category models
for detecting and searching for objects in real-world clut-
tered scenes. Humans contiguously update the knowledge
of objects when new examples are observed. Our framework
emulates this human learning process by iteratively accumu-
lating model knowledge and image examples. We adapt a
non-parametric latent topic model and propose an incremen-
tal learning framework. Our algorithm is capable of auto-
matically collecting much larger object category datasets for
22 randomly selected classes from the Caltech 101 dataset.
Furthermore, our system offers not only more images in
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each object category but also a robust object category model
and meaningful image annotation. Our experiments show
that OPTIMOL is capable of collecting image datasets that
are superior to the well known manually collected object
datasets Caltech 101 and LabelMe.
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1 Introduction

Type the word “airplane” in your favorite Internet search im-
age engine, say Google Image (or Yahoo!, flickr.com, etc.).
What do you get? Of the thousands of images these search
engines return, only a small fraction would be considered
good airplane images (∼ 15%, Fergus et al. 2005b). It is fair
to say that for most of today’s average users surfing the web
for images of generic objects, the current commercial state-
of-the-art results are far from satisfying.

This problem is intimately related to the problem of
learning and modeling generic object classes in computer vi-
sion research (Fei-Fei et al. 2007; Felzenszwalb and Hutten-
locher 2005; Fergus et al. 2005a, 2005b; Krempp et al. 2002;
LeCun et al. 2004; Leibe and Schiele 2004). In order to de-
velop effective object categorization algorithms, researchers
rely on a critical resource: an accurate object class dataset.
A good dataset serves as training data as well as an evalua-
tion benchmark. A handful of large scale datasets currently
serve such a purpose, such as Caltech101/256 (Fei-Fei et al.
2004; Griffin et al. 2007), the UIUC car dataset (Agarwal et
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al. 2004), LotusHill (Yao et al. 2007), LableMe (Russell et
al. 2005) etc. Section 1.1 will elaborate on the strengths and
weaknesses of these datasets. In short, all of them, however,
have a rather limited number of images and offer no possi-
bility of expansion other than with extremely costly manual
labor.

We are therefore facing a chicken and egg problem here:
Users of the Internet search engines would like better search
results when looking for objects; developers of these search
engines would like more robust visual models to improve
these results; vision researchers are developing models for
this purpose; but in order to do so, it is critical to have large
and diverse object datasets for training and evaluation; this,
however, goes back to the same problem that the users face.

There are few breakthroughs for this problem recently.
Among the solutions, one of the major trends is to manually
collect and annotate a ground truth dataset (LotusHill (Yao
et al. 2007) and LableMe (Russell et al. 2005)). Due to the
vast number of object classes in our world, however, manu-
ally collecting images for all the classes is currently impossi-
ble. Recently, researchers have developed approaches utiliz-
ing images retrieved by image search softwares to learn sta-
tistical models to collect datasets automatically. Yet, learn-
ing from these images is still challenging:

• Current commercial image retrieval software is built upon
text search techniques using the keywords embedded in
the image link or tag. Thus, retrieved image is highly con-
taminated with visually irrelevant images. Extracting the
useful information from this noisy pool of retrieved im-
ages is quite critical.

• The intra-class appearance variance among images can be
large. For example, the appearance of “wrist watches” are
different than the “pocket watches” in the watch category.
The ability of relying on knowledge extracted from one
of them (e.g. “wrist watch”) to distinguish the other (e.g.
“pocket watch”) from unrelated images is important.

• Polysemy is common in the retrieved images, e.g. a
“mouse” can be either a “computer mouse” or an “ani-
mal mouse”. An ideal approach can recognize the differ-
ent appearances and cluster each of the objects separately.

In this paper, we provide a framework to simultaneously
learn object class models and collect object class datasets.
This is achieved by leveraging on the vast resource of im-
ages available on the Internet. The sketch of our idea is the
following. Given a very small number of seed images of
an object class (either provided by a human or automati-
cally), our algorithm learns a model that best describes this
class. Serving as a classifier, the algorithm can extract from
the text search result those images that belong to the object
class. The newly collected images are added to the object
dataset, serving as new training data to improve the object
model. With this new model, the algorithm can then go back

to the web and extract more relevant images. Our model uses
its previous prediction to teach itself. This is an iterative
process that continuously gathers an accurate image dataset
while learning a more and more robust object model. We
will show in our experiments that our automatic, online al-
gorithm is capable of collecting object class datasets of more
images than Caltech 101 (Fei-Fei et al. 2004) or LabelMe
(Russell et al. 2005). To summarize, we highlight here the
main contributions of our work.

• We propose an iterative framework that collects object
category datasets and learns the object category models
simultaneously. This framework uses Bayesian incremen-
tal learning as its theoretical base.

• We have developed an incremental learning scheme that
uses only the newly added images for training a new
model. This memory-less learning scheme is capable of
handling an arbitrarily large number of images, which is
a vital property for collecting large image datasets.

• Our experiments show that our algorithm is capable of
both learning highly effective object category models
and collecting object category datasets significantly larger
than that of Caltech 101 or LabelMe.

1.1 Related Works

Image Retrieval from the Web Content-based image re-
trieval (CBIR) (Zhou and Huang 2002; Deng 2001; Carson
et al. 1999; Li et al. 2000; Chen et al. 2003; Jain and Vailaya
1996; Barnard and Forsyth 2001; Barnard et al. 2003; Jeon
et al. 2003) has been long an active field of research.
One major group of research (Barnard and Forsyth 2001;
Barnard et al. 2003; Jeon et al. 2003) in CBIR treats images
as a collection of blobs or blocks, each corresponding to a
word or phrase in the caption (with some considerable varia-
tions). The task of such algorithms is to assign proper words
and/or phrases to a new image, and hence to retrieve sim-
ilar ones in a database that contains such annotations. An-
other group of approaches focuses on comparing the query
image with exemplar images and retrieving images based
on image similarity (Carson et al. 1999; Chen et al. 2003;
Deng 2001). However, our work is different from the con-
ventional frameworks of CBIR. Instead of learning to anno-
tate images with a list of words or comparing the similarity
of images, our algorithm collects the most suitable images
from the web resources given a single word or phrase. One
major difference between our work and the traditional CBIR
is the emphasis on visual model learning. When collecting
images of a particular object category, our algorithm contin-
ues to learn a better and better visual model to classify this
object.

A few recent approaches in this domain are closer to
our current framework. Feng and Chua propose a method
to refine images returned by search engine using co-training
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(Feng and Chua 2003). They employ two independent seg-
mentation methods as well as two independent sets of fea-
tures to co-train two “statistically independent” SVM classi-
fiers and co-annotate unknown images. Their method, how-
ever, does not offer an incremental training approach to
boost the training efficiency in the co-train and co-annotate
process. Moreover, their approach needs user interaction at
the beginning of training and also when both the classifiers
are uncertain about the decision.

Berg and Forsyth (2006) develop a lightly supervised sys-
tem to collect animal pictures from the web. Their system
takes advantage of both the text surrounding the web images
and the global feature statistics (patches, colors, textures) of
the images to collect a large number of animal images. Their
approach involves a training and a testing stage. In the train-
ing stage, a set of visual exemplars are selected by clustering
the textual information. In the testing stage, textual informa-
tion as well as visual cues extracted from these visual exem-
plars are incorporated in the classifier to find more visually
and semantically related images. This approach requires su-
pervision to identify the clusters of visual exemplars as rel-
evant or background. In addition to this, there is an optional
step for the user to swap erroneously labeled exemplars be-
tween the relevant and background topics in training.

Similar to Berg and Forsyth (2006), Schroff et al. (2007)
also employ the web meta data to boost the performance of
image dataset collection. The images are ranked based on
a simple Bayesian posterior estimation, i.e. the probability
of the image class given multiple textual features of each
image. A visual classifier, trained on the top ranked images,
is then applied to re-rank the images.

Another method close in spirit to ours is by Yanai and
Barnard (2005). They also utilize the idea of refining web
image result with a probabilistic model. Their approach con-
sists of a collection stage and a selection stage. In the col-
lection stage, they divide the images into relevant and unre-
lated groups by analyzing the associated HTML documents.
In the selection stage, a probabilistic generative model is ap-
plied to select the most relevant images among those from
the first stage. Unlike ours, their method focuses on image
annotation. Furthermore, their experiments show that their
model is effective for “scene” concepts but not for “object”
concepts. Hence, it is not suitable for generic object category
dataset collection.

While the three approaches above rely on both visual and
textual features of the web images returned by search en-
gines, we would like to focus on visual cue only to demon-
strate how much it can improve the retrieval result.

Finally, our approach is inspired by two papers by Fer-
gus et al. (2005b, 2004). They introduce the idea of train-
ing a good object class model from web images returned
by search engines, hence obtaining an object filter to refine
these results. Fergus et al. (2004) extends the constellation

model (Weber et al. 2000; Fergus et al. 2003) to include het-
erogeneous parts (e.g. regions of pixels and curve segments).
The extended model is then used to re-rank the retrieved re-
sult of image search engine. In Fergus et al. (2005b), the
authors extend a latent topic model (pLSA) to incorporate
spatial information. The learned model is then applied to
classify object images and to re-rank the images retrieved
by Google image search. Although these two models are ac-
curate, they are not scalable. Without an incremental learn-
ing framework, they need to be re-learned with all available
images whenever new images are added.

All the above techniques achieve better search results
by using either a better visual model or a combination of
visual and text models to re-rank the rather noisy images
from the web. We show later that by introducing an iterative
framework of incremental learning, we are able to embed the
processes of image collection and model learning efficiently
into a mutually reinforcing system.

Object Classification The recent explosion of object cat-
egorization research makes it possible to apply such tech-
niques to partially solve many challenging problems such as
improving the image search result and product images or-
ganization. Due to the vast number of object categorization
approaches (Fei-Fei et al. 2007; Felzenszwalb and Hutten-
locher 2005; Fergus et al. 2005a, 2005b; Krempp et al. 2002;
LeCun et al. 2004; Leibe and Schiele 2004; Lowe 1999), it is
out of the scope of our paper to discuss all of them. Here we
will focus on two major branches that are closely related to
our approach, specifically, latent topic model based on the
“bag of words” representation and incremental learning of
statistic models.

A number of systems based on the bag of words model
representation have shown to be effective for object and
scene recognition (Fergus et al. 2005b; Sivic et al. 2005;
Fei-Fei and Perona 2005; Sudderth et al. 2005b; Bosch et al.
2006; Csurka et al. 2004; Sivic and Zisserman 2003). Sivic
et al. (2005) apply probabilistic Latent Semantic Analysis
(pLSA), a model introduced in the statistical text literature,
to images. Treating images and categories as documents and
topics respectively, they model an image as a mixture of top-
ics. By discovering the topics embedded in each image, they
can find the class of the image. pLSA, however, can not per-
form satisfactorily on unknown testing images since it is not
a well defined generative model. Furthermore, the number of
parameters in pLSA grows linearly with the number of train-
ing images, making the model prone to overfitting. Fei-Fei
and Perona (2005) apply an adapted version of a more flex-
ible model called Latent Dirichlet Allocation (LDA) model
(Blei et al. 2003) to natural scene categorization. LDA over-
comes problems of pLSA by modeling the topic mixture
proportion as a latent variable regularized by its Dirichlet
hyper-parameter.
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The models mentioned above are all applied in a batch
learning scenario. If the training data grows, as in our frame-
work, they have to be retrained with all previous data and the
new data. This is not an efficient approach, especially when
learning from large datasets. Hence, we would like to apply
incremental learning to our model.

A handful of object recognition approaches have applied
incremental learning to object recognition tasks. The most
notable ones are Krempp et al. (2002) and Fei-Fei et al.
(2004). Krempp et al. (2002) use a set of edge configura-
tions as parts, which are learned from the data. By present-
ing the object categories sequentially to the system, it is
optimized to accommodate the new classes by maximally
reusing parts. Fei-Fei et al. (2004) adopt a generative proba-
bilistic model called constellation model (Weber et al. 2000;
Fergus et al. 2003) to describe the object categories. Fol-
lowing Neal and Hinton’s adaptation of conventional EM
(Neal and Hinton 1998), a fully Bayesian incremental learn-
ing framework is developed to boost the learning speed.

Our approach combines the merits of these two branches:

• Bag of words representation enables the model to handle
occlusion and rotation, which are common for web im-
ages. It is also computationally efficient, a desired prop-
erty for the computation of large image dataset. On the
other hand, latent topic model provides natural cluster-
ing of data, which helps solving the polysemy problem in
image retrieval. We choose a nonparametric latent topic
model so that the model can adjust its internal structure,
specifically the number of clusters of the data, to accom-
modate new data.

• Given large intra-class variety of the online images, it
is difficult to prepare good training examples for every
subgroup of each image class. We employ an iteratively
learning and classification approach to find the good train-
ing examples automatically. In each iteration, the object
model is taught by its own prediction. In such iterative
process, incremental learning is important to make learn-
ing in every iteration more efficient.

Object Datasets One main goal of our proposed work is
to suggest a framework that can replace most of the cur-
rent human effort in object dataset collection. A few popular
object datasets exist today as the major training and evalu-
ation resources for the community such as Caltech 101 and
LabelMe. Caltech 101 consists of 101 object classes each
of which contains 31 to 800 images (Fei-Fei et al. 2004).
It was collected by a group of students spending on aver-
age three or four hours per 100 images. While it is regarded
as one of the most comprehensive object category datasets
now available, it is limited in terms of the variation in the
images (big, centered objects with few viewpoint changes),
numbers of images per category (at most a few hundred) as
well as the number of categories. For a long time, datasets

Fig. 1 Illustration of the framework of the Online Picture collecTion
via Incremental MOdel Learning (OPTIMOL) system. This framework
works in an incremental way: Once a model is learned, it can be used to
classify images from the web resource. The group of images classified
as being in this object category are regarded as related images. Other-
wise, they are discarded. The model is then updated by a subset of the
newly accepted images in the current iteration. In this incremental fash-
ion, the category model gets more and more robust. As a consequence,
the collected dataset becomes larger and larger

are collected in this way relying on extensive human labor.
Similar datasets are Caltech-256 (Griffin et al. 2007), PAS-
CAL (1), LotusHill (Yao et al. 2007) and Fink and Ullman
(2007).

Recently, LabelMe has offered an alternative way of col-
lecting datasets of objects by having users upload their im-
ages and label them (Russell et al. 2005). This dataset is
much more diverse than Caltech 101, potentially serving
as a better benchmark for object detection algorithms. But
since it relies on people uploading pictures and making un-
controlled annotations, it is difficult to use it as a generic
object dataset. In addition, while some classes have many
images (such as 20 304 images for “car”), others have too
few (such as 7 images for “watch”).

A few other object category datasets such as Agarwal et
al. (2004) are also used by researchers. All of the datasets
mentioned above require laborious human effort to collect
and select the images. In addition, while serving as training
and test datasets for researchers, they are not suitable for
general search engine users. Our proposed work offers a first
step towards a unified way of automatically collecting data
useful both as a research dataset as well as for answering
user queries.
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2 General Framework of OPTIMOL

OPTIMOL has two goals to fulfill simultaneously: to auto-
matically collect object datasets from the web and to incre-
mentally learn object category models. We use Fig. 1 and
Algorithm 1 to illustrate the overall framework. For every
object category we are interested in, say, “panda”, we ini-
tialize our image dataset with a handful of seed images.
This can be done either manually or automatically.1 With
this small dataset, we begin the iterative process of model
learning and dataset collection. Learning is done via an in-
cremental learning process that we introduce in Sect. 3.2.3.
Given the current updated model of the object class, we per-
form a binary classification on a subset of images down-
loaded from the web (e.g. “panda” vs. background). If an
image is accepted as a “panda” image based on some sta-
tistical criteria (see Sect. 3.2.3), we augment our existing
“panda” dataset by appending this new image. We then up-
date our “panda” model with a subset of the newly accepted
images (see Sect. 3.3.2 for details of the “cache set”). Note
that the already existing images in the dataset no longer par-
ticipate in this iteration of learning. In the meantime, the
background model will also be updated using a constant re-
source of background images.2 We repeat this process till a
sufficient dataset is collected or we have exhausted all down-
loaded images.

Algorithm 1 Incremental learning, classification and data
collection

Download from the Web a large reservoir of images ob-
tained by searching with keyword(s)
Initialize the object category dataset with seed images
(manually or automatically)
repeat

Learn object category model with the latest accepted
images to the dataset
Classify a subset of downloaded images using the cur-
rent object category model
Augment the dataset with accepted images

until user satisfied or images exhausted

1To automatically collect a handful of seed images, we use the images
returned by the first page of Google image search, or any other state-
of-the-art commercial search engines given the object class name as
query word.
2The background class model is learnt by using a published “back-
ground” image dataset (Fergus et al. 2003; Fei-Fei et al. 2006). The
background class model is updated together with the object class
model. In this way, it can accommodate the essential changes of the
new training data.

3 Detailed System of OPTIMOL

3.1 Our Model

In this section, we describe the model used in OPTIMOL
in detail. Specifically, Sect. 3.1.1 describes the probabilis-
tic classification approaches, especially generative models.
Section 3.1.2 introduces briefly the “bag of words” image
representation combined with the latent topic model. Fi-
nally, in Sect. 3.1.3, we discuss the nonparametric latent
topic model (i.e. Hierarchical Dirichlet Process (HDP)) in
OPTIMOL.

3.1.1 Generative Model

Classification approaches can be grossly divided into gen-
erative models, discriminative models and discriminant
functions (Bishop 2006). For generative models, such as
Gaussian mixture models (Weber et al. 2000; Fergus et al.
2003; Fei-Fei et al. 2003), Markov random fields (Pawan
Kumar et al. 2005), latent topic model (Sivic et al. 2005;
Fei-Fei and Perona 2005; Wang et al. 2006) etc., both the
input distribution and the output distribution are modeled.
While for discriminative models, which include boosting
(Freund and Schapire 1995; Freund and Schapire 1996),
support vector machines (Boser et al. 1992), conditional
random field (McCallum et al. 2000) etc., the posterior
probabilities are modeled directly. The simplest approaches
are called discriminant functions (e.g. Fisher’s linear dis-
criminant by Belhumeur et al. 1997), which are projec-
tions mapping the input data to class labels. Comparing
to the other two approaches, generative models are able
to handle the missing data problem better since all vari-
ables are jointly modeled in a relatively equal manner.
When the missing data problem is encountered, the per-
formance will not be affected dramatically. This property
is desired for semi-supervised learning from Internet im-
ages where only a small amount of labeled data is provided.
Here, we would like to adopt generative model given this
ideal property for OPTIMOL’s iterative incremental learn-
ing framework. Previous success of generative model in
object recognition (Fei-Fei et al. 2003; Sivic et al. 2005)
and content based image retrieval (Yanai and Barnard 2005;
Fergus et al. 2005b) ensure the potential ability of generative
model in our framework.

3.1.2 Object Category Model

We would like to emphasize that our proposed framework
is not limited to the particular object model used in this pa-
per. Any model that can be cast into an incremental learning
framework is suitable for our protocol. Of the many possibil-
ities, we have chosen to use a variant of the HDP (Hierarchi-
cal Dirichlet Process) (Teh et al. 2006) model based on the
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Fig. 2 Graphical model of HDP. Each node denotes a random variable.
Bounding boxes represent repetitions. Arrows indicate conditional de-
pendency. Dark node indicates it is observed

“bag of words” (Sivic et al. 2005; Fei-Fei and Perona 2005;
Csurka et al. 2004; Sivic and Zisserman 2003) representa-
tion of images. HDP is particular suitable here because of
the natural clustering and computationally efficient proper-
ties respectively. “Bag of words” model is frequently used
in natural language processing and information retrieval of
text documents. In “bag of words” model, each document
is represented as an unordered collection of words. When
applied to image representation, it describes each image as
a bag of visual words (node x in Fig. 2). We are partic-
ularly interested in the application of latent topic models
to such representation (Hofmann 1999; Blei et al. 2003;
Teh et al. 2006). Similar to Sudderth et al. (2005a), Wang et
al. (2006), we adapt a nonparametric generative model, Hi-
erarchical Dirichlet process (HDP) (Teh et al. 2006), for our
object category model. Compared to parametric latent topic
models such as LDA (Blei et al. 2003) or pLSA (Hofmann
1999), HDP offers a way to sample an unbounded number
of latent topics, or clusters, for each object category model.
This property is especially desirable for OPTIMOL. Since
the data for training keeps growing, we would like to retain
the ability to “grow” the object class model when new clus-
ters of images arise. Before we move on to introduce the
HDP object category model in more detail in Sect. 3.1.3, we
define the notations in Fig. 2 here.

• A patch x is the basic unit of an image. Each patch is
represented as a codeword of a visual vocabulary of code-
words indexed by {1, . . . , T }.

• An image is represented as N unordered patches denoted
by x = (xj1, xj2, . . . , xjN ), where xji is the ith patch of
the j th image.

• A category is a collection of I images denoted by D =
(x1,x2, . . . ,xI ).

3.1.3 Hierarchical Dirichlet Process

We represent an image as a document constituted by a bag of
visual words. Each category consists of a variable number of

latent topics corresponding to clusters of image patches with
similar visual attributes. We model both object and back-
ground classes with HDP (Teh et al. 2006). Figure 2 shows
the graphical model of HDP. In the HDP model, θ corre-
sponds to the distributions of visual words given different
latent topics shared among images. Let xji be the ith patch
in j th image. For each patch xji , there is a hidden variable
zji denoting the latent topic index. β is the stick-breaking
weights (Sethuraman 1994) and πj represents the mixing
proportion of z for the j th image. We now go through the
graphical model (Fig. 2) and show how we generate each
patch in an image. For each image class c,

• Sample β ∼ GEM(γ ). GEM is the stick-breaking process:

β ′
k ∼ Beta(1, γ ) βk = β ′

k

k−1∏

l=1

(1 − β ′
l )

β = (β1, β2, . . . , β∞) (1)

• Sample θk from the Dirichlet prior distribution H .
• Given the stick-breaking weights γ and global cluster θ ,

we generate each image in this class.
– We first sample πj , πj |α,β ∼ DP(α,β). DP denotes

the Dirichlet Process introduced by Ferguson in 1973
(Ferguson 1973):

π ′
jk ∼ Beta

(
αβk,α

(
1 −

k∏

l=1

βl

))

πjk = π ′
jk

k−1∏

l=1

(1 − π ′
j l) (2)

where πj = (πj1,πj1, . . . , πj∞).
– Given πj , we are ready to generate each image patch

xji

* Sample the latent topic index zji for patch xji from
a multinomial distribution πj : zji |πj ∼ πj

* Sample xji given zji from a class dependent multi-
nomial distribution F : xji |zji , θk ∼ F(θc

zji
)

3.2 Learning

We have described our hierarchical model in details. We now
turn to learning its parameters. In this subsection, we first de-
scribe the batch learning algorithm of our hierarchical model
in Sect. 3.2.1. In Sect. 3.2.2, we introduce semi-supervised
learning of this model. Finally, the efficient semi-supervised
incremental learning is introduced in Sect. 3.2.3 for learning
from large image dataset.

3.2.1 Markov Chain Monte Carlo Sampling

In this section, we describe how we learn the parameters
by Gibbs sampling (Geman and Geman 1984) of the latent
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variables. We choose the Chinese restaurant franchise (Teh
et al. 2006) metaphor to describe this procedure. Imagine
multiple Chinese restaurants serving the same set of dishes
in the menu. At each table of each restaurant, a dish is shared
by the customers sitting at that table. Metaphorically, we de-
scribe each image as one restaurant and the local cluster for
the customer xji as the table tj i . Similarly, the global clus-
ter for the t th table in the j th restaurant is represented as the
dish kjt :

tj i |tj1, . . . , tj i−1, α,G0 ∼
Tj∑

t=1

njt δtji=t + αG0 (3)

kjt |k11, k12, . . . , k21, . . . , kjt−1, γ ∼
K∑

k=1

mkδkjt=k + γH

(4)

where G0 ∼ DP(γ,H). njt denotes the number of cus-
tomers for table t . Tj is the current number of tables. mk rep-
resents the number of tables ordered dish k. K denotes the
current total number of dishes. All these statistics are calcu-
lated without considering the current data point. A new table
and new dish can also be generated from G0 and H , respec-
tively, if current data does not fit in any of the previous table
or dish. For standard mixture models, the Chinese restau-
rant franchise can be easily connected to the stick breaking
process by having zji = kjt .

Sampling the Table According to (3) and (4), the probabil-
ity of a new customer xji being assigned to table t is:

P(tji = t |xji, t−ji ,k) ∝
{

αptnew for t = tnew

njtf (xji |θkji
) for used t

(5)

We have

ptnew =
K∑

k=1

mk∑K
k=1 mk + γ

f (xji |θkji
)

+ γ
∑K

k=1 mk + γ
f (xji |θknew)

f (xji |θkji
) is the conditional density of patch xji given all

data items associated with k except itself. The probability of
assigning a newly generated table tnew to a global cluster is
proportional to:
{

mkf (xji |θkji
) for used k

γf (xji |θknew) for new k
(6)

Sampling the Global Latent Topic For the existing tables,
the dish can change according to all customers at that table.
The global cluster kjt can be obtained from:
{

mkf (xj t |θkji
) for used k

γf (xj t |θknew) for new k
(7)

Where xj t represents all patches associated with image level
mixture component t in image j except the current one.
f (xj t |θkjt

) is the conditional density of xj t given all patches
associated with topic k except themselves. njt and mk will
be updated respectively regarding the table index and global
latent topic assigned. Given zji = kjtji

, we in turn update
F(θc

zji
) for the category c.

3.2.2 Semi-supervised Learning

Due to the large variation of web images, it requires large
number of representative images to train a robust model.
Manually selecting these images is time consuming and bi-
ased. In the framework of OPTIMOL, we employ a semi-
supervised learning approach, specifically self training, to
propagate the initial knowledge (Zhu 2006). As a wrap-
per algorithm, self training can be easily applied to exist-
ing models. It has been used in natural language process-
ing to perform tasks such as parsing strings of words (Mc-
Closky et al. 2006). In computational biology, self training
is employed for gene prediction (Besemer et al. 2001). Re-
cently, it is also applied in computer vision by Rosenberg
et al. (2005) to help object detection. All of the approaches
show that, by employing a self training framework, one can
achieve comparable result to state-of-the-art approach with
less labeled training data. We will demonstrate later in Fig. 9
that with semi-supervised learning framework, OPTIMOL
shows superior performance in comparison to the fully su-
pervised learning framework using the same number of seed
images. The basic idea of self training is:

• First, an initial model is trained with a limited amount of
reliable labeled data.

• This model is applied to estimate the labels of the unla-
beled data.

• The estimated labels is used to retrain the model.
• Repeat the training and classification procedure.

With this idea, self training allows the model to teach itself
iteratively with new classification results. In each iteration of
the self training, one can incorporate the new data to retrain
the model either via the batch learning mode described in
Sect. 3.2.1 or an incremental learning mode introduced later
in Sect. 3.2.3. In the self training framework, data that are far
away from the initial training set are unlikely to be selected
to update the model. However, such data are very useful for
generalization of the model. Thus, we design a “cache set”
to solve this problem in Sect. 3.3.2.

3.2.3 Incremental Learning of a Latent Topic Model

Having introduced the object class model and the batched
learning approach, we propose an incremental learning
scheme for OPTIMOL. This scheme let OPTIMOL update
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the model at every iteration of the dataset collection process
more efficiently. Our goal here is to perform incremental
learning by using only new images selected at current iter-
ation. We will illustrate in Fig. 9 (Middle) that this is much
more efficient than performing a batch learning by using all
images in the current dataset at every iteration. Meanwhile,
it still retains the accuracy of the model as shown in Fig. 9.
Let � denote the model parameters, and Ij denote the j th
image represented by a set of patches xj1, . . . , xjn. For each
patch xji , there is a hidden variable zji denoting the latent
topic index. The model parameters and hidden variable are
updated iteratively using the current model and the input
image Ij in the following fashion:

zj ∼ p(z|�j−1, Ij ) �j ∼ p(�|zj ,�
j−1, Ij ) (8)

where �j−1 represents the model parameters learned from
the previous j −1 images. Neal and Hinton (1998) provide a
theoretical ground for incrementally learning mixture mod-
els via sufficient statistics updates. We follow this idea by
keeping only the sufficient statistics of the parameters asso-
ciated with the existing images in an object dataset. Learn-
ing is then achieved by updating these sufficient statistics
with those provided by the new images. One straightforward
method is to use all the new images accepted by the current
classification criterion. But this method will favor those im-
ages with similar appearances to the existing ones, hence
resulting in over-specialized object models. To avoid such a
problem, we take full advantage of the non-parametric HDP
model by using a subset of the related images denoted as
“cache set” to update our model. Here, “related images”
refers to images classified as belonging to the object class
by the current model. We detail the selection of the “cache
set” in Sect. 3.3.2.

3.3 New Image Classification and Annotation

In the OPTIMOL framework, learning and classification are
conducted iteratively. We have described the learning step
in Sect. 3.2. In this subsection, we introduce the classifi-
cation step in our framework. In Sect. 3.3.1, we describe
how our model judges which images are related images
against others. Sect. 3.3.2 describes the criterion to select
the “cache set”, a subset of the related images to be used to
train our model. Finally, we introduce the annotation method
in Sect. 3.3.3.

3.3.1 Image Classification

For every iteration of the dataset collection process, we have
a binary classification problem: classify unknown images as
a foreground object or a background image. In the current
model, we have p(z|c) parameterized by the distribution of

global latent topics given each class in the Chinese restau-
rant franchise and p(x|z, c) parameterized by F(θc

z ) learned
for each category c. A testing image I is represented as a
collection of local patches xi , where i = {1, . . . ,M} and M

is the number of patches. The likelihood p(I |c) for each
class is calculated by:

P(I |c) =
∏

i

∑

z

P (xi |z, c)P (z|c) (9)

Classification decision is made by choosing the category
model that yields the higher probability. From a dataset col-
lection point of view, incorporating an incorrect image into
the dataset (false positive) is much worse than missing a cor-
rect image (false negative). Hence, a risk function is intro-
duced to penalize false positives more heavily:

Ri(A|I ) = λAcf
P (cf |I ) + λAcb

P (cb|I )

Ri(R|I ) = λRcf
P (cf |I ) + λRcb

P (cb|I )
(10)

Here A represents acceptance of an image into our dataset.
R denotes rejection. As long as the risk of accepting an im-
age is lower than rejecting it, it is accepted. Image classifi-
cation is finally decided by the likelihood ratio:

P(I |cf )

P (I |cb)
>

λAcb
− λRcb

λRcf
− λAcf

P (cb)

P (cf )
(11)

where the cf is the foreground category while the cb is the

background category.
λAcb

−λRcb

λRcf
−λAcf

is automatically adjusted

by applying the likelihood ratio measurement to a reference
dataset3 at every iteration. New images satisfying (11) are
regarded as related images. They will be either appended to
the permanent dataset or used to train the new model upon
further criterion.

3.3.2 The Cache Set

In the self training setting, the model teaches itself by using
the predicted related images. It is critical to distinguish ran-
dom noisy images from difference caused by intra-class dif-
ference. How to extract the most useful information from the
new classification result automatically? We use a “cache set”
of images to incrementally update our model. The “cache
set” is a less “permanent” set of good images compared to
the actual image dataset. At each iteration, if all “good” im-
ages are used for model learning, it is highly likely that many
of these images will look very similar to the previously col-
lected images, hence reinforcing the model to be even more

3To achieve a fully automated system, we use the original seed images
as the reference dataset. As the training dataset grows larger, the direct
effect of the original training images diminishes in terms of the ob-
ject model. They therefore become good approximation of a validation
dataset.
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specialized in selecting such images for the next iteration.
Furthermore, it will also be computationally expensive to
train with all “good” images. So the usage of the “cache set”
is to retain a group of images that tend to be more diverse
than the existing images in the dataset. For each new image
passing the classification criterion (11), it is further evalu-
ated by (12) to determine whether it should belong to the
“cache set” or the permanent set.

H(I) = −
∑

z

p(z|I ) lnp(z|I ) (12)

In Fig. 14, we demonstrate how to select the “cache set”.
According to Shannon’s definition of entropy, (12) relates
to the amount of uncertainty of an event associated with a
given probability distribution. Images with high entropy are
more uncertain and more likely to have new topics. Thus,
these high likelihood and high entropy images are ideal for
model learning. In the meantime, images with high likeli-
hood but low entropy are regarded as confident foreground
images and will be incorporated into the permanent dataset.

3.3.3 Image Annotation

The goal of OPTIMOL is not only to collect a good im-
age dataset but also to provide further information about the
location and size of the objects contained in the dataset im-
ages. Object annotation is carried out by first calculating the
likelihood of each patch given the object class cf :

p(x|cf ) =
∑

z

p(x|z, cf )p(z|cf ) (13)

The region with the most concentrated high likelihood
patches is then selected as the object region. A bounding
box is drawn to enclose the selected patches according to
(13). Sample results are shown in Fig. 20.

3.4 Discussion of the Model

We discuss here several important properties of OPTIMOL
in this section.

Dataset Diversity Our goal is to collect a diverse image
dataset which has ample intra class variation. Furthermore,
the ideal model should be capable of collecting all possi-
ble object classes associated with different semantic mean-
ings of a polysemous word. OPTIMOL is able to achieve
both goals given its facility of accommodating new train-
ing data different from the previous ones. This is largely at-
tributed to the property of object model (i.e. HDP) that is ca-
pable of generating unbounded number of topics to describe
data with different aspects. Later, we show in Fig. 10 that
our framework can collect a larger and more diverse image
dataset compared to Caltech 101. Moreover, Fig. 11 demon-
strates that OPTIMOL collects image in a semantic way by
assigning visually different images to different clusters.

Fig. 3 (Color online) Influence of the threshold (11) on the number
of images to be appended to the dataset and held in the cache set on
100 “accordion” images. x-axis is the value of threshold represented in
percentile. The validation ratio thresholds are 1, 5, 10, 30, 50, 70, 90,
100, which are equivalent to −1.94, 2.10, 14.24, 26.88, 44.26, 58.50,
100.22 and 112.46 in log likelihood ratio thresholds respectively for
the current classifier. y-axis denotes the number of images. Blue region
represents number of images classified as unrelated. Yellow region de-
notes the number of images that will be appended to the object dataset.
Pink region represents number of images held in the “cache set”. The
“true” bar represents the proportion of true images in the 100 testing
images. These bars are generated using the initial model learned from
15 seeds images. The higher the threshold is, the fewer number of im-
ages will be appended to the permanent dataset and held in the “cache
set”

Concept Drift Self training helps OPTIMOL to accumu-
late knowledge without human interaction. However, it is
prone to concept drift when the model is updated by unre-
lated images. The term “Concept Drift” refers to the phe-
nomenon of a target variable changing over time. In the OP-
TIMOL framework, we are mostly concerned with the ob-
ject model drifting from one category to another (e.g. from
accordions to grand pianos). To avoid model drift, our sys-
tem needs to decide whether an image should be discarded,
appended to the permanent dataset or kept in the “cache set”
to retrain the model. Using a constant number threshold for
(11) to make this decision is not feasible since the model
is updated in every iteration. The rank of the images is not
a good choice either since there might not be any related
images in current iteration. In the OPTIMOL framework,
we use a threshold calculated dynamically by measuring the
likelihood ratio of the updated model on a validation set.
Those with likelihood ratio lower than the threshold are as-
sumed to be “unrelated” and hence discarded. Among those
“related” images, a proportion of images with high entropies
are selected to be held in the “cache set” according to (12).
Figure 3 shows the influence of the threshold on the num-
ber of images to be accepted, discarded or used for train-
ing. Basically, the number of images to be incorporated into
the permanent dataset decreases along with the increase of
the threshold. The same applies to the number of images to
be held in the “cache set”. If fewer images are kept in the
“cache set” and are used to update the model, the model
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Fig. 4 Downloading part in Step 1. A noisy “accordion” dataset is downloaded using “accordion” as query word in Google image, Yahoo! image
and Picsearch. Downloaded images will be further divided into groups for the iterative process

Fig. 5 (Color online) Preprocessing in Step 1. Top: Regions of inter-
est found by Kadir&Brady detector. The circles indicate the interest
regions. The red crosses are the centers of these regions. Bottom: Sam-
ple codewords. Patches with similar SIFT descriptors are clustered into
the same codeword, which are presented using the same color

tends to be similar to the initial model. In the extreme case,
if the threshold equals 1, no image will be incorporated to
the dataset. Neither will new images be used to retrain the
model. The model will stay the same as the initial model.
Hence the incorporated images will be highly similar to the
initial dataset and the collected dataset will not be very di-
verse (Fig. 15, left). To the other extreme, if the threshold
equals 0, unrelated images will be accepted. Some of these
unrelated images with high entropies will be used to update
the model. In this scenario, self training will reinforce the
error in each iteration and tend to drift. We demonstrate this
concept drift issue by showing the dataset collection perfor-
mance of OPTIMOL with different likelihood ratio thresh-
olds in Fig. 13.

4 Walkthrough for the Accordion Category

As an example, we describe how OPTIMOL collects im-
ages for the “accordion” category following Algorithm 1
and Fig. 1. We use Figs. 4–8 to show the real system.

• Step 1 (Downloading and preprocessing): As shown in
Fig. 4, 1659 images are downloaded as our image pool by
typing the query word “accordion” in image search en-
gines such as Google image, Yahoo image and Picsearch.
We use the first 15 images from the web resource as our
seed images, assuming that most of them are related to
the “accordion” concept. The remaining (non-seed) im-
ages are divided into 17 groups. The first 16 groups have
100 images each and the last, 17th group has 44 images.
The OPTIMOL framework will process one group per it-
eration. Each image is represented as a set of unordered
local patches. Kadir and Brady (2001) salient point de-
tector offers compact representations of the image, which
makes computation more efficient for our framework. We
apply this detector to find the informative local regions
that are salient over both location and scale. Consider-
ing the diversity of images on the web, a 128-dim rota-
tionally invariant SIFT vector is used to represent each
region (Lowe 1999). We build a 500-word codebook by
applying K-means clustering to the 89058 SIFT vectors
extracted from the 15 seeds images of each of the 23
object categories. Each patch in an image is then de-
scribed by using the most similar codeword in the code-
book via vector quantization. In Fig. 5, we show exam-
ples of detected regions of interest and some codeword
samples.

• Step 2 (Initial batch learning): As shown in Fig. 6, a
batch learning algorithm described in Sect. 3.2.1 is ap-
plied on the seed images to train an initial “accordion”
model. Meanwhile, same number of background images
are used to trains a background model. In model learn-
ing, the hyper-parameters γ and α are constant num-
bers 1 and 0.01 respectively acting as smooth factors.
We will show later in Fig. 12 how they influence the
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model. According to (4), given a high γ value, we ex-
pect to obtain more dishes (global topics in a cate-
gory) in the model. Similarly, following (3), a higher α

value populates more tables (local clusters in each im-
age). After Step 2, we obtain a fairly good object cat-
egory model, which can perform reasonable classifica-
tion.

• Step 3 (Classification): Models obtained from the learn-
ing step are used to classify a group of images from the
pool, typically 100 images. By measuring the likelihood
ratio, this group is divided into unrelated images and re-
lated images as shown in Fig. 7. The unrelated images
will be discarded. Related images are further measured
by their entropy. High entropy ones will be held in the
“cache set”. Low entropy images will be appended to the

Fig. 6 Initial batch learning. In the first iteration, a model is learned
from the seed images. The learned model performs fairly well in clas-
sification as shown in Fig. 9

permanent dataset. In classification, our threshold is se-
lected as “30%”. This is a conservative choice that al-
lows only the top 30% validation images with highest
likelihood ratio to be classified as foreground images.
This threshold is equivalent to likelihood ratio threshold
26.88. As shown in Fig. 3, this criterion agrees (conser-
vatively) with the observation that an average estimate
of 15% of images returned by the search engine are re-
lated to the query word(s). 10% of the related images with
high entropies will be kept in the “cache set” for the in-
cremental learning of the model. These images also par-
ticipate in next 2 iterations in classification. After three
iterations, images still left in the “cache set” will be dis-
carded.

• Step 4 (Incremental Learning) As shown in Fig. 8, in-
cremental learning is only applied to images held in the
“cache set”. In the meantime, the same number of new
background images are used to update the background
model. In this step, we keep the same set of learning pa-
rameters as those in Step 2.

• Repeat Step 3 and 4 till the user terminates the pro-
gram or images in the downloaded image pool are ex-
hausted.

Fig. 7 Classification. Classification is performed on a subset of raw
images collected from the web using the “accordion” query. Images
with low likelihood ratios measured by (11) are discarded. For the

rest of the images, those with low entropies are incorporated into the
permanent dataset, while the high entropy ones stay in the “cache set”
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Fig. 8 Incremental Learning. The model is updated using only the
images held in the “cache set” from the previous iteration

5 Experiments & Results

We conduct three experiments to demonstrate the effective-
ness of OPTIMOL. Experiment 1 consists of a set of analy-
sis experiments.

• A performance comparison of the batch vs. incremental
learning methods in terms of the number of collected im-
ages, processing time and the recognition accuracy.

• Diversity of our collected dataset. More specifically, com-
parison between the average images of our collected
dataset and the Caltech 101 dataset. In addition, we show
average images of different clusters for the “accordion”
and “euphonium” categories as examples to provide more
insights into the model.

• Influence of the hyper-parameters γ and α on the model.
γ and α control the number of global and local clusters of
the images respectively.

• Dataset collection comparison of OPTIMOL by using dif-
ferent likelihood threshold values to demonstrate the issue
of concept drift.

• Illustration of images in the permanent dataset, the “cache
set” and the “junk set”.

• Illustration of images collected by OPTIMOL using dif-
ferent entropy thresholds.

• Detection performance comparison of OPTIMOL by us-
ing different numbers of seed images.

• Polysemous class analysis (a case study of the polyse-
mous words “mouse” and “bass”).

Experiment 2 demonstrates the superior dataset collection
performance of OPTIMOL over the existing datasets. In ad-
dition to dataset collect, it also provides satisfying anno-
tations on the collected images. Experiment 3 shows that
OPTIMOL is on par with the state-of-the-art object model
learned from Internet images (Fergus et al. 2005b) for mul-
tiple object categories classification.

We first introduce the various datasets used in the experi-
ments. Then we show experiment settings and results for the
three experiments respectively.

5.1 Datasets Definitions

We define the following four different datasets used in our
experiments:

1. Caltech 101-Web & Caltech 101-Human

Two versions of the Caltech 101 dataset are used in
our experiment. Caltech 101-Web is the original raw
dataset downloaded from the web containing a large
portion of visually unrelated images in each category.
The number of images in each category varies from 113
(winsor-chair) to 1701 (watch). Caltech 101-Human is
the clean dataset manually selected from Caltech 101-
Web. The number of images in each category varies from
31 (inline-skate) to 800 (airplanes). By using this dataset,
we show that OPTIMOL achieves superior retrieval per-
formance to human labeled results.

2. Web-23
We downloaded 21 object categories from online image
search engines by using query words randomly selected
from object category names in Caltech 101-Web. In ad-
dition, “face” and “penguin” categories are included in
Web-23 for further comparison. The number of images
in each category ranges from 577 (stop-sign) to 12414
(face). Most of the images in a category are unrelated
images (e.g. 352 true “accordions” out of 1659 images).

3. Princeton-23 (Collins et al. 2008)
This dataset includes the same categories as used in
Web-23. However, it is a more diverse dataset which
contains more images in every category. The images are
downloaded using words generated by WordNet (Miller
1995) synset as the query input for image search engines.
To obtain more images, query words are also translated
into multiple languages, accessing the regional website
of the image search engines. The number of images in
each category varies from 4854 (inline-skate) to 38937
(sunflower).

4. Fergus ICCV’05 dataset
A 7-Category dataset provided by (Fergus et al. 2005b).
Object classes are: airplane, car, face, guitar, leopard,
motorbike and watch.

5.2 Experiment 1: Analysis Experiment

Comparison of Incremental Learning and Batch Learning
In this experiment, we compare the computation time and
accuracy of the incremental learning algorithm, the batch
learning algorithm as well as the base model learned from
initial seed images (Fig. 9). To keep a fair comparison, the
images used for batch learning and incremental learning
are exactly the same in each iteration. For all three algo-
rithms, background models are updated together with the
foreground models by using the same number of images.
All results shown here are collected from the “inline skate”
dataset; other datasets yield similar behavior. Fig. 9 (left)
shows that the incremental learning method is comparable
to the batch method in the number of collected images. Both
of them outperform the base model learned from the seed
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Fig. 9 Batch vs. Incremental Learning (a case study of the “inline
skate” category with 4835 images). Left: the number of images re-
trieved by the incremental learning algorithm, the batch learning algo-
rithm and the base model. Detection rate is displayed on top of each
bar. x-axis represents batch learning with 15 seed images, batch learn-
ing with 25 seed images, incremental learning with 15 seed images,
incremental learning with 25 seed images, the base model learned
from 15 seed images and 25 seed images respectively. Middle: Run-
ning time comparison of the batch learning method, the incremental

learning method and the base model learned as a function of number
of training iterations. The incrementally learned model is initialized
by applying the batch learning algorithm on 15 or 25 training im-
ages, which takes the same amount of time as the corresponding batch
method does. After initialization, incremental learning is more effi-
cient compared to the batch method. Right: Recognition accuracy of
the incrementally learned, batch learned models and the base model
evaluated by using Receiver Operating Characteristic (ROC) Curves

images only. Fig. 9 (middle) illustrates that by incremen-
tally learning from the new images at every iteration, OPTI-
MOL is more computationally efficient than a batch method.
Finally, we show a classification performance comparison
among OPTIMOL, the batch method and the model learned
from seed images in Fig. 9 (right) by a set of ROC curves.

In our system, the image classifier evolves as the model
gets updated in every iteration of the self training process.
In the image dataset collection process, the newly updated
classifier categorizes the current group of images into fore-
ground images and background images. The testing images
are therefore different in each iteration of the self training
process. Evaluating different classifiers on different test im-
age sets respectively provide little useful information of the
classifier quality. A good classifier could perform poorly on
a challenging dataset while a poor classifier might perform
satisfactorily on a simple dataset. Thus, we only compare
our model at the end of the incremental learning process
with a model that is learned in a batch mode by testing both
models on the same set of test images. We use an ROC curve
to illustrate the classification result for each model, shown
in Fig. 9. Classifier quality is measured by the area under its
ROC curve. As demonstrated in Fig. 9 (right), while batch
learning and incremental approaches are comparable to each
other in classification, both of them show superior perfor-
mance over the base models trained by seed images only. In
addition, Fig. 9 (left) and Fig. 9 (right) show that the num-
ber of seed images has little influence on the performances
of the iterative approaches. This can be easily explained by
the property of self training which teaches the model auto-
matically by using the predicted result. Once a decent initial

model is learned, self training can use the correct detection
to update the model. This is equivalent to feeding the model
manually with more images.

Diversity Analysis In Fig. 10, we show the average image
of each category collected by OPTIMOL comparing with
those of Caltech101. We also illustrate images collected by
OPTIMOL from the Caltech 101-web and Web-23 datasets
online.4 We observe that images collected by OPTIMOL ex-
hibit a much larger degree of diversity than those in Cal-
tech101.

Furthermore, we use “accordion” and “euphonium” cate-
gories as examples to demonstrate the learned internal struc-
ture of our dataset in Fig. 11. Figure 11 demonstrates how
our model clusters the images. The average image at the top
of each tree is very gray indicating that our collected dataset
is highly diverse. The middle layer shows the average im-
ages of different clusters in this dataset. Attached to these
average images are the example images within each cluster.
Each of the clusters exhibits unique pattern whereas the root
of each tree demonstrates a combination of these patterns.
Here only the three clusters with most images are shown.
Theoretically, the system can have unbounded number of
clusters given the property of HDP.

Hyper-Parameter Analysis The concentration parameter γ

controls the number of global clusters shared within each

4http://vision.stanford.edu/projects/OPTIMOL/main/main.html#Data-
set.

http://vision.stanford.edu/projects/OPTIMOL/main/main.html#Data-set
http://vision.stanford.edu/projects/OPTIMOL/main/main.html#Data-set
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Fig. 10 Average image of each category, in comparison to the average images of Caltech101. The grayer the average image is, the more diverse
the dataset is

Fig. 11 Diversity of our collected dataset. Left: Illustration of the
diverse clusters in the “accordion” dataset. Root image is the average
image of all the images in “accordion” dataset collected by OPTIMOL.
Middle layers are average images of the top 3 “accordion” clusters gen-

erated from the learned model. Leaf nodes of the tree structure are 3
example images attached to each of the cluster average image. Right:
Illustration of the diverse clusters in the “euphonium” dataset

Fig. 12 Left: Number of global
clusters shared within each
category as a function of the
value of γ . Please refer to
Fig. 2, Sects. 3.1.3 and 3.2.1 for
detailed description of γ . Right:
Average number of clusters in
each image as a function of the
value of α. The standard
deviation of the average
numbers are plotted as vertical
bars centered at the data points.
Please refer to Fig. 2 and
Sect. 3.2.1 for detailed
description of α
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Fig. 13 Left: Data collection results of OPTIMOL with different
likelihood ratio threshold values for the “accordion” dataset. x-axis
denotes the likelihood ratio threshold values in percentile. y-axis rep-
resents the number of collected images. The number on the top of

each bar represents the detection rate for OPTIMOL with that entropy
threshold value. Right: Data collection results of OPTIMOL with dif-
ferent likelihood ratio threshold values for the “euphonium” dataset

Fig. 14 Left: Illustration of images in the permanent dataset, the
“cache set” and the “junk set”. x-axis represents the likelihood while
y-axis represents the entropy. If the likelihood ratio of an image is
higher than some threshold, it is selected as a related image. This
image will be further measured by its entropy. If the image has low

entropy, it will be appended to the permanent dataset. If it has high
entropy, it will stay in the “cache set” to be further used to train the
model. Right: Examples of high and low entropy images in “accor-
dion” and “inline-skate” classes

Fig. 15 Sampled images from dataset collected by using different entropy threshold values. Left: Example images from dataset collected with
entropy threshold set at top 100% (all images). Right: Example images from dataset collected with entropy threshold set at top 30%
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class. α influences the number of local clusters in each im-
age. We demonstrate the influence of these hyper parameters
on the number of global and local clusters in the “accordion”
class in Fig. 12. In Fig. 12 (left), we show that as the value of

Fig. 16 Detection performance. x-axis is the number of seed images.
y-axis represents the detection rate

γ increases, the number of global clusters estimated by the
model increases too. The average number of local clusters
in each image increases when α increases (Fig. 12 (right)).

Concept Drift Analysis We have discussed in Sect. 3.4 that
“concept drift” is the phenomenon of object model drifting
from one category to another. This will result in degraded
recognition accuracy. To demonstrate the issue of “concept
drift”, we compare the dataset collection performance of
OPTIMOL by using different likelihood ratio threshold val-
ues. We present results of the “accordion” and “euphonium”
datasets where likelihood ratio thresholds are set at 0, 30, 60,
90 percentile respectively in Fig. 13. Our experiment shows
that a tight likelihood threshold allows fewer images to be
classified as the foreground images with less false positives
but more misses. A low likelihood threshold can help OP-
TIMOL to collect more images. But it introduces relatively
more false positives hence leads to concept drift.

Illustration of Images in the Permanent Dataset, the “Cache
Set” and the “Junk Set” We have discussed in Sect. 3.3.2

Fig. 17 Polysemy discovery
using OPTIMOL. Two
polysemous query words are
used as examples: “mouse” and
“bass”. Left: Example images of
“mouse” and “bass” from image
search engines. Notice that in
the “mouse” group, the images
of animal mouse and computer
mouse are intermixed with each
other, as well as with other
noisy images. The same is true
for the “bass” group. For this
experiment, 50 seed images are
used for each class. Right: For
each query word, example
images of the two main topic
clusters discovered by
OPTIMOL are demonstrated.
We observe that for the “mouse”
query, one cluster mainly
contains images of the animal
mouse, whereas the other cluster
contains images of the computer
mouse
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Fig. 18 (color online) Left:
Randomly selected images from
the image collection result for
“accordion” category. False
positive images are highlighted
by using red boxes. Right:
Randomly selected images from
the image collection result for
“inline-skate” category

Fig. 19 Confusion table for Experiment 3. We use the same training
and testing datasets as in Fergus et al. (2005b). The average perfor-
mance of OPTIMOL is 74.82%, whereas Fergus et al. (2005b) reports
72.0%

that learning with all the images accepted in classification
lead to over-specialized dataset. To avoid this problem, we
introduce the “cache set” to incrementally update the model.
In this experiment, we compare the appearances of the im-
ages incorporated into the permanent dataset, the “cache set”
as well as the discarded ones (in “junk set”). We show ex-
ample images from the “accordion” class in Fig. 14 (left).
We observe that those images to be appended to the dataset
are very similar to the training images. Images kept in the
“cache set” are more diverse ones among the training im-
ages whereas images being discarded are unrelated to the
image class. In Fig. 14 (right), we show more example im-
ages with highest and lowest entropy values from “accor-
dion” and “inline-skate” classes.

Illustration of Images Collected Using Different Entropy
Thresholds In addition, we show example images from
the “accordion” dataset collected by using two different en-
tropy threshold values. Specifically, the two entropy thresh-
old values selected are: top 30% of the related images with
high entropy and all related images. Our experiment shows
that a low entropy threshold allows a large proportion of
the related images to be used to learn the model. Most of
them have similar appearance compared to the seed images.
Learning from these images makes the model susceptible to

over-specialized. In other words, the updated model tends to
collect even more similar images in the next iteration. Fig-
ure 15 (left) shows that images collected by OPTIMOL with
a low threshold are highly similar to each other. On the other
hand, a high threshold provides more diverse images for the
model learning, which leads to a more robust model capable
of collecting more diverse images. We show these diverse
images in Fig. 15 (right).

Detection Performance Comparison In this experiment,
we compare detection performance of OPTIMOL with dif-
ferent numbers of seed images. Using “accordion” dataset
as an example, we show in Fig. 16 detection performance as
a function of number of seed images. We use the detection
rate as the criterion to measure the performance of detec-
tion. A higher detection rate indicates better performance.
Our experiment shows that when the number of seed images
is small, the detection rate increases significantly along with
the number of seed images. When adequate initial training
images are provided to train a good classifier, OPTIMOL
acts robustly in selecting good examples to train itself au-
tomatically. From then on, adding seed images makes little
difference in the self-training process.

Polysemous Class Analysis We have discussed in the in-
troduction that one challenge in collecting images from text
queries is the issue of polysemy. A “mouse” could mean a
“computer mouse”, or an “animal mouse”. In this experi-
ment, we demonstrate that OPTIMOL is capable of discov-
ering different clusters of images that reflect the polysemous
nature of the query word(s). Figure 17 illustrates the result.
As Fig. 17 shows, an image search result of “mouse” gives
us images of both the “computer mouse” and the “animal
mouse”, in addition to other noisy images not necessarily
related to either. Using a small number of seed images, OP-
TIMOL learns a model that captures the polysemous na-
ture of the query. In Fig. 17, we show examples of images
belonging to two main topic clusters estimated by OPTI-
MOL. It is clear that one topic contains images of the ani-
mal mouse, whereas the other contains images of the com-
puter mouse. OPTIMOL achieves this discovery of multiple
semantic clusters (i.e. polysemy) due to its ability to auto-
matically assign meaningful topics to different images.
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Fig. 20 (Color online) Image collection and annotation results by
OPTIMOL. The notations of the bars are provided at the bottom.
Each row in the figure contains two categories, where each cate-
gory includes 4 sample annotation results and a bar plot. Let us use
“Sunflower” as an example. The left sub-panel gives 4 sample an-
notation results (bounding box indicates the estimated locations and
sizes of the “Sunflower”). The right sub-panel shows the compari-
son of the number of images in “Sunflower” category given different
datasets. The blue bar indicates the number of “Sunflower” images
in LabelMe dataset, the yellow bar the number of images in Caltech
101-Human. The OPTIMOL results are displayed using the red, green,
and cyan bars, representing the numbers of images retrieved for the

“Sunflower” category in Caltech 101-Web, Web-23 and Princeton-23
dataset respectively. The gray bar in each figure represents the number
of images retrieved from the Princeton-23 dataset by the base model
trained with only seed images. The number on top of each bar rep-
resents the detection rate for that dataset. Since the pictures in the
“face” category of Caltech 101-Human were taken by camera instead
of downloading from the web, the raw Caltech images of the “face”
category are not available. Hence, there is no result for “face” cate-
gory by 101 (OPTIMOL). All of our results have been put online at
http://vision.stanford.edu/projects/OPTIMOL.htm

http://vision.stanford.edu/projects/OPTIMOL.htm
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Fig. 21 Image collection and annotation results by OPTIMOL. Notation is the same as Fig. 20
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5.3 Experiment 2: Image Collection

21 object categories are selected randomly from Caltech
101-Web for this experiment. The experiment is split into
three parts: 1. Retrieval from Caltech 101-Web. The number
of collected images in each category is compared with the
manually collected images in Caltech 101-Human. 2. Re-
trieval from Web-23 using the same 21 categories as in part
1. 3. Retrieval from Princeton-23 using the same 21 cate-
gories as in part 1. Results of these three experiments are dis-
played in Figs. 20 and 21. We first observe that OPTIMOL
is capable of automatically collecting very similar number
of images from Caltech 101-Web as the humans have done
by hand in Caltech 101-Human. Furthermore, by using im-
ages from Web-23, OPTIMOL collects on average 6 times
as many images as Caltech 101-Human (some even 10 times
higher). Princeton-23 provides a further jump on the num-
ber of collected images to approximately 20 times as that of
Caltech 101-Human. In Fig. 20, we also compare our results
with LabelMe (Russell et al. 2005) for each of the 22 cate-
gories. A “penguin” category is also included so that we can
compare our results with the state-of-art dataset collecting
approach (Berg and Forsyth 2006). In all cases, OPTIMOL
collected more related images than the Caltech 101-Human,
the LabelMe dataset and the approach in Berg and Forsyth
(2006). In addition, we conduct an additional experiment to
demonstrate that OPTIMOL performs better than the base
model by comparing their performance of dataset collection.
The result is shown in Fig. 20, where the number of images
collected by the base model is represented by the gray bar.
The likelihood ratio threshold is set at the same value for
the full OPTIMOL model and the base model. The compar-
ison indicates that the full OPTIMOL model collects signif-
icantly more images than the base model. This is attributed
to the effectiveness of the iterative classification and model
learning in OPTIMOL. Note that all of these results are
achieved without any human intervention5, thus suggesting
the viability of OPTIMOL as an alternative to costly human
dataset collection. In Fig. 18, we demonstrate sample im-
ages from the OPTIMOL-collected datasets of “accordion”
and “inline-skate” categories in the Princeton-23 data. We
highlight the false positives among the images. These mis-
takes are most likely due to the similar appearance of the
false positive images to those of the foreground images.

5We use 15 images from Caltech 101-Human as seed for the image col-
lection experiment of Caltech 101-Raw since we do not have the order
of the downloaded images for Caltech 101-Raw. The detection rates
of Caltech 101-Raw and Web-23 in Fig. 20 are comparable indicating
the equivalent effects of automatic and manual selection of seed set on
image dataset collecting task.

5.4 Experiment 3: Classification

To demonstrate that OPTIMOL not only collects large
datasets of images, but also learns good models for object
classification, we conduct experiment on Fergus ICCV’05
dataset. In this experiment, we use the same experiment
settings as in Fergus et al. (2005b) to test the multi-class
classification ability of OPTIMOL. 7 object category mod-
els are learnt from the same training sets used by Fergus et
al. (2005b). We use the same validation set in Fergus et al.
(2005b) to train a 7-way SVM classifier to perform object
classification. The input of the SVM classifier is a vector of
7 entries, each denoting the image likelihood given each of
the 7 class models. The results are shown in Fig. 19, where
we achieve an average performance of 74.8%. This result is
comparable to the 72.0% achieved by Fergus et al. (2005b).
Our results show that OPTIMOL is capable of learning reli-
able object models.

6 Conclusion and Future Work

We have proposed a new approach (OPTIMOL) for im-
age dataset collection and model learning. The self train-
ing framework makes our model more robust and general-
ized whereas the incremental learning algorithm boosts the
speed. Our experiments show that as a fully automated sys-
tem, OPTIMOL achieves accurate diverse dataset collection
result nearly as good as those of humans. In addition, it
provides a useful annotation of the objects in the images.
Further experiments show that the models learnt by OPTI-
MOL are competitive with the current state-of-the-art model
learned from Internet images for object classification. Hu-
man labor is one of the most costly and valuable resources in
research. We provide OPTIMOL as a promising alternative
to collect larger diverse image datasets with high accuracy.
For future studies, we will further improve the performance
of OPTIMOL by refining the model learning step and intro-
ducing more descriptive object models.
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