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Abstract Recently, a method for removing shadows from
colour images was developed (Finlayson et al. in IEEE
Trans. Pattern Anal. Mach. Intell. 28:59–68, 2006) that re-
lies upon finding a special direction in a 2D chromaticity
feature space. This “invariant direction” is that for which
particular colour features, when projected into 1D, produce
a greyscale image which is approximately invariant to inten-
sity and colour of scene illumination. Thus shadows, which
are in essence a particular type of lighting, are greatly atten-
uated. The main approach to finding this special angle is a
camera calibration: a colour target is imaged under many
different lights, and the direction that best makes colour
patch images equal across illuminants is the invariant di-
rection. Here, we take a different approach. In this work,
instead of a camera calibration we aim at finding the in-
variant direction from evidence in the colour image itself.
Specifically, we recognize that producing a 1D projection in
the correct invariant direction will result in a 1D distribution
of pixel values that have smaller entropy than projecting in
the wrong direction. The reason is that the correct projec-
tion results in a probability distribution spike, for pixels all
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the same except differing by the lighting that produced their
observed RGB values and therefore lying along a line with
orientation equal to the invariant direction. Hence we seek
that projection which produces a type of intrinsic, indepen-
dent of lighting reflectance-information only image by min-
imizing entropy, and from there go on to remove shadows as
previously. To be able to develop an effective description of
the entropy-minimization task, we go over to the quadratic
entropy, rather than Shannon’s definition. Replacing the ob-
served pixels with a kernel density probability distribution,
the quadratic entropy can be written as a very simple formu-
lation, and can be evaluated using the efficient Fast Gauss
Transform. The entropy, written in this embodiment, has the
advantage that it is more insensitive to quantization than is
the usual definition. The resulting algorithm is quite reli-
able, and the shadow removal step produces good shadow-
free colour image results whenever strong shadow edges are
present in the image. In most cases studied, entropy has a
strong minimum for the invariant direction, revealing a new
property of image formation.

Keywords Illumination · Reflectance · Intrinsic images ·
Illumination invariants · Color · Shadows · Entropy ·
Quadratic entropy

1 Introduction

Illumination conditions confound many computer vision al-
gorithms. In particular, shadows in an image can cause seg-
mentation, tracking, or recognition algorithms to fail. An
illumination-invariant image is therefore of great utility in
a wide range of problems in both computer vision and com-
puter graphics.
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An interesting feature of this problem is that shadows are
approximately but accurately described as a change of light-
ing (Finlayson et al. 2002). Hence, it is possible to cast the
problem of removing shadows from images into an equiva-
lent statement about removing (and possibly later restoring)
the effects of lighting in imagery.

Removal of outdoor cast shadows has been addressed be-
fore in the literature but typically not based on a photometric
approach. For example, (Cho et al. 2005) uses background
subtraction in YCbCr colour space and gradient threshold-
ing to extract moving blobs in colour to detect cast shadows
in traffic surveillance video. The objective is to find a mov-
ing blob that is not in a shadow region. In (Liu et al. 2006),
another method based on time-varying data and a Gaussian
mixture model uses the early video-based model in (Stauder
et al. 1999) to partially remove effects of lighting from se-
quences (and cf. Weiss 2001) but the proposed insensitiv-
ity to illumination depends on a slowly changing penumbra
and does not work for strong shadows. In fact, a substantial
amount of work on shadow detection has been concerned
with moving shadows (Prati et al. 2003; Nadimi and Bhanu
2004; Martel-Brisson and Zaccarin 2007), whereas here we
concentrate on single still images. In this paper we focus on
a physically-based rather than image-processing approach in
order to gain understanding of the underlying image forma-
tion process.

A method was recently devised (Finlayson et al. 2002,
2006; Finlayson and Hordley 2001; Finlayson and Drew
2001; Drew et al. 2003) for the recovery of an invariant
image from a 3-band colour image. The invariant image,
originally 1D greyscale but subsequently derived as a 2D
chromaticity, is independent of lighting, and also has shad-
ing removed: it forms a type of intrinsic image, independent
of illumination conditions, that may be used as a guide in
recovering colour images that are independent of illumina-
tion conditions. While the essential definition of an intrinsic
image is one that captures full reflectance information (Bar-
row and Tenenbaum 1978), including albedo information,
here we claim only to capture only chromaticity informa-
tion, not full reflectance. Nevertheless, invariance to illumi-
nant colour and intensity means that such images are free of
shadows as well, to a good degree (Finlayson et al. 2006).
Although shadow removal is not always perfect, the effect
of shadows is so greatly attenuated that many algorithms can
easily benefit from the new method; e.g., a shadow-free ac-
tive contour based tracking method shows that the snake can
without difficulty follow an object and not its shadow, using
the new approach to illumination colour invariance (Jiang
and Drew 2003, 2007). In place of standard luminance im-
ages used in vision, if in an application the effects of lighting
would usefully be removed then arguably the greyscale ver-
sion of the invariant image should be used instead.

The method works in a very simple way: Suppose we
form chromaticity band-ratios, e.g., G/R, B/G for a colour

3-band RGB image, and suppose we further take logarithms.
An interesting feature to note is that, under simplifying as-
sumptions set out below, the scatterplot values for pixels
from the same surface, but under different lighting fall on
a straight line; and every such line, for different surfaces,
has the same slope. This remarkable fact still hold true ap-
proximately even when the guiding, simplifying assump-
tions are broken. Since shadowing is a result of a difference
in lighting, we can use this physics-based insight to devise a
shadow-removal scheme. This paper uses evidence internal
to any particular image, based on an entropy measure, to find
the slope of such lines. Projection orthogonal to this special
direction results in a 1D greyscale image that has shadows
approximately removed. We also derive a 2D colour version
of such an invariant image.

The method devised finds an intrinsic reflectivity image
motivated by the assumptions of Lambertian reflectance, ap-
proximately Planckian lighting, and fairly narrowband cam-
era sensors. Nevertheless, the method still works well when
these assumptions do not hold. A crucial piece of infor-
mation is the angle for an “invariant direction” in a log-
chromaticity space. Originally, this information was gleaned
via a preliminary calibration routine, using the camera in-
volved to capture images of a colour target under different
lights. Subsequently, it was shown in principle (Finlayson
et al. 2004) that we can in fact dispense with the calibra-
tion step, by recognizing a simple but important fact: the
correct projection is that which minimizes entropy in the re-
sulting invariant greyscale image. In this paper, the entropy
based method is examined in detail, and in order to carry out
an efficient search over smooth values that are not subject
to quantization problems, we replace the Shannon’s entropy
measure, used previously, by a Quadratic Entropy measure
such that a Gaussian mixture model of the probability den-
sity function (pdf) produces an analytic formula. We show
that such quadratic entropy values are much smoother and
usually produce only a single minimum, making this ap-
proach the most efficient. The quadratic entropy can be eval-
uated in linear time using a Fast Gauss Transform, leading to
a simple method for finding the invariant direction. Shadow
removal in full colour, by means of comparing edges in the
original and in the invariant image and then subsequent re-
integration, follows.

The paper is organized as follows. In Sect. 2, we briefly
recapitulate the motivation for a projection-based definition
of an illuminant invariant, and set out the relevant equations.
Section 3 looks at how the entropy minimization scheme
plays out for a set of synthetic colour patches, on the one
hand, and then for a set of actual paint patches in a cali-
bration chart. Section 4 considers the issue of how an ef-
fective entropy-minimization algorithm should proceed, and
argues that an efficient approach is possible, based on re-
placing the definition of entropy by the quadratic form of
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Renyi’s entropy. Finally, we apply the method devised to
unsourced images, from unknown cameras under unknown
lighting, with unknown processing having been applied. Re-
sults are again strikingly good, leading us to conclude, in
Sect. 8, that the method indeed holds great promise for de-
veloping a stand-alone approach to removing shadows from
(and therefore conceivably re-lighting) any image, e.g. im-
ages from consumer cameras.

2 The Invariant Image

2.1 Log-Chromaticity Projection and Entropy
Minimization

In order to motivate the study, we first briefly set out the
strategy for developing an illumination invariant image, and
the rationale determining entropy minimization as the key
insight for finding such an image.

Consider a calibration scheme, for a particular colour
camera, wherein a target composed of coloured patches (or
just images of a rather colourful scene) are imaged un-
der different illuminants—the more illuminants the better.
Then knowledge that these are registered images of the same
scene, under differing lighting, is put to use by plotting the
capture RGB values, for each of the patches used, as the
lighting changes. If pixels are first transformed from 3D
RGB triples into a 2D band-ratio chromaticity colour space,
{G/R,B/R} say, and then logarithms are taken, the values
across different illuminants tend to fall on straight lines in
a 2D scatter plot. And in fact all such lines are parallel, for
a given camera (Finlayson and Hordley 2001), as illustrated
in Fig. 1(a).

So change of illumination simply amounts to movement
along such a line. Thus it is straightforward to devise a
1D, greyscale, illumination-invariant image by projecting
the 2D chromaticity points into a direction perpendicular
to all such lines. The result is hence a greyscale image that

is independent of lighting, and is, therefore, a type of in-
trinsic image (Barrow and Tenenbaum 1978) that portrays
only the inherent reflectance properties in the scene. Since
shadows are mostly due to change in the illuminant intensity
and colour—i.e., differing lighting—such an image also has
shadows removed.

Below, we discuss the restrictions on this straight-line
model, but it may be useful to look at shadows and lighting
colour in an example. Fig. 2(a) shows a typical consumer-
grade camera TIFF image, with a strong shadow present.
Here, the image processing software applied is typically
aimed at a “preferred” (i.e., pleasing) rendition, rather than
photometric accuracy, and the number of processing steps
in the camera software can be substantial (Ramanath et al.
2005).

The standard definition of chromaticity, i.e., colour con-
tents without intensity, is defined in an L1 norm: r =
{r, g, b} ≡ {R,G,B}/(R + G + B). Figure 2(b) shows this
colour content for the image. Notice that the colour of the
shadow is basically a deep blue; since this is an outdoor shot
on a clear day, this is not surprising in that the light for shad-
owed pixels is mostly from the sky dome, whereas light for
non-shadowed pixels is comprised of both sky-light as well
as direct sunlight. Thus shadowing is seen to be an effect
due to change of lighting colour as well as intensity.

The invariant greyscale is shown in Fig. 2(e) where we
see the shadow is no longer present. In (Drew et al. 2003), a
2D-colour chromaticity version of the invariant image, as in
Fig. 2(f), is recovered by projecting orthogonal to the light-
ing direction and keeping the 2D colour location informa-
tion, and also putting back an appropriate amount of light-
ing along the lighting direction. While Fig. 2(f) looks flat
and the colours somewhat false, intrinsic images created this
way are useful in computer vision: e.g. see (Jiang and Drew
2003, 2007).

We can use the greyscale or the pseudo-colour invariant
as a guide that allows us to determine which colours in the
original, RGB, colour image are intrinsic to the scene or

Fig. 1 Intuition for finding best
direction via minimizing the
entropy. (a); Log-ratio feature
space values for paint patches
fall along parallel lines, as
lighting is changed. Each patch
corresponds to a single
probability peak when projected
in the direction orthogonal to
the direction of lighting change.
(b): Projecting in the wrong
direction leads to a 1D pdf
which is less peaked, and hence
of larger entropy
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Fig. 2 Colour and intensity shift in shadows: (a): Original image;
(b): L1 chromaticity image; (c): Shannon’s entropy plot (we seek the
minimum); (d): quadratic entropy plot (we seek the maximum of the

quantity plotted); (e): greyscale 1D invariant; (f): 2D invariant L1 chro-
maticity; (g): re-integrated 3D colour image
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are simply artifacts of the shadows due to lighting. Forming
the gradient of the image’s colour channels, we can guide
a thresholding step via the difference between edges in the
original and in the invariant image (Finlayson et al. 2002,
2006). Forming a further derivative, and then integrating
back, we can produce a result that is a 3-band colour im-
age which contains all the original salient information in the
image, except that the shadows are removed, as in Fig. 2(g).
Although this method is based on the invariant image, which
has shading removed, nonetheless its output is a colour im-
age, including shading. It is worth pointing out that we have
found that in implementing this process, a 2D-colour, chro-
maticity, illumination-invariant image is more well-behaved
than the greyscale variant, and thus gives slightly better
shadow removal.

Of course these applications sit on top of a well calibrated
imaging system. We measure how the camera responds to
light and find the invariant direction accordingly. However,
often in vision tasks we do not know the provenance of the
images or even if we do have a calibrated camera this cali-
bration does change over time. Thus, the problem we con-
sider, and solve, in this paper is the determination of the in-
variant image from unsourced imagery—images that arise
from cameras that are not calibrated. The input is a colour
image with unknown provenance, one that includes shad-
ows, and the output is the invariant chromaticity version,
with shading and shadows removed.

The fundamental idea in this paper is the observation that,
without having to image a scene under more than a single il-
luminant, projecting in the correct direction minimizes the
entropy in the resulting greyscale image. The intuition be-
hind this statement is evident in the calibration situation,
with a set of colour patches under changing lighting. Pro-
jecting onto a line perpendicular to the set of straight lines,
we end up with a 1D pdf that is concentrated in peaks, as in
Fig. 1(a). In a set of real images of colour patches, we indeed
see a set of peaks, each well separated from the others and
corresponding to a single colour patch. On the other hand,
if we instead project in some other direction, as in Fig. 1(b),
then instead of pixels located in sharp peaks of occurrence
we expect the distribution of pixels along our 1D projec-
tion line to be spread out. In terms of histograms, in the first
instance, in which we guess the correct direction and then
project, we see a distribution with a set of sharp peaks, with
resulting low entropy. In the second instance we instead see
a broader histogram, with resulting higher entropy.

But does this idea apply in real images? We have found
that, for almost every image considered that does indeed in-
volve shadows, entropy has a strong minimum near the cor-
rect invariant direction. Changing lighting is automatically
provided by the shadows in the image themselves.

Nevertheless, we have found that the method of calcu-
lating the entropy is important. Figure 2(c) shows Shan-

non’s entropy, for the projected, greyscale image when fea-
tures are projected over angles from 1◦ to 180◦. This en-
tropy is calculated by choosing a bin-width, and then quan-
tizing pixel feature values using a histogram, normalizing
the histogram, and forming the standard quantity describing
the entropy (see, e.g., Li and Drew 2004). But this calcu-
lation can sometimes be quite sensitive to the bin-width, as
shown in Fig. 3(b) (for quite a pathological case). We have
found that such entropy plots can in fact have many local
minima; this is discussed further in Sect. 4.1 below. Instead,
a quadratic entropy plot, discussed below, is usually a good
deal smoother since it is founded on a Gaussian kernel den-
sity distribution, and most often has a single strong maxi-
mum (of the quantity that must be maximized, in this case),
making for a simple optimization to find the maximum. Fur-
ther, quadratic entropy, which is the logarithm of an in-
tegral, is simply related to Information Potential. Specifi-
cally, information potential is the exponent of the negative of
quadratic entropy and so minimum quadratic entropy corre-
sponds to maximum information potential. This is an impor-
tant point as the majority of the results derived below are for
information potential; though, the reader should understand
that information potential and quadratic entropy are simply
related.

In Fig. 3(c), we show the information potential using
a range of different bandwidth parameters, and notice that
the maximum is quite insensitive to the bandwidth. Conse-
quently, in this paper we go over to this definition of the
entropy, as shown in Fig. 2(d) for the initial image Fig. 2(a)
(here, we look for a maximum of the quantity plotted).

In Sect. 2.2, we now briefly summarize the set of theoret-
ical assumptions regarding the problem of lighting change
in imagery that lead to the straight-line hypothesis.

2.2 Theory of Invariant Image Formation

2.2.1 Planckian Lighting, Lambertian Surfaces,
Narrowband Camera

Suppose we consider a fairly narrow-band camera, with
three sensors, Red, Green, and Blue, as in Fig. 4(a) (these
are sensor curves for the Sony DXC930 camera). Now if
we image a set of coloured Lambertian surfaces under a
particular Planckian light, e.g. in a controlled light box,
then for each pixel the log of chromaticity band-ratios, say
{log(R/G), log(B/G)}, appears as a dot in a 2D plot. Chro-
maticity removes shading, for Lambertian reflectances un-
der orthography, so every pixel in each patch is approxi-
mately collapsed into the same dot (no matter if the surface
is curved).

For example, Fig. 5(b) illustrates the log-chromaticities
for the 24 surfaces of the Macbeth ColorChecker Chart
shown in Fig. 5(a). The plot shows 19 distinct clusters of
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Fig. 3 Effect of quantization on
Shannon’s entropy: (a): Original
image; (b): Shannon’s entropy
plot, with changing bin-width
(we seek the minimum)–the
normative bin-width value given
below by (15) is shown dashed,
and the other curves are for
multipliers of this width from
0.1 to 2.0, mapped to equal
maxima; (c): quadratic entropy
plot with bandwidth multiplied
by factors from 0.1 to 1.9 by
0.3, with 1.0 shown dashed
(note that we seek the maximum
of the quantity plotted)

points—each cluster corresponds to chromaticities from a
single patch (there are 19 clusters rather than 24 since the
patches in the last row of the chart are all neutral in colour
and so have the same chromaticity). Figure 5(c) shows the
plot of the median 2D log-chromaticities for 6 of the Mac-
beth surfaces under 14 different Planckians—we see a set of
parallel approximately straight lines.

For narrow-band sensors (or spectrally-sharpened ones,
Finlayson et al. 1994; Drew et al. 2002), and for Planck-
ian lights—or lights such as Daylights which behave as if
they were Planckian in that their chromaticity is very close
to the Planckian locus—as the correlated colour tempera-
ture T that characterizes the illuminant changes, the log-
chromaticity colour 2-vector does indeed move along an ap-
proximately straight line which is independent of the mag-
nitude and position of the lighting. (Note that the invari-
ant direction is different for each camera.) Further, in man-
ufacturing artificial lights, the colour rendering properties
of lights are calculated using a CIE standard methodology
(CIE 1995). According to this methodology, illuminants that
are far from the Planckian locus render less well than those
that are close. As such most commercial lights have chro-
maticities close to the Planckian locus and for all commer-
cial lights tested we discover more or less the same intrinsic
reflectance image.

Let’s recapitulate how linear behaviour with lighting
change results from the assumptions of Planckian lighting,

Lambertian surfaces, and a narrowband camera. Consider
the RGB colour R formed at a pixel, for illumination with
spectral power distribution E(λ) impinging on a surface
with surface spectral reflectance function S(λ). If the three
camera sensor sensitivity functions form a set Q(λ), then
we have

Rk = σ

∫
E(λ)S(λ)Qk(λ)dλ, k = R,G,B, (1)

where σ is Lambertian shading: surface normal dotted into
illumination direction.

If the camera sensor Qk(λ) is exactly a Dirac delta func-
tion Qk(λ) = qkδ(λ − λk), then (1) becomes simply

Rk = σE(λk)S(λk)qk. (2)

Now suppose lighting can be approximated by Planck’s
law, in Wien’s approximation (Wyszecki and Stiles 1982):

E(λ,T ) � Ik1λ
−5e− k2

T λ , (3)

with constants k1 and k2. Temperature T characterizes the
lighting colour and I gives the overall light intensity.

In this approximation, from (2) the RGB colour Rk, k =
1, . . . ,3, is simply given by

Rk = σIk1λ
−5
k e

− k2
T λk S(λk)qk. (4)
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Fig. 4 Synthetic values.
(a): Typical RGB camera
sensors—Sony DXC930
camera. (b): Theoretical
narrowband RGB camera
sensors. (c): An image showing
all lights and surfaces. Left to
right there are 170 reflectances
and top to bottom the 9
Planckian lights. (d): Close-up
showing the last 7 patches,
under the 9 lights. (e): Minimum
Shannon’s entropy invariant
direction gives same angle as
calibration test. (f): The same
angle (here we need a curve
maximum) is produced by
quadratic entropy. (g): Invariant
image for theoretical synthetic
image—same greylevels across
illuminants. (h): Close-up of last
7 reflectance patches for
invariant image

Let us now form the band-ratio 2-vector chromaticities c,

ck = Rk/Rp, (5)

where p is one of the channels and k = 1,2 indexes over the
remaining responses. For example, we could use p = 1 (i.e.,
divide by Red) and so calculate c1 = G/R and c2 = B/R.
We see from (4) that forming this chromaticity effectively
removes intensity and shading information. If we now form
the log of (5), with sk ≡ k1λ

−5
k S(λk)qk and ek ≡ −k2/λk we

obtain

ρk ≡ log(ck) = log(sk/sp) + (ek − ep)/T . (6)

Equation (6) is a straight line parameterized by T . Notice
that the 2-vector direction (ek − ep) is independent of the
surface, although the line for a particular surface has offset
that depends on sk . Every such line is parallel, with slope
dictated by (ek − ep).

An invariant image can be formed by projecting these 2D
logs of band-ratio chromaticity ρk, k = 1,2, into the direc-
tion e⊥ orthogonal to the vector e ≡ (ek − ep). The result

of this projection is a single scalar which we then code as a
greyscale value.

We go on in Sect. 3.2.5 to generate a 2-colour chro-
maticity image from the greyscale version. The images
thus generated are “intrinsic” in the sense that they capture
reflectance information independent of lighting. However,
they are not full reflectance-only images (as specified in Bar-
row and Tenenbaum 1978), since they bear only chromatic-
ity information, not albedo.

Since the method stems from a Planckian illumination
model, it is worth asking whether the combination of lights
when not in shadow—sunlight plus skylight—breaks the
model. In fact, the sum of two Planckian lights is not Planck-
ian. However, since the Planckian locus is in fact a very shal-
low curve (Wyszecki and Stiles 1982), the combination is
almost Planckian. To investigate the effect of this combin-
ing of lights on the theoretical underpinnings of the method,
consider the synthetic scene in Fig. 6(a). This depicts two
hemispheres on a plane viewed from (0,0,1), shaded via
a full-spectrum raycaster (cf. Bergner et al. 2009). Here the
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Fig. 4 (Continued)

left sphere surface material is Macbeth chart patch #4, “olive

green”, the right sphere is #6, “bluish green”, and the plane

is #2, “light skin”. Lighting is a Planckian with temperature

T = 10,500 K in the shade (blue lighting), and a combina-

tion of that light plus a Planckian with T = 2,500 K (red

lighting) outside the shadows. The camera sensors used are

delta-functions at λk = {650 nm, 540 nm, 450 nm}. This

image illustrates the different colours in shadow and non-

shadow regions. Using a projection of log band-ratio chro-

maticities R/G,B/G, Fig. 6(c) shows the greyscale invari-

Fig. 5 (a): Macbeth ColorChecker Chart image under a Planckian
light imaged with an HP912 Digital Still Camera, modified to generate
linear output. (b): Log-chromaticities of the 24 patches of the imaged

chart. (c): Chromaticities for 6 different patches, imaged under a set of
different Planckian illuminants
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Fig. 6 (a): Two hemispheres composed of Macbeth ColorChecker
Chart patches #4 and #6, on a plane composed of patch #2. Illumination
is by two Planckians, and image formation is by using delta-function

sensors. (b): L1-norm chromaticity for this scene. (c): Greyscale in-
variant image. (d): Invariant image as chromaticity

ant delivered by the proposed method, and Fig. 6(d) shows
the corresponding derived L1 chromaticity, invariant image
{R,G,B}/(R + G + B). We notice that while the greyscale
image is approximately independent of the lighting, it is not
perfect. This is, as we supposed, due to the fact that a com-
bination of Planckians is not itself perfectly Planckian. So
in fact even in circumstances in which the theoretical model
is perfectly obeyed, the method will likely not deliver a per-
fect result. Moreover the chromaticity invariant delivered is
not precisely as we expect in that there are gradual colour
changes across each sphere (although these would disappear
if had only a single illuminant impinging on each of shadow
and non-shadow pixels). However, indeed both attached and
cast shadows are essentially removed. This example serves
to show that an invariant image can be of use in establish-
ing which edges correspond to material changes and which
to lighting, at least well enough as a vehicle for shadow re-
moval.

Before light is added back to such images (below), they
are a type of intrinsic image bearing reflectivity informa-
tion only. In Sect. 3.2 we recover an approximate intrinsic
RGB reflectivity, akin to that in (Tappen et al. 2003, 2005)
but with a considerably less demanding algorithm: (Tappen
et al. 2005) classified image gradients as illumination or re-
flectance edges depending on their direction and magnitude
and, in cases of ambiguity, on other edges in the neighbour-
hood. Work on recovering the intrinsic reflectance and illu-
mination of a scene flows in part from early work on Retinex
(Land and McCann 1971), and (Tappen et al. 2005) is a so-
phisticated development in this stream. Note that an impor-
tant qualification of the domain of the present method is that
whereas the method in (Tappen et al. 2005) works on either
greyscale images or colour ones, the method set out here
depends on colour. Allied efforts, especially in the domain
of Computational Photography, have considered light mix-
tures (e.g., Hsu et al. 2008) or colour-filtered images (e.g.,
Finlayson et al. 2007).

Clearly, if we have the opportunity to calibrate our cam-
era, then we can determine the invariant 2-vector direction
e. However, if we have only a single image, then we do not

have the opportunity to calibrate. Nevertheless we would
still like to be able to remove shadows from any image. We
show in the next Section that the automatic determination of
the invariant direction is indeed possible, with entropy min-
imization being the correct mechanism.

3 Intrinsic Images by Entropy Minimization

Here, we would like to do away with the necessity of a cali-
bration step to gain foreknowledge of the invariant direction.
We begin in Sect. 3.1 by creating a synthetic “image” that
consists of a great many colour patches. Since the image is
synthetic, we in fact do know the ground truth invariant di-
rection. Examining the question of how to recover this direc-
tion from a single image, with no prior information, we show
that minimizing the entropy provides a very strong indicator
for determining the correct projection. This result provides
a proof in principle for the entropy-minimizing method.

The idea being examined in this section is thus as follows:
Suppose that in a single image various illuminants impinge
on several paint patches. Here we use synthetic Planckian
lights in order to see that the underlying theory behaves as
expected. The question examined is then whether we can
remove the effects of lighting from this single, synthetic im-
age.

But how do we fare with a real camera? In Sect. 3.2 we
consider a set of captured colour-patch images, taken with a
known camera. Since we control the camera, and the target,
we can establish the invariant direction. Then comparing to
the direction recovered using entropy minimization, we find
that not only is the direction of projection recovered correct
(within 3 degrees), but also the minimum is global and is a
very strong signal.

3.1 Entropy Minimization

If we wished to find the minimum-variance direction for
lines that are formed in log-chromaticity space as the light
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changes, we would need to know which points fall on which
lines. But what if we did not have that information?

To test the idea that entropy minimization gives an intrin-
sic image, suppose we start with a theoretical Dirac-delta
sensor camera, as in Fig. 4(b). Now let us synthesize an
“image” that consists of many measured natural surface re-
flectance functions interacting with many lights, in turn, and
then imaged by our theoretical camera. As a test, we use the
reflectance data S(λ) for 170 natural objects, measured by
Vrhel et al. (1994). For lights, we use the 9 Planckian illu-
minants E(λ) with T from 2,500◦ to 10,500◦ Kelvin with in-
terval of 1,000◦. Thus we have an image composed of 1,530
different illuminant-reflectance colour signal spectral prod-
ucts. This image is shown in Fig. 4(c). From left to right
we have the 170 different reflectances. And, top to bottom
the illuminants starting from the reddish 2500 K light to the
bluish 10,500 K. We clearly see a colour shift from red-
dish to bluish. A close-up of the last 7 reflectance patches
is shown in Fig. 4(d).

If we form chromaticities (actually we use geometric
mean chromaticities defined in (7) below instead of simple
band ratios, in order to not favour one particular colour chan-
nel), then taking logarithms and plotting we have 9 points
(for our 9 lights) for every colour patch. Subtracting the
mean from each 9-point set, all lines go through the ori-
gin. Then it is trivial to find the best direction describing
all 170 lines via applying the Singular Value Decomposition
method to this data. The best direction line is found at angle
68.89◦. And in fact we know from the theoretical definition
of (ek − ep) that this angle is correct, for this camera. This
verifies the straight-line equation (6), in this situation where
the camera and surfaces exactly obey our assumptions. This
exercise amounts to a calibration of our theoretical camera
in terms of the invariant direction.

But now suppose we do not know that the best angle at
which to project our theoretical data is orthogonal to about
69◦—how can we recover this information? Clearly, in this
theoretical situation, the intuition displayed in Fig. 1 can be
brought into play by simply traversing all possible projec-
tion angles that produce a projection direction e⊥: the di-
rection that generates an invariant image with minimum en-
tropy is the correct angle.

To carry out such a comparison, we simply rotate from
0◦ to 180◦ and project the log-chromaticity image 2-vector
ρ into that direction. To utilize Shannon’s definition of en-
tropy, we can form a histogram as a quantization mecha-
nism. We must decide on a bin size, and for now we sim-
ply use 64 equally-spaced bins. And finally the entropy η is
calculated: the histogram is divided by the sum of the bin
counts to form probabilities pi and, for bins that are occu-
pied, the sum η = ∑64

i=1 −pi log2 pi is formed.
Figure 4(e) shows a plot of angle versus this particular

entropy measure, for the synthetic image. As can be seen,

the correct angle of 159 = 90+69◦ is accurately determined
(within a degree). When we go over to a quadratic entropy,
explained below in Sect. 5, we see from Fig. 4(f) that this
definition of entropy also gives the correct answer (with zero
error, for this case).

Figure 4(g) shows the actual invariant greyscale “image”
for these theoretical colour patches, given by exponentiat-
ing the projected log-image, with a close-up of the last 7
reflectance patches shown in Fig. 4(h). As we go from left
to right across Fig. 4(f) we change reflectance. From top to
bottom we have pixels calculated with respect to different
lights. Recall that Fig. 4(c) shows the 170 reflectances (left
to right) under the 9 Planckians (top to bottom). As opposed
to the invariant image in Fig. 4(g), notice how all colours be-
come progressively bluer top to bottom. Figure 4(g) shows
the invariant image coded as greyscale, and there is zero
variation from top to bottom. Yet the greyscale value does
change from left to right, along our 170 surfaces. So, in
summary, Fig. 4(g) tells us that the same surface has the
same invariant across lights but different surfaces have dif-
ferent invariants (and so the intrinsic image conveys useful
reflectance information).

Next, we consider an image formed from measured val-
ues of a colour target.

3.2 Calibration Images vs. Entropy Minimization

Now let us investigate how this theoretical method can be
used for real, nonsynthetic values. We acquired calibration
images of a Macbeth ColorChecker over 14 phases of day-
light, with results displayed in Fig. 7. (These images were
taken with an experimental HP 912 digital camera with the
normal nonlinear processing software disabled, but in fact
the entropy minimum phenomenon persists regardless of the
processing.)

3.2.1 Geometric Mean Invariant Image

From (4), we can remove σ and I via division by any colour
channel: but which channel should we use? If we divide
by red, but red happens to be everywhere small, as in a
photo of greenery, say, outliers can occur. A better solution
is to divide by the geometric mean (Finlayson and Drew
2001), 3

√
R · G · B . Then we still retain our straight line in

log space, but do not favour one particular channel.
Thus we amend our definitions (5, 6) of chromaticity as

follows:

ck = Rk

/
3

√√√√ 3∏
i=1

Ri,≡ Rk/RM, (7)

and log version (Finlayson and Drew 2001)

ρk = log(ck) = log(sk/sM) + (ek − eM)/T , k = 1..3, (8)
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Fig. 7 Measured values. (a): 2D chromaticity for measured colour
patches, HP 912 camera. (b): Minimum entropy invariant direction
gives angle close to that of calibration method. (c): Same angle is

found by quadratic entropy. (d): Greyscale invariant image for mea-
sured patch values—projected greylevels are same for different illumi-
nants. (e): Recovered 2D-colour chromaticity invariant image

with sk = k1λ
−5
k S(λk)qk, sM = 3

√∏3
j=1 sj , ek = −k2/λk,

eM = −k2/3
∑p

j=1 λj , and for the moment we carry all
three (thus nonindependent) components of chromaticity.
(Broadband camera versions of (8) are stated in (Finlayson
and Drew 2001).)

3.2.2 Geometric Mean 2-D Chromaticity Space

We should use a 2D representation that is appropriate for
this log chromaticity space ρ. We note that, in log space,
ρ is orthogonal to u = 1/

√
3(1,1,1)T . That is, ρ lives on

a plane orthogonal to u, as in Fig. 8 (see Finlayson et al.
2004): ρ · u = 0.

To characterize the 2D space, we can consider the projec-
tor P ⊥

u onto the plane. This projector P ⊥
u has two nonzero

eigenvalues, and its decomposition reads

P ⊥
u = I − uuT = UT U , (9)

where U is a 2 × 3 orthogonal matrix. U rotates 3-vectors ρ

into a coordinate system in the plane:

χ ≡ Uρ, χ is 2 × 1. (10)

Straight lines in ρ are still straight in χ . For example, we
could take v1 = (1/

√
2;−1/

√
2;0)T , v2 = (1/

√
6;1/

√
6;

−2/
√

6)T ), and U = [v1, v2]T .

Fig. 8 Geometric mean divisor implies that every ρ is orthogonal to
u. Basis in plane is {χ1, χ2}

In the {χ1, χ2} plane, we are now back to a situation sim-
ilar to that in Fig. 1: we must find the correct direction θ in
which to project, in the plane, such that the entropy for the
marginal distribution along a 1D projection line orthogonal
to the lighting direction is minimized. The greyscale image
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I along this line is formed via

I = χ1 cos θ + χ2 sin θ (11)

and Shannon’s entropy is given by

η = −
∑

i

pi(I) log(pi(I)). (12)

We shall see below, in Sect. 5, how instead the quadratic
entropy allows us to inherit the marginal pdf from the 2D
pdf, as a function of θ .

3.2.3 Test of Main Idea

Thus the heart of this test of the entropy-minimization idea
using real, measured paint-patch data, is as follows:

(a) Form a 2D log-chromaticity representation of the image.
(b) for θ = 1..180

(i) Form greyscale image I : the projection onto 1D
direction.

(ii) Calculate entropy.
(iii) Min-entropy direction is correct projection for

shadow removal.

We would like an actual algorithm to proceed faster than
this type of brute force search, of course, and that issue is
addressed in Sect. 5.

3.2.4 3-Vector Representation

After we find θ , we can go back to a 3-vector representa-
tion of points on the projection line. We project 2D points
onto a line via a 2 × 2 projector Pθ : if � = (cos θ, sin θ)T ,
then Pθ =��T . We form the projected 2-vector χ θ via
χθ = P θχ and then go back to an estimate (indicated by a
tilde) of 3D ρ and c via ρ̃ = UT χθ , c̃ = exp(̃ρ). For display,
we would like to move from an intrinsic image, governed by
reflectivity, to one that includes illumination (cf. Drew et al.
2003). So before applying UT we add back enough e so that
the median of the brightest 1% of the pixels has the 2D chro-
maticity of the original image: χ θ → χ θ + χ extralight .

3.2.5 Stable Chromaticity Image

Once we have an estimate c̃ of the geometric-mean chro-
maticity (7), we can also go over to the usual L1-based chro-
maticity {r, g, b}, defined as

r = {r, g, b} = {R,G,B}/(R + G + B),

r + g + b ≡ 1. (13)

This is the most familiar representation of colour indepen-
dent of magnitude (column 2 of Fig. 10 shows the L1 chro-
maticity for colour images). To obtain L1 chromaticity r

from our estimate of c, we simply take

r̃ = c̃/

3∑
k=1

c̃k. (14)

Since r is bounded ∈ [0,1], invariant images in r are better-
behaved than is I . The greyscale image I for this test using
images of a colour target is shown in Fig. 7(d), and the L1

chromaticity version r̃ , as per (14), is shown in Fig. 7(e). We
note that both greyscale and colour invariant images are sta-
ble across illuminants. The colour range for the 2D colour
invariant is of course reduced compared to that of an unpro-
jected colour target.

3.2.6 Entropy Minimization—Strong Indicator

From the calibration technique described in Sect. 3.1 we
in fact already know the correct characteristic direction in
which to project to attenuate illumination effects: for the
HP-912 camera, this angle turns out to be 158.5◦.

We find that entropy minimization gives a close approx-
imation of this result: 161◦ for both Shannon’s definition of
entropy and the quadratic entropy variant. First, transform-
ing to 2D chromaticity coordinates χ , the colour patches of
the target do form a scatterplot with approximately paral-
lel lines, in Fig. 7(a). We compose an image consisting of a
montage of median pixels for all 24 colour patches and 14
lights. The calculation of entropy carried out for this image
gives a very strong extremum, shown in Figs. 7(b, c), and
excellent greyscale I invariant to lighting, and chromaticity
invariant, r in Figs. 7(d, e).

This completes both the theoretical and a controlled-
experiment justification of the main idea—finding the in-
variant projection direction by entropy minimization. In the
next section, we examine the issues involved when we ex-
tend this laboratory success to the realm of ordinary, non-
calibration images. To dispense with a brute-force search
over all angles, we also need a disciplined search mecha-
nism, and we see that this is provided by the quadratic en-
tropy measure, with implementation by Fast Gauss Trans-
form.

4 Intrinsic Image Recovery Algorithm

4.1 Shannon’s Entropy and Quantization

Real images are noisy and might not provide such a clean
picture as in our theoretical and testing images above. As
well, we must decide on a quantization procedure if we wish
to utilize Shannon’s definition of entropy.
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4.1.1 Quantization Problem

Consider the colour image in Fig. 3(a): a colourful ball on
a wooden deck is in a shadow cast by strong sunlight. To
find the minimum entropy, we again examine projections
I over angles 0◦ to 180◦, for log-chromaticities χ formed
according to (7), (8), and (10). For each angle, we project
the log-chromaticity, and then determine the entropy (12).
However, the nature of the data, for real images, presents an
inherent problem. Since we are considering ratios, we can
expect noise to possibly be enhanced (although this is miti-
gated by the sum in (13)). To begin with, therefore, we apply
Gaussian smoothing to the original image colour channels.
But even so, we expect that some ratios may be large. So the
question remains as to what we should use as the range, and
number of bins, in a histogram of a projected greyscale im-
age I . Using the usual, Shannon, definition of entropy, we
cannot escape this quantization issue. However, the alterna-
tive Quadratic Entropy measure, used below, largely circum-
vents this issue by utilizing a different, kernel density driven
nonparametric estimate of the pdf that automatically incor-
porates smoothness. We still have to choose a bandwidth pa-
rameter, but the resulting quantity is relatively independent
of this choice.

We calculate Shannon’s entropy by approximating the
pdf with a histogram over projected 1D greyscale values. To
form an appropriate bin width, we utilize Scott’s Rule (Scott
1992):

bin_width = 3.5std(projected data)N−1/3 (15)

where N is the size of the invariant image data, for the cur-
rent angle. Since there may be outlier ratios, we use the mid-
dle values only, i.e., the middle 90% of the data, to form a
histogram. And the scale of the entropy for each projection
is the same, since the number of bins is about the same: if
we draw the samples from a Gaussian population then the
first 3 standard deviations, say, from the mean plus overload
at the boundaries describe all the data, and the number of
bins is then just proportional to N1/3, which is the same for
every projection.

The entropy calculated is shown in Fig. 3(b); but we find
from varying the bin width in Fig. 3(b) around the value
in (15) that this entropy may be sensitive to the bin-size.
We would like to develop a smoother version of the entropy,
with a clearer indication of the minimum. As well, we would
like to dispense with an exhaustive search over angles and go
over to a smoother curve that facilitates efficient search for
the minimum. We shall see next that the Quadratic Entropy
curve is smooth and also generally has a single extremum.
And a Fast Gauss Transform can produce each entropy eval-
uation in linear time.

Figure 3(c) shows the Information Potential, derived in
the next Section from the Quadratic Entropy. We see that

in this case there is a much simpler curve shape, and local
quantization effects are eliminated. The result for the result-
ing chromaticity invariant, and reconstructed shadow-free
colour image is shown in Fig. 10.

5 Quadratic Entropy and Gauss Transform

Firstly we replace our pdf over 2D chromaticity coordi-
nates by a Gaussian kernel density mixture to ensure that
entropy is calculated over smooth values. If we go over to
a Quadratic Entropy measure (a special case of Renyi’s en-
tropy, Renyi 1987), then the entropy takes on a very simple
form.

In 1D, Renyi’s entropy reads

ηα = 1

1 − α
log

∫
pα(x)dx, α ≥ 0, α 
= 1 (16)

where p(x) is the pdf. This measure is known to approach
Shannon’s entropy as α goes to 1.

For the special case of α = 2 we have

ηquadratic = − log
∫ ∞

−∞
p2(x)dx. (17)

Notice that the log is outside the integral, making for a much
simpler evaluation.

For the purposes of optimization, we can simply drop the
log, giving the so-called information potential,

V =
∫

p2(x)dx. (18)

To see how the information potential is indeed related
to minimizing the entropy, consider the parallel lines in
(χ1, χ2)-space formed for two paint patches as illumination
changes, in Fig. 9(a). Suppose data points are uniformly dis-
tributed along each line, so that the projected, marginal pdf
is proportional to 1 except when the line projections overlap,
when the pdf is proportional to 2. Clearly, there is a singu-
larity when the lines project to zero length along the projec-
tion axis, at the minimum-entropy angle. Fig. 9(b) shows the
theoretical value of V , as the projection angle changes. The
information potential for real data usually also has a simi-
lar strong, single-maximum structure: the curve in Fig. 7(c)
showing the information potential for the measured patch
data in Fig. 7(a) has a maximum at 160.5◦, whereas the cor-
rect angle is 158.5◦. Compared to Fig. 7(b), the quadratic
entropy has a much cleaner structure that facilitates a fast
search by successive evaluation of the quadratic entropy
over a few angles.

The quadratic entropy is explicitly evaluated using the
Parzen window technique, below.
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Fig. 9 (a): Projection of two
illumination-variation lines into
1D marginal pdf by projection
in θ direction. (b): Resulting
(continuous) information
potential for the quadratic
entropy shows strong, single
maximum at correct angle

5.1 Parzen Window

The quadratic-entropy approach approximates the pdf p(x)

from its N samples ai by a Parzen window estimator (Parzen
1962), using Gaussian kernels G with mean ai and vari-
ance s2:

p(x) = 1

N

N∑
i=1

G(ai, s
2). (19)

Since a convolution of two Gaussians is a Gaussian with
variance equal to the sum of variances of the constituent
Gaussians and mean given by the difference of individual
means, the information potential V becomes simply (Xu and
Principe 1998)

V = 1

N2

N∑
i=1

N∑
j=1

G(ai − aj ,2s2)

= 1

N2

1√
2π(2s2)

∑
i

∑
j

e
− (ai−aj )2

4s2 . (20)

Notice that now we can evaluate the entropy directly from
the data, without the need to create a pdf first.

Now let us show how the 1D model above comes out of
projecting 2D, (χ1, χ2) chromaticity-space data in a direc-
tion θ . For convenience let us write x = χ1, y = χ2. where
Xi,Yi is the 2D data and i indexes the image treating indices
as a vector. If the 2D pdf is approximated as

p(x, y) = 1

N

1√
(2π)2s2

1s2
2

N∑
i=1

exp

[
− (x − Xi)

2

2s2
1

]

× exp

[
− (y − Yi)

2

2s2
2

]
, (21)

then to find the marginal probability density for this function
along an axis μ, projected in the θ direction, we substitute

x = μ cos θ + ν sin θ, y = −μ sin θ + ν cos θ . Also defining
Mi = Xi cos θ − Yi sin θ , after some algebra the projected
marginal probability comes out to be

pθ(μ) =
∫ ∞

ν=−∞
p (x(μ, ν), y(μ, ν)) dν

= 1

N

1√
2πs̃2

∑
i

exp

[
− (μ − Mi)

2

2s̃2

]
(22)

with

s̃(θ)2 = s2
1 cos θ + s2

2 sin θ. (23)

We then use value s̃ that minimizes the asymptotic mean
integrated squared error (AMISE) (Scott 1992), given by

s̃ = 1.06s(θ)N−1/5. (24)

Thus the information potential is

V =
∫ ∞

μ=−∞
{fθ (μ)}2 dμ

= 1

N2

1√
2π(2s̃2)

∑
i

∑
j

exp

[
− (Mi − Mj)

2

4s̃2

]
. (25)

Therefore, the information potential is given by a simple
sum, along the projected axis.

The information potential V can be regarded as the to-
tal potential energy of the data set, with the Gaussians in
the role of potential energy of data point Mi in the potential
field of data point Mj . To minimize the entropy, we max-
imize this potential energy (Xu and Principe 1998). In the
context of data points that are free to move, the derivative of
this potential is a force that drives data points into an equi-
librium state such that the information potential takes on an
extremum. This has been used for determining neural net-
work parameter values that produce such optimized network
outputs: the derivative of V with respect to the network para-
meters become derivatives of the output points, via the chain
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rule (Xu and Principe 1998). In our application, the data is
fixed, so we simply evaluate (25).

In the Appendix, we show that the sum V can be cal-
culated in linear time, using the Fast Gauss Transform.
Quadratic entropy curves found are simple and smooth, and
we have found that a maximum of V for real image data
can be generated in just a few search steps. We found that
on average the most critical and time-consuming step of the
algorithm, namely the linear-time FGT, took about 4 mi-
croseconds per pixel (in Matlab on a single-core 3.0 GHz
P4 running Windows), or in other words some 0.5 seconds
for a 300 × 400 image.

6 Re-integrated Image Results

Using the re-integration method in (Finlayson et al. 2006),
we can go on from our invariant image to recover a full-
colour shadow-free image. The method introduced in (Fin-
layson et al. 2002) uses a shadow-edge map, derived from
comparing the original edges to those in the greyscale in-
variant image. In (Finlayson et al. 2006) we use edges from
the invariant chromaticity image and compare to edges from
a Mean-Shift (Comaniciu and Meer 2002) processed origi-
nal image. As well, rather than simply zeroing edges across
the shadow edge, we use simple edge inpainting to grow
edges into shadow-edge regions.

Regaining a full-colour image has two components: find-
ing a shadow-edge mask, and then re-integrating. The first
step is carried out by comparing edges in the Mean-Shift
processed original image with the corresponding recovered
invariant chromaticity image. We look for pixels that have
edge values higher than a threshold for any channel in the
original, and lower than another threshold in the invari-
ant, shadow-free chromaticity. We identify these as shadow
edges, and then thicken them using a morphological oper-
ator. For the second stage, for each log colour channel, we
first grow simple gradient-based edges across the shadow-
edge mask using iterative dilation of the mask and replace-
ment of unknown derivative values by the mean of known
ones. Then we form a second derivative, go to Fourier space,
divide by the Laplacian operator transform, and go back to
x, y space. Neumann boundary conditions leave an addi-
tive constant unknown in each recovered log colour, so we
regress on the top brightness quartile of pixel values to arrive
at the final resulting colour planes.

In our experiments, images show behaviour similar to
that displayed in Fig. 3(c), with strong entropy minima (in-
formation potential maxima), and results quite free of shad-
ows. Since the invariant image is basically shadow free and
the re-integrated image is quite good, our intuition that min-
imization of entropy would lead to correct results is indeed
justified.

Figure 10 shows results from various images, from both
calibrated and uncalibrated cameras, including consumer
cameras. For all experiments we carried out, quadratic en-
tropy minimization provided a strong guiding principle for
removing shadows. Note that in some actual cameras, an
entropy-minimization approach rather than a calibration is
ideal for finding the invariant direction, since it is possible
that even a change of camera settings or heating over the day
in a surveillance situation can produce effectively different
camera sensors. We point out to the reader that there is con-
siderable variance in the recovered invariant angle direction
over the set of images and cameras (150 degrees plus or mi-
nus 20 degrees) and so a single fixed calibration direction
will not remove the effect of illumination in images.

While the results are not perfect, we believe they are
pretty good. In all cases the shadows are removed or atten-
uated and the main look and feel of the image is retained.
And, we achieved this performance without any calibration
or prior learning.

7 Are Invariant Images Intrinsic?

A question that remains is whether the invariant images pro-
duced are indeed “intrinsic” in the sense of yielding identical
reflectivity results regardless of lighting conditions. To test
this capability of the algorithm, we used time-lapse imaging
to show shading and shadow removal stability over lighting.
Figure 11 shows a subset of several images taken outdoors
over time on a variably sunny day at 20-minute intervals.
For each individual image, we ran the algorithm presented
here. If the invariant images produced are indeed intrinsic,
then we expect to find that all invariant images are approxi-
mately equal, or at least much closer to each other than are
each of the original sequence since they would consist of
reflectance-only images independent of the lighting change
between frames. The camera used was an inexpensive com-
modity camera, but with the software modified such that
both preferred and raw renditions are both stored: for raw
images, only demosaicing using bilinear interpolation is ap-
plied.

We find that in most of the results, the attached shad-
ows are still somewhat apparent, although the cast shadows
have been mostly removed. Nevertheless the output images
are indeed closer to each other than are the originals. Since
we produce chromaticity images as the invariant output, we
compare closeness for the L1 chromaticity amongst the in-
put set across daylight conditions versus that for the output
set. A simple but effective measure of the quality of image
nearness is the Peak Signal to Noise ratio (PSNR) (Daly
1992), and in fact perception-based image quality metrics
have been found to offer little advantage over PSNR as a
measure to evaluate the quality of image nearness. For the
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input set of L1 chromaticities, if we compute the PSNR be-
tween all input images the median value is 38.70 dB. But
for the output set, the median is 50.06 dB, showing a much
stronger correlation: i.e., the invariant images are indeed
considerably closer to generating an intrinsic representation.

8 Conclusions

We have presented a method based on entropy minimiza-
tion for finding the invariant direction, and thus a greyscale
and thence an L1-chromaticity intrinsic image that is inde-
pendent of lighting and hence free of shadows, without any
need for a calibration step or special knowledge about an
image. The method appears to work quite well, and leads to
good re-integrated full-colour images with shadows greatly
attenuated. We found that going over to a quadratic entropy
definition provides a stable and efficient vehicle for calcu-
lating the minimum-entropy lighting invariant direction.

Future work would involve a careful assessment of how
onboard nonlinear processing in cameras affects results.
Cameras ordinarily supply images and videos that are com-
pressed, as well as greatly processed away from being lin-
ear images. Although the method does indeed work under
such processing (see Fig. 10) it would be well to understand
how JPEG artifacts impact the method. We have found that
JPEG images do indeed exhibit a strong entropy minimum,
just as do uncompressed images. However, the extra edges
introduced due to blocking effects make re-integration more
difficult.

For the re-integration step, it may be the case that consid-
eration of a separate shadow-edge map for x and y could be
useful, since in principle these are different. A variational in-
painting algorithm would likely work better than our present
simple morphological edge-diffusion method for traversing
shadow-edges, but would be slower.

In general, the model does perform best when the under-
lying assumptions guiding the approach are indeed obeyed.
For example, if a spectral sharpening transform (Finlayson
et al. 1994) is available for a camera (or even using a generic
such transform Drew et al. 2007) then we can expect to ob-
tain better shadow removal from the lighting invariant. And
Lambertian surfaces indeed produce the best results. A sim-
ple test of whether a surface is in fact Lambertian is that
the chromaticity removes shading. The Lambertian assump-
tion is often broken, but real images typically contain only
small specular areas and these do not much affect the results.
However, if we were to use scenes with large areas of nondi-
electrics, this would indeed affect performance. In general,
we expect the method to have limited applicability to a de-
gree for scenes that image surfaces with BRDFs that deviate
from Lambertian, such as glass, metal, etc., and likely also
skin, which is complex to model (Weyrich et al. 2006).

As well, dynamic range plays an important part in con-
sumer imaging. Under bright lighting, shadows are typi-
cally driven down to very small pixel values—say, to 2%
of the maximum channel value—that may be unusable by
the method presented. Also, when strong interreflections are
present, in shadow regions that are very close to an object
with attached shadow, the method can also not correctly re-
move this effect. Nonetheless, generally the method does re-
move, or at least diminish the presence of shadows in im-
agery.

Appendix: Fast Gauss Transform Applied to Quadratic
Entropy

In practice, computation of the information potential can be
expensive. When computed naively, computation of V has
complexity O(N2), where N is the number of pixels. This
cost may be prohibitive when the image is large.

The Fast Gauss Transform (FGT) was introduced by
Greengard and Strain (1991) for efficient evaluation of a
weighted sum of Gaussians. It has proved to be a very effi-
cient algorithm in a variety of applications (Yang et al. 2003;
Elgammal et al. 2003; Beatson and Greengard 1997). The
discrete Gauss transform, here discussed in terms of the ap-
proximation of a 1D pdf, is to be evaluated on a grid of T

points:

G(xi) =
N∑

j=1

wje
−(

xi−sj
σ

)2
, i = 1 . . . T . (26)

Here, wj are weight coefficients; {sj }, j = 1 . . .N are the
data point centers of the sum of Gaussians (the sources); and
σ is a bandwidth parameter. The sum of Gaussians is evalu-
ated only at a set of grid points {xi}, i = 1 . . . T (the targets).
A direct computation evaluating the sum of N source points
at T targets requires O(T N) exponential evaluation opera-
tions.

The FGT algorithm speeds up the computation by ap-
proximation of the Gaussian function to achieve a desired
precision. The basis of the fast algorithm is the expansion of
the Gaussian in terms of the Hermite functions hn(x):

G(x) = e−(x−s)2 =
p∑

n=1

sn

n!hn(x) + ε(p), (27)

where hn(x) is defined by

hn(x) = (−1)n
dn

dxn
e−x2

,

and ε is the error introduced by truncating the Hermite series
after p terms. This is a rephrasing of the Taylor series about
s = 0.
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The FGT starts by dividing the feature space (the sources)
into uniform boxes with side length σ . Then the Hermite
expansion is applied such that the influence of sources and
targets separates. For each source s, the Gaussian can be ex-
panded using a shifted and scaled version of Hermite func-
tions which are located at the center sB of the box in which
the source lies.

e−( x−s
σ

)2 = e−(
x−sB−(s−sB )

σ
)2

∼=
∑
n<p

1

n!
(

s − sB

σ

)n

hn

(
x − sB

σ

)
. (28)

This is a so-called far-field expansion, in that it is an approx-
imation not dependent on the distance between source and
target being small.

In a similar manner, the target Gaussian field can be ap-
proximated by a Hermite expansion about the center of the
target box xB :

e−( x−s
σ

)2 = e−(
x−xB−(s−xB )

σ
)2

∼=
∑
n<p

1

n!hn

(
s − xB

σ

)(
x − xB

σ

)n

. (29)

The two expansions are identical, except that the role of
sources and targets are interchanged. Equation (29) is a so-
called near-field expansion, in that it expresses a function
with target x as a Taylor series about a nearby target box
center xB .

The FGT first calculates the expansion coefficients in (28)
(the monomials in s) and adds them for each source box,
yielding a single expansion for each source box. These series
are then shifted to the centers of target boxes using (29), for
the Hermite series in each target box and its nearby source
box. Thus each target point has only one Taylor expansion
with monomials ((x − xB)/σ )n. In this way, a sum of Gaus-
sians can be computed in O(T + N) operations.

The FGT is typically applied to Gaussian kernel eval-
uations where the targets are not well-behaved near the
sources, making it necessary to use the far field Hermite
expansion and the translation to a local Taylor expansion.
However, here we wish to use the FGT specifically for cal-
culating the information potential, as in (25). Here, sources
and targets are identical—Mi are sources, with the term for
each i of the form (26) with xj ≡ Mj . In this case, the Her-
mite expansion is equivalent to the Taylor expansion, with
no need to perform the conversion from the Hermite expan-
sion to the local Taylor series. Therefore, a simpler evalu-
ation is possible for (25): all points are transformed into a
Hermite expansion about the centers of the boxes, and these
expansions are directly evaluated at each point.

Formally, the kernel in V can be expressed as a Hermite
series:

e
− (Mi−Mj )2

4s̃2 ∼=
∑
n<p

1

n!
(

Mj − MB

2s̃

)n

hn

(
Mi − MB

2s̃

)
(30)

where point Mj is located in a box B with center MB and
side length s̃. The Fast Gauss Transform for computing the
information potential (25) thus consists of the following
steps:

Step 1. Assign the N data points into uniform boxes with
length s̃.

Step 2. Choose p sufficiently large to enforce a desired er-
ror precision. The error due to the truncation of the se-
ries (28) after p terms satisfies the following bound in this
1D case (Greengard and Strain 1991; Baxter and Roussos
2002; Beatson and Greengard 1997):

∣∣∣∣e−(
Mi−Mj

2s̃
)2 −

∑
n<p

1

n!
(

Mj − MB

2s̃

)n

hn

(
Mi − MB

2s̃

)∣∣∣∣

≤
(

1

p!
) 1

2
(√

2

4

)p

. (31)

Step 3. For each box B , with center MB , sum the Hermite
polynomials, i.e. add corresponding coefficients:

An(B) = 1

n!
∑

Mj ∈B

(
Mj − MB

2s̃

)n

. (32)

Step 4. For each point Mi , compute the influence of all
points Mj by adding the Hermite expansion for each
box B .

∑
j

e−(
Mi−Mj

2s̃
)2 =

∑
B

∑
Mj ∈B

e−(
Mi−Mj

2s̃
)2

∼=
∑
B

∑
n≤p

An(B)hn

(
Mi − MB

2s̃

)
. (33)

Because of the exponential decay of the Gaussian, points
in a given box will have no effect (given a particular accu-
racy) on far-away targets. Thus it is reasonable to compute
the influence of only a range of nearby boxes for each tar-
get point, where the range is determined by the desired er-
ror bound. If we take only the r closest boxes for a point in
each direction (i.e., a neighbourhood of 2r + 1 boxes cen-
tered at the point), it can be shown (Greengard and Strain
1991) that we incur an error bounded by e−r2/4. Denoting
the 2r + 1 nearby boxes by IR(B), the summation can be
approximated by
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∑
B

∑
Mj ∈B

e−(
Mi−Mj

2s̃
)2 ∼=

∑
IR(B)

∑
n≤p

An(B)hn

(
Mi − MB

2s̃

)
.

(34)

Step 5. Finally, the information potential can be calculated
by adding all the Gaussian approximations obtained in
step 4.

V ∼=
∑

i

∑
IR(B)

∑
n≤p

An(B)hn

(
Mi − MB

2s̃

)
. (35)

In step 3, each point contributes to exactly one expansion, so
that the amount of work required to calculate the coefficients
for all boxes is O(Np). The amount of work required in
step 4 is O(p(2r + 1)) for each point, and O(Np(2r + 1))

in total for all points. The desired precision ε dictates our
choice of r and p. For calculating the information potential,
the precision required is moderate, so that we can have small
r and p. In this paper we use r = 6 and p = 6. Overall, the
FGT algorithm achieves linear running time O(N).
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