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Abstract We present an interpretation of Land’s Retinex
theory that we show to be consistent with the original for-
mulation. The proposed model relies on the computation of
the expectation value of a suitable random variable weighted
with a kernel function, thus the name Kernel-Based Retinex
(KBR) for the corresponding algorithm. KBR shares the
same intrinsic characteristics of the original Retinex: it can
reduce the effect of a color cast and enhance details in low-
key images but, since it can only increase pixel intensities, it
is not able to enhance over-exposed pictures. Comparing the
analytical structure of KBR with that of a recent variational
model of color image enhancement, we are able to perform
an analysis of the action of KBR on contrast, showing the
need to anti-symmetrize its equation in order to produce a
two-sided contrast modification, able to enhance both un-
der and over-exposed pictures. The anti-symmetrized KBR
equations show clear correspondences with other existing
color correction models, in particular ACE, whose relation-
ship with Retinex has always been difficult to clarify. Fi-
nally, from an image processing point of view, we mention
that both KBR and its antisymmetric version are free from
the chromatic noise due to the use of paths in the original
Retinex implementation and that they can be suitably ap-
proximated in order to reduce their computational complex-
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ity from O(N2) to O(N logN), being N the number of input
pixels.
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1 Introduction

The original Retinex theory (Land and McCann 1971) aims
at reproducing the sensory response to color stimuli by the
Human Visual System (HVS). The model was developed
starting from the assumption that actual color sensations are
related to the intrinsic reflectance of objects rather than to
the radiance values captured by the eyes. Land and McCann
were led to postulate this claim after the famous ‘Mondrian’
experiments (Land 1977, 1983). They proved that the color
perception of patches with different reflectance remains dis-
tinct even when the spatial illumination is rearranged in such
a way that those patches send the same spectral light distri-
bution to an observer. If color perception were only a light
acquisition process, then those different patches would be
perceived as having the same color; the fact that they are
perceived with distinct color implies that some further elab-
oration is involved in the complicated process of color per-
ception. Land named the model that tries to reproduce this
elaboration ‘Retinex’, as an amalgamation of ‘retina’ and
‘cortex’, since he did not know if the perception process
takes place only in the retina or also in the brain cortex.

Many variants on the original Retinex implementation
have been proposed. Some of them were faithful to the
initial construction and significatively improved the perfor-
mance of Retinex, while some others introduced drastic
changes maintaining the same name. This fact, in the au-
thors’ opinion, generated confusion about what the actual
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Retinex model is. In the Appendix, Sect. A.1, we present a
brief overview about the different Retinex formulations that
have appeared during the years, commenting on their sim-
ilarities and differences. To avoid possible misunderstand-
ings, we stress that in this paper we will use the term Retinex
only to refer to Land and McCann’s model described in Land
and McCann (1971), Land (1977).

It is important to stress that the experiments that orig-
inated the Retinex theory did not involve digital images:
the Mondrian pictures are ‘physical’ arrangements of color
patches and the experiment showed a numerical correspon-
dence between the output Retinex values and the reflectance
of the Mondrian patches (McCann et al. 1976). However,
as already suggested by Land himself (1977, 1983), besides
color vision purposes, Retinex can also be used to enhance
digital images. The implicit assumption underlying this ap-
plication is that Retinex should turn a generic input picture
into a more ‘natural’ one, i.e. an image closer to what a hu-
man observer would perceive if she/he were looking at the
same scene when the picture was taken. This is a much de-
bated issue that raises up both technical and philosophical
issues, e.g. the fact that we use again the HVS to look at the
Retinex output and, moreover, this output is shown on a dig-
ital screen, thus the psychophysical match between the color
sensation induced by Retinex and that corresponding to the
real scene are quite difficult to compare. In this paper we do
not want to enter in this debate, since our aim is the analysis
of the properties of Retinex from the point of view of color
image enhancement.

The development of our analysis on Retinex is based on
a new interpretation of its original construction. This per-
mits us to propose a new implementation that still complies
with Land’s postulates and has several advantages with re-
spect to the canonical ‘ratio-reset’ Retinex operation (Land
and McCann 1971; Land 1977). The proposed method re-
lies on the computation of the expectation value of a suit-
able random variable weighted with a kernel function, thus
the name Kernel-Based Retinex (KBR) for the correspond-
ing algorithm.

We prove that KBR and the original implementations
share the same intrinsic properties: they can remove unde-
sired color cast and enhance detail visibility in low key im-
ages, but they always increase image brightness and are not
idempotent, converging to non-natural images characterized
by the presence of a great amount of white pixels (Provenzi
et al. 2005).

By comparing the KBR implementation of Retinex with
the variational model of color image enhancement proposed
in Palma-Amestoy et al. (2009), we show that to overcome
its limitations KBR must be ‘anti-symmetrized’, in a sense
that will be specified later, so that it can properly enhance
both under and over-exposed images. This analysis reveals

novel insights about the Retinex action on contrast. More-
over, we comment on the fact that, adding a simple mecha-
nism of attachment to original data, further iterations of the
algorithm converge to fixed-point images not corrupted by
white pixels.

Finally, we show that a suitable approximation technique
permits to reduce the computational complexity of KBR and
of its anti-symmetrizations from O(N2) to O(N logN), be-
ing N the number of input pixels.

Let us describe the plan of the paper. In Sect. 2, we de-
scribe the Retinex model and its main qualitative properties.
In Sect. 3, based on the main features of Retinex, we de-
scribe the Kernel based Retinex which assumes a non-local
two point comparison between pixels. Then, in Sect. 4, we
compare the KBR model with a variational formulation of
contrast enhancement operations. In particular, differently
to the variational formulations, KBR is not able to enhance
over-exposed images. Then, by anti-symmetrizing the KBR
formula, we discuss the contrast enhancement effects of its
terms. In particular, we show that the ACE algorithm (Rizzi
et al. 2003) coincides with one of the anti-symmetrizations
of Retinex. In Sect. 5, we describe the numerical approach
used to compute the image enhancement using KBR and dis-
play our experiments in Sect. 6. The conclusions are sum-
marized in Sect. 7. Finally, in the Appendix, we include an
overview of other Retinex formulations and the proof of a
Lemma useful to compute the first variation of the contrast
energy functionals of the paper.

2 The Retinex Model of Color Vision and its
Application to Digital Images

In this section we recall the definition of the Retinex model
and the basic features of the corresponding algorithm when
applied to digital images following the classical papers
(Land and McCann 1971; Land 1977) and the mathemati-
cal description exposed in (Provenzi et al. 2005).

2.1 Correspondence between Retinex Output Values and
Scaled Integrated Reflectance in the Mondrian World

In (Land 1977), Land reports on some color perception ex-
periments where the subject is given a colored square of
paper under constant ‘white’ illumination conditions and
she/he must find a matching color patch from a scene with
different illuminant. The experiments showed that observers
matched colored squares with different radiances but having
the same scaled integrated reflectances. At each wavelength
band (Long, Middle or Short) corresponding to the spectral
response of one of the three cone pigments, the integrated
reflectance of a color patch is defined as a fraction: its nu-
merator is the integral of the radiance of the patch over a
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Fig. 1 Non-linear scaling
function f . The horizontal axis
corresponds to (normalized)
radiance, while the vertical axis
corresponds to the sensation of
lightness

given waveband, and its denominator is the integral (over
the same band) of the radiance of a white sheet of paper.
The scaling is given by a non-linear function that relates re-
flectance with lightness sensation, see Fig. 1.

A photometer measures radiance and would therefore
‘match’ two surfaces with different reflectance if their ra-
diances were equal, something that can easily be arranged
with the correct choice of illuminants (e.g. if two surfaces,
each one composed of a distinct uniform reflectance patch
covering the entire field of view, were viewed under two
lights that make the radiance stimuli match, then they would
be judged as identical in color appearance). The HVS, on
the other hand, would seem to match patches when their
scaled integrated reflectances are equal. Analogous results
are given using Mondrian-like figures (Land 1977).

Land wondered how ‘the eye’ manages to use scale inte-
grated reflectances as an equivalent for lightness ‘in the un-
evenly lighted world without reference sheets of white pa-
per’ (Land 1977). The experiments suggested that the eye
is able to find the area of maximum lightness (‘reference
white’) and to compare it with areas which may be far away.
Land did not think that the eye could directly compare ar-
eas which are not next to each other, so he introduced the
concept of sequential product: in order to compare the ra-
diances R(x) and R(y) at points x and y, respectively, and
to compute the fraction R(x)

R(y)
, we may take any connected

path γ = {z0, z1, z2, . . . , zn}, a curve that goes from y to
x where z0 ≡ y, zn ≡ x, and zi is the point that follows
zi−1 on the curve γ . The fraction R(x)

R(y)
is just the prod-

uct of fractions of consecutive points along the path, i.e.
R(x)
R(y)

= R(z1)
R(y)

R(z2)
R(z1)

R(z3)
R(z2)

· · · R(x)
R(zn−1)

.

Since the HVS is looking for a ‘reference white’, we must
find the point along the path which has maximum radiance.
This is equivalent to re-starting the sequential product when-
ever we reach a point, say zm, where the radiance is greater
than the radiance at any previous point along the path: the

sequential product up to zm is reset to 1, so in practice
we re-start by computing R(x)

R(zm)
with the sequential product.

The reset mechanism is another key element of the Retinex
model, as Land (1977) points out:

‘This [reset] procedure is the heart of the technique for
finding the highest reflectance in the path’.

Fig. 2 Five different paths
starting in y1, . . . , y5 and ending
in the target x

At the end, the sequential product will have the form R(x)
R(zM)

,
where R(zM) is the maximum radiance along the path.

The sequential product is scaled with the non-linear func-
tion f depicted in Fig. 1. This function may be approxi-
mated by Glasser et al.’s (1958) power law, f (r) = Arq +B ,
r ∈ (0,1], q ∈ (0,1], as suggested in McCann et al. (1976),
or by a logarithmic function, f (r) = A′ log(r) + B ′, as in
Land (1986), where r ∈ [r0,1] for some r0 > 0 and where
A,A′,B,B ′ are real constants. We obtain an estimate for
the scaled integrated reflectance and therefore for the light-
ness �(x) at x: �(x) = f (

R(x)
R(zM)

). This estimate has been ob-

tained just for the path γ ; to increase the accuracy of light-
ness estimation N paths are considered, starting at different
randomly distributed points yk , k = 1, . . . ,N but all ending
at x (see Fig. 2) and the lightness results obtained for each
path are averaged. So, the final Retinex estimate of �(x) is:

�(x) = 1

N

N∑

k=1

f

(
R(x)

maxz∈γk
(R(z))

)
, (1)

where γk is the k-th path used.
This description of the Retinex algorithm does not con-

sider the so-called threshold mechanism, a control opera-
tion that sets to 1 ratios which differ from 1 by a small
amount defined by a threshold. This mechanism was intro-
duced in the original Retinex formulation as a way to re-
duce the errors produced by noise in the electronic devices
of the early 1970’s (Land and McCann 1971). During time,
it is the authors’ belief, the threshold mechanism acquired a
misleading role in the model: it was believed that it helped
to disregard small gradients due to local illuminant imper-
fections (Land 1983, p. 5165), however this assumption is
not plausible for images more complex than Mondrian-like
pictures, because small gradients can also be produced by
significant reflectance changes. Nowadays there is a general
agreement about the fact that the threshold is a redundant pa-
rameter for Retinex, as qualitatively pointed out in McCann
(2004), Hurlbert (1986). Moreover, the quantitative analysis
performed in Provenzi et al. (2005) about the Retinex for-
mulation that considers the threshold mechanism has shown
that, for natural images, the correction given by the thresh-
old mechanism is negligible. For all these reasons, we do not
consider the threshold mechanism as an intrinsic element of
the Retinex model. Instead, the five steps that we consider as
fundamental for the Retinex theory are the following: (i) the
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three wavelength bands are dealt with separately; (ii) radi-
ances are compared through ratios; (iii) a reset operation oc-
curs in order to determine the local brightest point; (iv) the
ratio-reset output is non-linearly scaled to give a lightness
estimation for every fixed path and, finally, (v) the estima-
tions are averaged.

2.2 Application of the Retinex Algorithm to Digital Images

As recalled in the Introduction, we must distinguish between
the Retinex theory, which deals with the radiance values of
the physical world, and the application of Retinex to digital
images, which deals with discrete intensities. In this section
we are interested in the analysis of the latter issue.

Let us consider a digital RGB image with spatial do-
main I = {1, . . . ,W } × {1, . . . ,H } ⊂ Z

2, W,H ≥ 1 being
integers; x = (x1, x2) and y = (y1, y2) denote the coordi-
nates of two arbitrary pixels in I. We will always con-
sider a normalized dynamic range in (0,1], so that I(x) =
(IR(x), IG(x), IB(x)) is the function representing the nor-
malized intensity level of the pixel x ∈ I in the chromatic
channels R, G and B , respectively. Notice that we remove
the value 0 because the Retinex theory involves ratios, so
we have to avoid dividing by zero. For instance, to do that
on a 8-bit-per-channel image we just add 1 to each pixel and
divide by 256. As already commented, the Retinex theory
deals with the three chromatic channels independently, so
we will avoid specifying the subindexes R, G and B and we
will just write I (x) for the sake of simplicity.

It is worth noticing that, when we take a digital picture,
the camera transforms the radiance values that reach its sen-
sors into currents and then into digital intensity values fol-
lowing a particular transformation ϕ that defines the image
formation model of the camera, so that I (x) = ϕ(R(x)).
Typically ϕ is a non-decreasing and non-linear function
whose precise behavior is difficult to characterize, how-
ever popular non-linear image formation models for cam-
eras represents ϕ as a power-law, i.e. I (x) = cR(x)d , for
suitable c > 0, 0 < d < 1, or a logarithmic transformation,
i.e. I (x) = a log(R(x)) + b, for suitable values of a, b.

So, taking into account the radiance-to-intensity transfor-
mation ϕ, formula (1) becomes:

�(x) = 1

N

N∑

k=1

f

(
ϕ(R(x))

maxz∈γk
(ϕ(R(z)))

)

= 1

N

N∑

k=1

f

(
I (x)

maxz∈γk
(I (z))

)
. (2)

In the next subsections, following (Provenzi et al. 2005,
2007), we will use this formula to present two basic proper-
ties of the Retinex algorithm and to discuss the role of the
paths in the theory.

2.3 The Action of Retinex on Pixel Intensities

Formula (2) has been used in (Provenzi et al. 2005) to
easily prove that Retinex always increases brightness, i.e.
that: �(x) ≥ I (x), for all x ∈ I. Firstly, let’s observe that
0 < I (y) ≤ 1 for all y ∈ I, so I (x)/I (y) ≥ I (x). Secondly,
since f is increasing and f (r) ≥ r , for all r ∈ (0,1], we
have

�(x) = 1

N

N∑

k=1

f

(
I (x)

maxy∈γk
I (y)

)

≥ 1

N

N∑

k=1

f (I (x)) ≥ 1

N

N∑

i=1

I (x) = I (x). (3)

This implies that underexposed pictures are usually visibly
enhanced by Retinex, while overexposed pictures are not.
To overcome this problem, some works introduce a final
tone scale correction step in order to guarantee a suitable
histogram distribution (Funt et al. 2004).

Another consequence of the lightness formula (2) is that
Retinex is not an idempotent transformation, i.e. �(�(x)) �=
�(x), in general. The proof of this property is longer than the
previous and can be found in Provenzi et al. (2005), where
it has been shown that iterating the action of Retinex over
and over corresponds to increasing the brightness until the
appearance of ‘speckling’, i.e. white spots spread all over.
In Fig. 3 we present an example of such a behavior. If the
paths used are short, then the speckling can be so intense that
the convergence image may be almost completely white. Of
course, neither an image with speckling, nor a white image
can be accepted as a plausible convergence result. This prop-
erty raises up a subtle question: since the action of Retinex
on an image continues after the first application and since the
convergence image is not acceptable, how many times does
Retinex has to be applied on an image to get the best pos-
sible enhancement? This remains an open problem strongly

Fig. 3 Left: original image.
Right: convergence image of the
Brownian-path Retinex
implementation (Marini and
Rizzi 2000).
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related with subjective judgement. We will see later on that
this problem can be handled in the new Retinex implemen-
tation that we propose introducing a term that maintains an
attachment to original data, see Sect. 5.

2.4 Issues about the Use of Paths: Motivations for
Two-Dimensional Retinex Implementations

In (Land 1977), Land wrote:

‘How can the eye ascertain the reflectance of an area
without in effect placing a comparison standard next
to the area? The sequential product can be used as a
substitute for the placement of two areas adjacent to
each other, thus defining a photometric operation fea-
sible for the eye.’

This is a key point. While experiments led Land to conjec-
ture that the eye is in fact comparing areas which are far
away, he did not think ‘the eye’ could perform such an oper-
ation directly, so he introduced the paths in the Retinex the-
ory and the computation of sequential products along them.
However, as we are going to show, the use of paths in or-
der to extract chromatic information out of an image poses
several problems and two-dimensional structures are best
suited to this purpose, an objection firstly discussed in Horn
(1974) and in Marr (1974) and more recently in Provenzi et
al. (2007) by analyzing the consequences of formula (2).

The dependence of the Retinex implementation on paths
is crucial: if one considers very short paths, then the ra-
tios tend to involve similar values and the resulting image
is almost white. On the contrary, if one considers very long
paths, then Retinex loses its local nature and reduces to a
global White Patch algorithm (each image value is divided
by the image maximum, which is assumed to correspond
to a white area, hence the name “White Patch”) with worse
performance (Provenzi et al. 2005). So, paths of ‘medium’
length have to be considered to obtain good results. Further-
more, a high number of paths must be used (N ≈ 101 or even
N ≈ 102, depending on the path geometry adopted) to pre-
vent the formation of sampling noise or artifacts. As we will
comment in Sect. A.1, some proposals have been presented
in order to optimize path geometry, length and number, how-
ever none of them have fulfilled this task.

Paths, being one-dimensional curves in a two-dimension-
al image, do not really scan local neighborhoods of a point,
rather they scan particular directions in these neighbor-
hoods. This directional extraction of information can lead
to haloes or artifacts in the filtered image. In fact, all the
paths of formula (2) end in the same target pixel x, so if x is
in a region surrounded by a closed white area, e.g. a white
ring, then most paths will intersect the ring and therefore
the highest intensity along them will correspond to 1. As a
consequence, all points inside the ring will have their values

normalized by 1 and so they will remain unchanged, no mat-
ter how thin the white ring is: a clear example of this effect
in a natural image is the ‘dark halo’ around the white letters
on the book cover of Fig. 5 (left). The classical implementa-
tions of Retinex (Land and McCann 1971; Land 1977) try to
remedy this problem using a large number of paths, but this
increases the filtering time and does not really overcome the
problem.

Let us also notice that, for the purpose of lightness com-
putation, two paths ending in the same pixel x may be con-
sidered as equivalent whenever they travel the same maxi-
mum image value. This permits to organize paths in equiv-
alence classes (Provenzi et al. 2007): in each class one can
choose a single representative path to compute lightness, all
the other paths in the same class are redundant, in the sense
that give exactly the same lightness information.

In the literature there appear approaches that adapt
Retinex to use two dimensional neighborhoods instead of
paths, see (Horn 1974; Kimmel et al. 2003), however these
works lack to consider the reset mechanism, which, as
stressed before, is an essential part of the Retinex theory.

The first 2D Retinex implementation faithful to the orig-
inal Land’s theory has been proposed in Provenzi et al.
(2007), where paths are replaced by 2-dimensional struc-
tures called random sprays, which are random sets of sam-
ples that lie in a circular area centered in x and with den-
sity that decays monotonically as we move away from x,
see Fig. 4. This structure is reminiscent of the distribution
of cones in the retina, whose density decay as we move far
away from the fovea. For random sprays, the decay speed in
the distribution of pixels can be easily tuned to fit different
purposes; this permits to use them in the approximation of
a wide class of algorithms based on local sampling, leading
to an appreciable reduction of the filtering time (Provenzi et
al. 2008).

Fig. 4 An example of random spray. Notice that the density sampling
is higher close to the center, where the target pixel is placed
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Fig. 5 From left to right:
output of Brownian path
Retinex and output of RSR, the
input image is the picture shown
in Fig. 3(left)

To compute the lightness at x using random sprays in-
stead of paths we simply have to center a spray Sx in x,
then to search for the brightest pixel inside Sx and, finally,
to perform the ratio between I (x) and the highest intensity
previously found. If N sprays Sk

x , k = 1, . . . ,N (all centered
in x) are used, then the single spray contributions are aver-
aged, giving

�(x) = 1

N

N∑

k=1

f

(
I (x)

maxz∈Sk
x
(I (z))

)
, (4)

being I (x) = ϕ(R(x)) for all x ∈ I as in formula (2). The
Random Spray Retinex or ‘RSR’ implementation expressed
by (4) is clearly faithful to the original Retinex formulation,
the only difference being the fact that the target pixel x is the
center of a collection of sprays instead of being the ending
point of a set of paths.

The RSR implementation produces outputs with strongly
reduced artifacts with respect to the path-wise formulation.
In Fig. 5 we compare the output of Brownian path Retinex
and RSR; it can be seen that the image filtered with RSR
does not show haloes around the white letters, thanks to
the fact that it computes the maximum over localized ran-
dom sets of pixels which are not connected. Yet, some noise
may be introduced by RSR in homogeneous zones (Provenzi
et al. 2008), and the dependence on spray parameters is
still strong and difficult to analyze. Anyway, for what con-
cerns this paper, the most interesting information provided
by the RSR implementation is that, even if the path-wise
Retinex implementation strongly depends on the type of
paths used, the Retinex theory can be faithfully (and more
efficiently) implemented extracting the chromatic informa-
tion with 2D geometrical structures, without necessarily re-
sorting to paths. We will make use of this information in
the next section to propose a novel 2D implementation of
Retinex.

3 Kernel-Based Retinex (KBR)

For the sake of clearity, it is worth beginning this section
by recalling the basic elements of the Retinex theory, as dis-
cussed in Sect. 2: (i) Retinex computations are performed
independently for each color channel; (ii) The information
carried by the image pixels is compared with ratio opera-
tions; (iii) A reset mechanism sets ratios greater than one to

a unit value; (iv) The function f of formula (2) performs
a non-linear scaling; (v) The scaled ratio-reset comparisons
are averaged. Furthermore, from Sect. 2.4 we know that we
can avoid the use of paths and perform the ratio compar-
isons also between non-adjacent pixels, provided that we in-
troduce a weight that decays as the distance between pixels
increases, in order to preserve locality.

For convenience, we propose to use the following con-
vention. Given any image I : I → [0,1] we extend it as
an even function with respect to the two variables in the
domain {−W + 1, . . . ,W } × {−H + 1, . . . ,H } (which we
still indicate with I for simplicity), i.e. we replicate the im-
age specularly in all directions, and then by periodicity to
Z × Z with fundamental period I. For simplicity, we de-
note the extended image again by I . With this, we may con-
sider the domain of I as the periodic sampling lattice, that
is Td := (Z × Z)/(2WZ ×2HZ). This notation means that
we identify any pair of points x = (x1, x2) and y = (y1, y2)

in Z × Z if x1 − y1 ∈ 2WZ and x2 − y2 ∈ 2HZ. We de-
note this equivalence relation by ≡. The distance between
any two points x, y ∈ Td , denoted by ‖x − y‖, is com-

puted as min{|x̃− ỹ| : x̃ ≡ x, ỹ ≡ y}, where |v| =
√

v2
1 + v2

2 ,
v = (v1, v2). From now on, we shall assume that our images
have these symmetry and are defined on the extended do-
main I.

Let us then introduce a kernel function, which we require
to be a positive, symmetric and normalized weight, i.e. w :
I × I → (0,+∞), w(x,y) = w(y,x) for all x, y ∈ I, and

∑

y∈I

w(x,y) = 1, for all x ∈ I. (5)

The kernel w(x,y) represents the probability density of
picking a pixel y in the neighborhood of x. In practice this
probability is taken as radial and translation invariant, so that
w(x,y) = w(‖x − y‖).

We also notice that the reset mechanism and the scal-
ing operation can be merged: in fact, the scaling function
f was originally defined as a strictly increasing function
f : (0,1] → (0,1] such that f (r) ≥ r for all r ∈ (0,1], how-
ever we can extend f to (0,+∞) preserving continuity by
defining

f̂ (r) =
{

f (r) if r ∈ (0,1]
1 if r ∈ [1,+∞)

.
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It is clear that applying this new scaling function f̂ to the
ratios I (x)/I (y), with x fixed and y that varies in I, jointly
implements the scaling and the reset mechanism.

Now we have all the elements we need to define our in-
terpretation of Land’s model, which we call Kernel-Based
Retinex (KBR from now on). Given x ∈ I, let Yw,x be the
random variable modeling the selection of a pixel in the
neighborhood of x according to the density w(x,y). We de-
fine the output L(x) of our algorithm at the pixel x as the
conditional expectation of the scaled integrated reflectance
f̂ (

I (x)
I (Yw,x)

) with respect to the distribution w of pixels around
x, i.e.

Lw(x) = EYw,x

[
f̂

(
I (x)

I (Yw,x)

)]
. (6)

This formula is used independently for each color channel
and can be written more explicitly as

L(x) =
∑

{y∈I:I (y)≥I (x)}
w(x,y)f

(
I (x)

I (y)

)

+
∑

{y∈I:I (y)<I (x)}
w(x,y). (7)

We stress that all the basic elements of the Retinex theory
recalled above are faithfully implemented in (7): the fun-
damental mechanism of KBR is the propagation of a two-
pixel ratio comparison between the fixed target x and the
generic pixel y that runs over the entire image; these com-
parisons are then scaled by f̂ and, finally, locally averaged
with weight w, in order to produce the value of L(x).

It is useful to rewrite (7) introducing the functions

sign+(ξ) :=
⎧
⎨

⎩

1 if ξ > 0,
1
2 if ξ = 0,
0 if ξ < 0,

sign−(ξ) = 1 − sign+(ξ),

then we may rewrite (7) as

L(x) =
∑

y∈I

w(x,y)f

(
I (x)

I (y)

)
sign+(I (y) − I (x))

+
∑

y∈I

w(x,y)sign−(I (y) − I (x)). (8)

Notice that the points y ∈ I where I (y) = I (x) are incor-
porated into the first sum of (7). However, since in that case
f (

I (x)
I (y)

) = 1, they could also be incorporated into the second
sum of (7), or, equivalently, incorporated in both of them
with a multiplicity 1

2 . In consonance with this, we have cho-
sen sign+(0) = 1

2 , sign−(0) = 1
2 . At this point, this is only a

technical issue convenient for later developments.

3.1 The Action of KBR on Pixel Intensities

Let us use (8) to verify that KBR always increases brightness
as the original Retinex implementation. Since f (r) ≥ r for
all r ∈ (0,1], then f (

I (x)
I (y)

) ≥ I (x)
I (y)

≥ I (x), so

L(x) ≥
∑

y∈I

w(x,y)I (x)sign+(I (y) − I (x))

+
∑

y∈I

w(x,y)sign−(I (y) − I (x)) (9)

moreover, being I (x) ≤ 1, we can write

L(x) ≥
∑

y∈I

w(x,y)I (x)sign+(I (y) − I (x))

+
∑

y∈I

w(x,y)I (x)sign−(I (y) − I (x))

= I (x)
∑

y∈I

w(x,y)[sign+(I (y) − I (x))

+ sign−(I (y) − I (x))]
= I (x)

∑

y∈I

w(x,y) = I (x), (10)

having used the fact that the kernel is normalized. As in
the original formulation, this property implies that over-
exposed pictures could not be enhanced with Retinex unless
we use a post-processing stage and that further iterations of
Retinex keep on increasing the intensity until a white image
is reached.

Thus, the action of KBR on pixel intensities is coherent
with that of the original Retinex formulation, as discussed in
Sect. 2.3.

3.2 Visual Comparison Between Different Retinex
Implementations

To remark the coherence between KBR and the original
Retinex theory, let us compare the output results of KBR
with those of a path-wise implementation and of RSR. Our
purpose here is not to perform a thorough comparison be-
tween Retinex implementations, but just to present some vi-
sual results to underline the consistency between KBR and
Land’s theory.

We have selected three different images, each one show-
ing a particular feature and filtered them with the three al-
gorithms. The original images are shown in Fig. 6. From
left to right: the first image is characterized by a strong red
color cast; the second is a natural image with an upper ho-
mogeneous part and a more detailed lower zone; the third is
a rather overexposed picture. The outputs of Retinex in the
path-wise, RSR and KBR implementations can be found in
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Fig. 6 Three original images
showing different features

Fig. 7 From left to right:
output of Retinex in the
path-wise implementation with
Brownian paths (Marini and
Rizzi 2000), RSR and KBR

Fig. 8 From left to right:
output of Brownian path
Retinex, RSR and KBR

Fig. 9 From left to right:
output of Brownian path
Retinex, RSR and KBR

Fig. 10 Histogram of the
brightness of the rightmost
picture in Fig. 6, before (left)
and after (right) applying
Retinex to it. Instead of
equalizing the histogram,
Retinex produces a non-linear
shift towards the white

Figs. 7, 8, 9, respectively. RSR and KBR, sharing the fact of
being 2D implementations, show very similar results, while
the path-wise Retinex is affected by noise and shows the
tendency to increase too much the intensity (as can be no-
ticed looking at the lower part of all three figures). All the
implementations can significatively remove color cast and
enhance details, except for over-exposed pictures, where, as
shown by Fig. 9, they further increase the image brightness.
This tendency is clearly shown by the histograms presented
in Fig. 10, which refers to the original overexposed image
and its filtered version with Brownian path Retinex (the out-
puts of RSR and KBR have similar histograms).

We consider of basic interest the analysis of this ‘one-side
enhancement’ performed by Retinex, to which is dedicated
the next session.

4 Two-Side Contrast Enhancement and KBR

As discussed before, the lightness equations (2), (8) permit
to understand the global action of Retinex and KBR, respec-
tively, on pixel intensities. Nonetheless, they do not give any
explicit information about the modification of local contrast
after the application of Retinex. In this section we show
that the contrast change produced by Retinex can be ana-
lyzed comparing the KBR equation (8) with that of another
color enhancement method discussed in Palma-Amestoy et
al. (2009), where a variational framework to perform per-
ceptual color enhancement was introduced and analyzed.
Let us briefly recall the features of that variational setting:
inspired by the basic phenomenological properties of the
HVS, the authors propose a perceptual energy functional
E(I) composed by two terms: E(I) = Cw(I) + DI0,1/2(I ),
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where Cw(I) is a contrast term, whose minimization pro-
duces a two-sided local contrast enhancement, locality be-
ing induced by the weighting function w; on the contrary,
DI0,1/2(I ) is a global dispersion term whose minimization
controls the dispersion around the input pixel values and
around the middle grey, avoiding an excessive departure
from the original image and guaranteeing the existence of
a non trivial minimum of E(I).

Since we are interested in the investigation of the contrast
properties of Retinex, let us fix our attention on the contrast
term Cw(I), pointing out how it is capable to deal both with
over and under-exposed images without the need of further
post-processing stages. For that, let us define an inverse con-
trast function c(a, b) between two intensity levels a, b > 0
to be a continuous function c : (0,+∞) × (0,+∞) → R,
symmetric in (a, b), i.e. c(a, b) = c(b, a), decreasing when
min(a, b) decreases or max(a, b) increases, while the other
argument remains constant. The most elementary exam-
ples of inverse contrast functions are c(a, b) = −|a − b| ≡
min(a, b) − max(a, b) ≡ (min−max)(a, b) and c(a, b) =
min(a,b)
max(a,b)

≡ min
max (a, b).

As argued in Palma-Amestoy et al. (2009), while the pre-
vious assumptions on c are general for any inverse contrast
function, if we want c to be able to disregard a global change
in intensity, as the HVS does, then we must also require c to
be homogeneous. Recall that c is homogeneous of degree
n ∈ Z if

c(λa,λb) = λnc(a, b) ∀λ,a, b ∈ (0,+∞), (11)

where, in this context, the positive constant λ represents the
global change in intensity and a and b represent I (x) and
I (y). We can easily see how the homogeneous property af-
fects the intensity change noticing that, since λ can be any
positive value, if we set λ = 1/b, we may write equation
(11) as:

c(a, b) = bnc

(
a

b
,1

)
∀a, b ∈ (0,+∞), (12)

hence, if c is homogeneous of degree n = 0, then bn = 1,
so that c is a function of the ratio a/b and intrinsically dis-
regards the intensity change. Hence, inverse contrast func-
tions c(I (x), I (y)) which are homogeneous of degree n = 0
can be written as G( min

max (I (x), I (y))), where G(r) is a
monotone non-decreasing function of r . If n > 0, then the
intensity change has a global influence and could be re-
moved performing a suitable normalization (for instance, di-
viding by the n-th power of the highest intensity level).

Now, assume that w is a positive, normalized and sym-
metric kernel and c(a, b) is a homogeneous inverse contrast
function. Following (Palma-Amestoy et al. 2009), we define
the contrast energy functional as

Cw(I) = λ
∑

x∈I

∑

y∈I

w(x,y)c(I (x), I (y)), (13)

being λ > 0 a suitable normalization constant that will be
defined shortly. Since c is an inverse contrast function, then
the minimization of Cw(I) corresponds to a local contrast
enhancement for the image I .

To better understand how this takes place, let us con-
sider an explicit homogeneous function of degree 0, such as
c(a, b) = G( min

max (I (x), I (y))), and calculate the variational
derivative of the corresponding contrast energy functional

C
min
max
w (I) ≡ 1

2

∑

x∈I

∑

y∈I

w(x,y)G

(
min

max
(I (x), I (y))

)
. (14)

For that we need some technical discussion. Notice that the
basic function t := min(a,b)

max(a,b)
is not differentiable. In fact, we

may write min(a, b) = 1
2 (a + b − |a − b|), max(a, b) =

1
2 (a+b+|a−b|), for any a, b ∈ R. The non-differentiability
comes from the absolute value A(z) = |z|, z ∈ R. Since our
algorithm will use a gradient descent approach, we must
regularize the basic variable t . We notice that A′(z) = 1 if
z > 0, A′(z) = −1 if z < 0 and A is not differentiable at
z = 0. But all the values s ∈ [−1,1] are subtangents of A(z)

at z = 0, that is, A(z)−A(0) ≥ s(z− 0) for any z ∈ R. Thus
we may write A′(z) = sign(z), where

sign(z) =
{1 if z > 0

[−1,1] if z = 0
−1 if z < 0

. (15)

We define sign0(z) as in (15), but with the particular choice
0 when z = 0.

Definition 1 Given ε > 0, we say that Aε(z) is a ‘nice reg-
ularization’ of A(z), if Aε(z) ≥ 0 is convex, differentiable
with continuous derivative, Aε(0) = 0, Aε(−z) = Aε(z),
and

(i) Aε(z) ≤ |z| for any z ∈ R and Aε(z) = |z| + Q1,ε(z)

where Q1,ε(z) → 0 as ε → 0, uniformly in z ∈ [−1,1];
(ii) Let us denote sε(z) = A′

ε(z). Then |sε(z)| ≤ 1 for any
z ∈ [−1,1], sε(z) → sign0(z) as ε → 0 for any z ∈ R,
and Q2,ε(z) := Aε(z) − zsε(z) → 0 as ε → 0, uni-
formly in z ∈ [−1,1].

We present two examples of nice regularization of A(z).
Example a): Aε(z) = √

ε2 + |z|2 − ε, in this case sε(z) =
z√

ε2+|z|2 , Q1,ε(z) = O(ε) and Q2,ε(z) := Aε(z) − zsε(z) =
O(ε). Example b): Aε(z) = z

arctan(z/ε)
arctan(1/ε)

− ε
2 arctan(1/ε)

log(1 +
z2

ε2 ), in this case sε(z) = arctan(z/ε)
arctan(1/ε)

, Q1,ε(z) = O(ε log (1/ε))

and Q2,ε(z) = O(ε log (1/ε)), uniformly in z ∈ [−1,1].
We have denoted by O(F(ε)) any expression satisfying
|O(F(ε))| ≤ CF(ε) for some constant C > 0 and ε > 0
small enough. Observe that, in both cases sε(z) → sign0(z)

as ε → 0 for any z ∈ R. The proofs of the above statements
can be found in Palma-Amestoy et al. (2009).
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Now let us assume that Aε(z) is a nice regularization of
A(z). We set

minε(a, b) = 1

2
(a + b − Aε(a − b)),

maxε(a, b) = 1

2
(a + b + Aε(a − b)).

(16)

We define the regularized version of the functional (14) as:

C
min
max
w,ε (I ) := 1

2

∑

x∈I

∑

y∈I

w(x,y)G

(
minε(I (x), I (y))

maxε(I (x), I (y))

)
. (17)

Proposition 1 The first variation of C
min
max
w,ε w(I) is

δC
min
max
w,ε (I ) = −

∑

y∈I

w(x,y)g

(
I (x)

I (y)

)

× I (y)

maxε(I (x), I (y))2
sε(I (x) − I (y)) + S′

ε,

(18)

where S′
ε = O(Q1,ε(I (x) − I (y)) + Q2,ε(I (x) − I (y))) is

a small correction term, and g(r) ≡ G′(r).

The proof of this result can be found in Palma-Amestoy
et al. (2009). It follows easily from the general differentia-
tion Lemma given in the Appendix, Sect. A.2.

When ε → 0+, we obtain

δC
min
max
w (I) := limε→0+ δC

min
max
w,ε (I ):

δC
min
max
w (I)

= −
∑

y∈I

w(x,y)g

(
I (x)

I (y)

)

× I (y)

max(I (x), I (y))2
sign0(I (x) − I (y))

=
∑

y∈I

w(x,y)g

(
I (x)

I (y)

)
1

I (y)
sign+(I (y) − I (x))

−
∑

y∈I

w(x,y)g

(
I (y)

I (x)

)
I (y)

I (x)2
sign−(I (y) − I (x)),

(19)

Let us now consider a homogeneous function of degree 1
by taking c(a, b) = (min−max)(a, b), and

Cmin−max
w (I) ≡ 1

2

∑

x∈I

∑

y∈I

w(x,y)(min(I (x), I (y))

− max(I (x), I (y))). (20)

In this case we have:

Proposition 2 Computing the first variation of

Cmin−max
w,ε (I ) ≡ 1

2

∑

x∈I

∑

y∈I

w(x,y)(minε(I (x), I (y))

− maxε(I (x), I (y))) (21)

and letting ε → 0+ we obtain
δCmin−max

w (I) := limε→0+ δCmin−max
w,ε (I ) given by

δCmin−max
w (I)(x) =

∑

y∈I

w(x,y) sign0(I (y) − I (x)). (22)

Again, the proof of this result can be found in Palma-
Amestoy et al. (2009) and it follows easily from the general
differentiation Lemma given in the Appendix, Sect. A.2.

These two examples show the influence of the homogene-
ity degree on the analytic form of the first variation. In fact,
since the derivative of a homogeneous function of degree n

is a homogeneous function of degree n−1, to restore the ho-
mogeneity after the variational derivative we must multiply
it by I (x)1−n. Obviously, the only trivial case corresponds
to the degree 1, such as the case (min−max)(I (x), I (y)),
however, all the functions with a homogeneity degree differ-
ent from 1 will be correctly normalized, e.g.

I (x)δC
min
max
w (I)(x)

=
∑

y∈I

w(x,y)g

(
I (x)

I (y)

)
I (x)

I (y)
sign+(I (y) − I (x))

−
∑

y∈I

w(x,y)g

(
I (y)

I (x)

)
I (y)

I (x)
sign−(I (y) − I (x)).

(23)

We can now propose the definition of the variational con-
trast lightness. First of all, let the normalization constant λ

appearing in (13) be such that −1 ≤ I (x)1−nδCw(I)(x) ≤ 1.
Then, since the minimization of Cw(I) corresponds to a con-
trast enhancement and since −δCw(I) gives the fastest de-
creasing rate of Cw(I), it is natural to define the variational
contrast lightness (of homogeneity degree n) as follows

Ln(x) = 1

2
− 1

2
I (x)1−nδCw(I)(x) ∀n ∈ Z, (24)

where 1/2 is introduced just to assure that Ln(x) ∈ [0,1].
Notice that if we change the sign of the contrast term from
minus to plus, i.e. Ln(x) = 1

2 + 1
2I (x)1−nδCw(I)(x), the

process is inverted and now contrast is decreased.
For later purposes, let us highlight the particularly inter-

esting cases corresponding to n = 0,1:

L0(x) = 1

2
− 1

2
I (x)δCw(I)(x); (25)

L1(x) = 1

2
− 1

2
δCw(I)(x). (26)
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If we substitute the explicit expressions of δC
min
max
w (I)(x)

and δCmin−max
w (I)(x) in the formulae relative to n = 0 and

n = 1, respectively, then we can see that the computation of
the lightness is realized through modulations of positive and
negative sign around 1/2. This is precisely what allows the
corresponding algorithm to enhance both under and over-
exposed images.

We explore this property in more detail in the following
subsection, commenting on similarities and differences be-
tween the variational contrast lightness formula and those
of KBR and another color correction algorithm called ACE
(Rizzi et al. 2003).

4.1 Anti-Symmetrization of the KBR Equation

Since the minimization of the functional Cw(I) increases
contrast, the gradient descent direction −I (x)1−nδCw(I)(x)

goes towards a contrast enhancement. If we compare the
KBR Retinex formulation given by (8) with

−I (x)δC
min
max
w (I)(x) (see (23)) we can see that there is a fun-

damental difference in the first term: all pixels y such that
I (y) > I (x), give a positive contribution to the computa-
tion of L(x) in (8), while they give a negative contribution

to −I (x)δC
min
max
w (I)(x). As noticed above, it is the antisym-

metry (with respect to the diagobal I (x) = I (y)) shown by
(23) what permits a two-sided contrast modification able to
enhance both overexposed and underexposed images, thus it
is interesting to analyze what happens if we anti-symmetrize
the analytic expression of (8).

Let us consider two possibilities, either we consider
the function f (

I (x)
I (y)

) sign+(I (y) − I (x)) and we anti-
symmetrize it on the region {x ∈ I : I (y) ≤ I (x)}, or we
consider the function sign−(I (y) − I (x)) and we anti-
symmetrize it on the region {x ∈ I : I (y) ≥ I (x)}.

4.1.1 Anti-Symmetrization of the First Term of the KBR
Equation

Let us start by analyzing the first case: we want to anti-
symmetrize the function

F1(I (x), I (y)) ≡ f

(
I (x)

I (y)

)
if I (x) ≤ I (y), (27)

so we change the overall sign and exchange the position be-
tween I (x) and I (y), i.e.

F1(I (x), I (y)) ≡ −f

(
I (y)

I (x)

)
if I (y) ≤ I (x). (28)

Hence, the anti-symmetrized function is F1(I (x), I (y))

when I (x) ≤ I (y) and F1(I (x), I (y)) when I (y) ≤ I (x),

i.e.

F1(I (x), I (y)) ≡ f

(
I (x)

I (y)

)
sign+(I (y) − I (x))

−f

(
I (y)

I (x)

)
sign−(I (y) − I (x)), (29)

which is a homogenous function of degree 0.
Now, if we consider a density field w(x,y) and we

take the conditional expectation of the random variable
F1(I (x), I (Yw,x)) as in Sect. 3, we have:

E[F1(I (x), I (Yw,x))]

=
∑

y∈I

w(x,y)f

(
I (x)

I (y)

)
sign+(I (y) − I (x))

−
∑

y∈I

w(x,y)f

(
I (y)

I (x)

)
sign−(I (y) − I (x)). (30)

Notice now that, if we set

C
F( min

max )
w (I ) ≡ 1

2

∑

x∈I

∑

y∈I

w(x,y)F

(
min

max
(I (x), I (y))

)
,

(31)

being F the function satisfying the equation F ′(r)r = f (r)

for all r ∈ R
+, thanks to Proposition 1 we have that

E[F1(I (x), I (Yw,x))] = δC
F( min

max )
w (I )(x). Thus, if we use as

in (6) or, equivalently, (8), the term E[F1(I (x), I (Yw,x))] as
lightness, then we are indeed decreasing the contrast mea-

sured by the functional C
F( min

max )
w (I ). The first term in (8)

has not the right sign in order to increase contrast. It cor-
responds to the bilateral filter (Tomasi and Manduchi 1998;
Barash 2002), a variational method to reduce the contrast of
images in a local non-linear way while respecting edges.

But, on the other hand, since F1 is homogeneous of de-
gree 0 we can define the associated variational contrast light-
ness using (25), i.e.

LF1(x) ≡ 1

2
− 1

2
I (x)E[F1(I (x), I (Yw,x))]

= 1

2
− 1

2
I (x)δC

F( min
max )

w (I )(x).

(32)

This expression can enhance both under and over-exposed
images. To give an explicit example of function F , let us
consider the very common case in which f acts as a gamma
transformation, i.e. f (r) = rγ , for γ ∈ R

+. In this situation
the equation that defines F is F ′(r)r = rγ , whose general
solution is F(r) = 1

γ
rγ + k, k ∈ R.
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4.1.2 Anti-Symmetrization of the Second Term of the KBR
Equation

The anti-symmetrization of the second term in (8)

F2(I (x), I (y)) ≡ sign−(I (y) − I (x)) if I (y) ≤ I (x),

(33)

would give the function

F2(I (x), I (y)) ≡ sign−(I (y) − I (x))

− sign−(I (x) − I (y)). (34)

If we consider again a density field w(x,y) and we
take the conditional expectation of the random variable
F2(I (x), I (Yw,x)), after cancelation of the terms where
I (x) = I (y) we have:

E[F2(I (x), I (Yw,x))] =
∑

y∈I

w(x,y) sign0(I (x) − I (y)),

(35)

so, thanks to Proposition 2, we have that
E[F2(I (x), I (Yw,x))] = −δCmin−max

w (I)(x). This time we
observe that the second term in (8) has the right sign to in-
crease contrast, in coincidence with the variational contrast
lightness given by

LF2(x) = 1

2
− 1

2
δCmin−max

w (I)(x), (36)

since Cmin−max
w (I) is homogeneous of degree 1. Again, this

expression can enhance both under and over-exposed im-
ages.

This expression corresponds to the equation of an ex-
isting method of color correction called ACE (Rizzi et al.
2003). What we have just proven, i.e. that ACE can be seen
as a particular anti-symmetrization of the KBR model, gives
an answer to the question about which is the link between
Retinex and ACE, a problem that has been matter of research
in recent years, see e.g. (Palma-Amestoy et al. 2009; Rizzi
et al. 2004; Bertalmío et al. 2007).

5 Attachment to Original Data and Convergence of
Algorithms

As already proven in Sect. 3.1, KBR is not idempotent. In-
stead of dealing with the highly subjective task of choosing
the optimum number of iterations that should be performed
in order to get the best enhancement, we can more efficiently
re-write (8) in the form of a Partial Differential Equation
(PDE): It (x) = L(x, t) − I (x, t), into which we introduce

an attachment to data term that leaves the image unchanged
once it has departed too much from the original:

It (x, t) =
∑

y∈I

w(x,y)

[
f

(
I (x, t)

I (y, t)

)
sign+(I (y, t)

− I (x, t)) + sign−(I (y, t) − I (x, t))

]

− I (x, t) − λ(I (x, t) − I0(x)), (37)

where λ > 0 weights the strength of the attachment to the
original image data I0(x) ≡ I (x,0).

Discretizing the derivative and applying a forward-time
numerical scheme for this equation we find:

I k+1(x) = 	t
∑

y∈I

w(x,y)

[
f

(
I k(x)

I k(y)

)
sign+(I k(y) − I k(x))

+ sign−(I k(y) − I k(x))

]

+ I k(x)[1 − 	t(1 + λ)] + λ	tI 0(x), (38)

where the upper-index k ∈ N denotes the iteration number,
I 0(x) ≡ I0(x) is the original image and 	t is the time step.

The anti-symmetrized KBR versions defined by (32) and
(36) have a variational formulation, so, in order to construct
convergent algorithms, we can add an attachment to data
mechanism in the form of a dispersion term in the corre-
sponding energy functionals, as done in Palma-Amestoy et
al. (2009). The minimization of this term should control the
departure from the middle gray 1/2 and from the original
data value I0(x), thus providing an opponent mechanism to
the contrast enhancement. For that, in principle, every co-
herent distance function involving 1/2 and I0 can be used,
however in Palma-Amestoy et al. (2009) it has been shown
that the entropic distance is the most suitable candidate if
one wants to preserve the homogeneity property of the con-
trast term. The entropic dispersion term can be explicitly
written as

DE
α,β(I ) := α

∑

x∈I

[
1

2
log

1

2I (x)
−

(
1

2
− I (x)

)]

+β
∑

x∈I

[
I0(x) log

I0(x)

I (x)
− (I0(x) − I (x))

]
,

(39)

where α,β > 0 measure the strength of the attachment to
1/2 and to I0(x), respectively.

The total energies of the two anti-symmetrized KBR ver-
sions are then:

E
F( min

max )

α,β,w (I ) ≡ DE
α,β(I ) + C

F( min
max )

w (I ), (40)
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and

Emin−max
α,β,w (I ) ≡ DE

α,β(I ) + Cmin−max
w (I). (41)

The minimum of a generic energy E satisfies the equa-
tion δE(I) = 0. To search for it we can use a semi-implicit
discrete gradient descent strategy with respect to I or every
monotonic function of I . For our purposes it is convenient
to use log I in (40), which amounts to using the relative en-
tropy as a metric (see Ambrosio et al. 2005). The continuous
gradient descent equation is

∂t log I (x) = −δE(I)(x), (42)

being t the evolution parameter. Since ∂t log I = 1
I
∂t I , we

have

∂t I (x) = −I (x)δE(I)(x). (43)

As proven in Palma-Amestoy et al. (2009), by discretiz-
ing ∂t I (x) and computing the first variation of the energy,
we arrive at this iterative scheme:

I k+1(x) = I k(x) + 	t(α
2 + βI0(x) + 1

2Rcontr
I k (x))

1 + 	t(α + β)
, (44)

where k ∈ N and Rcontr
I k (x) varies depending on the contrast

term used to define the energy, and it is either

R
F( min

max )

I k (x)

≡
∑

y∈I

w(x,y)f

(
I k(y)

I k(x)

)
sign+(I k(x) − I k(y))

−
∑

y∈I

w(x,y)f

(
I k(x)

I k(y)

)
sign−(I k(x) − I k(y));

(45)

or

Rmin−max
I k (x) ≡

∑

y∈I

w(x,y) sign0(I
k(x) − I k(y)). (46)

The proof of the convergence of these methods to a non-
trivial fixed point image can be found in Palma-Amestoy et
al. (2009). In the next section we will show the results of
these algorithms on digital pictures.

Let us finally point out that, by introducing a term of at-
tachment to the original data and writing the KBR equation
in the form of a PDE, we end up with a Retinex equation
which has the form of a Wilson-Cowan equation, which de-
scribes how the activity of a population of neurons in the re-
gion V 1 of the visual cortex evolves in time (Bressloff et al.
2002; Wilson and Cowan 1972, 1973). For more details see
(Bertalmío and Cowan 2009). A similar analogy between the
Wilson-Cowan equations and the variational formulation of
ACE was presented in (Bertalmío et al. 2007).

Fig. 11 From top to bottom: surfaces of rF( min
max ), rmin−max and rKBR

with sign(r) smoothed by s20(r), the number 20 has been arbitrarily
chosen to permit a clear visualization of the surfaces

Remark In each algorithm that we are considering, the con-
trast modification is represented by a term which has the
following form

R(x) =
∑

y∈I

w(x,y)r(I (x), I (y)) (47)
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for suitable functions r , namely

rF( min
max )(I (x), I (y)) ≡ f

(
I (y)

I (x)

)
sign+(I (x) − I (y))

−f

(
I (x)

I (y)

)
sign−(I (x) − I (y)),

(48)

for R
F( min

max )

I k (x),

rmin−max(I (x), I (y)) ≡ sign(I (x) − I (y)), (49)

for Rmin−max
I k (x), and

rKBR(I (x), I (y)) ≡ f

(
I (x)

I (y)

)
sign+(I (y) − I (x))

+ sign−(I (y) − I (x)), (50)

for

RKBR ≡
∑

y∈I

w(x,y)

[
f

(
I (x)

I (y)

)
sign+(I (y) − I (x))

+ sign−(I (y) − I (x))

]
. (51)

Actually, to avoid abrupt contrast changes, it is more ap-
propriate to consider a smooth approximation of the sign
function, as e.g. sp(r) ≡ arctan(pr)/ arctan(p),
where p > 1 controls the slope of the approximating func-
tion. For a rigorous analysis of the sign regularization we
refer to Palma-Amestoy et al. (2009).

The surfaces representing these functions with smoothed
sign are shown in Fig. 11. It can be clearly seen that, while
the two r-functions relative to the anti-symmetrized KBR
algorithm are balanced at both sides, the one relative to KBR
is not, showing hybrid features from both anti-symmetrized
surfaces.

6 Experiments

As it has been presented so far, the complexity of KBR and
its anti-symmetric versions is the same as the complexity

of the original Retinex: O(N2), where N is the number of
pixels in the image. However, we may use the same tech-
nique described in Palma-Amestoy et al. (2009), Bertalmío
et al. (2007) to reduce the complexity to O(N logN). Since
this technique is rather long to explain and since it has al-
ready been described in detail in the quoted papers, here
we just mention that it is based on the observation that the
major cost of each algorithm relies in the computation of
the contrast modification function, i.e. the functions R(x) =∑

y∈I w(x,y)r(I (x), I (y)) previously defined. The idea is
then to perform a polynomial approximation of the functions
r , separating their dependence on I (x) and I (y). Being the
kernel w a function of x − y, the R-functions can then be
expressed as suitable sums of convolutions between w and
powers of I , which can be efficiently calculated through a
Fast Fourier Transform (FFT), whose computational com-
plexity is O(N logN).

In practice this reduction of complexity means that we
can use KBR and its anti-symmetric versions to process
a high-resolution image in a matter of seconds instead of
hours. Unlike most existing techniques to speed-up Retinex
(see the Appendix, Sect. A.1) the procedure we apply sig-
nificantly improves the time-performance without reducing
the quality of the results nor modifying the essence of the
algorithm in any way. Furthermore, we can choose the de-
gree of the polynomial approximation so that our result does
not deviate more than a given threshold from the result we
would get without using the approximation (for details we
refer the reader to Bertalmío et al. 2007).

We have implemented (38) and run it independently on
all three channels of each color image. Each channel, orig-
inally in the range [0,255], has been normalized in the fol-
lowing way: adding 1 and dividing by 256, so the normal-
ized value is in the range [ 1

256 ,1] and therefore we avoid
divisions by zero. The set of parameters that correspond to
the best visual performance varies with the input images;
again, a precise parameter tuning is outside the scope of this
paper, so in this section we fix values for the parameters that
give overall good performances and we filter images with

Fig. 12 Top left: original
image. Top right: output of
path-wise Retinex with 20
Brownian paths per pixel.
Bottom left: output of RSR with
20 sprays per pixel. Bottom
right: output of Kernel Based
Retinex (see text for details)
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them. We have used this set of parameters: non-linear scal-
ing function f (r) = A log(r) + 1,A = 1

log(256)
, normalized

kernel w(x,y) = κ
w0+‖x−y‖ (where κ is a normalization con-

stant, w0 = 0.1 and ‖x − y‖ denotes the Euclidean distance
between pixels x and y), time step 	t = 0.1 and λ = 3 (for
dark images, like the bottom one in Fig. 13 we use a smaller
attachment to original data value: λ = 2.5). The stopping
condition was determined by the difference between two
consecutive iterations: if this is smaller than 0.25% in each
of the three channels, then the process is stopped (usually
convergence is achieved within 15–25 iterations). With the
aforementioned speed-up scheme the whole processing time
varies from 1 to 3 seconds for a 400 × 300 RGB image with
a 3 GHz processor.

In Fig. 12 we compare the output of KBR with two other
implementations of Retinex: Brownian paths and RSR (see
Marini and Rizzi 2000 for details about the Brownian path
implementation). We see that the output of our algorithm is
free from halo artifacts and noise. Figure 13 shows the action
of KBR and two other Retinex implementations, namely
the ones presented in Jobson et al. (1997a) and Funt et al.
(2004), obtained on a set of images suffering from differ-
ent problems: lack of contrast, color cast, under-exposure.
A proper comparison of these Retinex implementations is
beyond the purpose of this paper and matter of further re-
search. In Fig. 14 we can see the effect of changing the
effective width w0 of the kernel function w(x,y), as well
as a comparison with the output obtained with the anti-
symmetrized KBR of (46) (which, as we mentioned, cor-
responds to iterating the ACE color correction algorithm
(Rizzi et al. 2003; Bertalmío et al. 2007; Palma-Amestoy et
al. 2009). Notice how the overexposed regions become even
brighter with KBR, regardless of the kernel width, while
with ACE the contrast is enhanced also in bright regions
and details are not lost (shadows on the ground, tree leaves
in the upper midregion of the picture.) Finally, Fig. 15 com-
pares the output of KBR (38), anti-symmetrized KBR (46)
and one of the contrast decreasing anti-symmetrizations of
KBR, precisely L−F2(x) = 1

2 + 1
2δCmin−max

w (I)(x). Notice
how the results are as expected: KBR is not able to increase
contrast on bright areas (like the white jacket on the boy at
the bottom-left side of the picture), anti-symmetrized KBR
performs well both on dark and bright areas, and the con-
trast decreasing anti-symmetrization of KBR does indeed
decrease contrast (its output looks hazy, very much like pho-
tographs taken with a softening filter).

7 Conclusions

In this work we have provided a new interpretation of the
Retinex theory, proposing an algorithm which complies with
all the basic postulates of the Retinex theory. This method

Fig. 13 For every image, first row: original picture (left) and output
of KBR (right); second row: output of the Retinex implementations
presented in Jobson et al. (1997a) (left) and in Funt et al. (2004) (right)

is based on the computation of the conditional expectation
of a random variable in a density field generated by a ker-
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Fig. 14 Top left: original
image. Top right: output of
KBR, kernel with w0 = 10.
Bottom left: output of KBR,
kernel with w0 = 0.1. Bottom
right: output of
anti-symmetrized KBR (46)
(corresponding to ACE)

Fig. 15 Top left: original
image. Top right: output of
KBR. Bottom left: output of
anti-symmetrized KBR (46).
Bottom right: output of the
contrast decreasing
anti-symmetrized KBR
discussed in the text

nel function, hence the name Kernel-Based Retinex, KBR
for short. The KBR formulation has several advantages with
respect to the original one: on the performance side, the
computational complexity of KBR can be reduced from
O(N2) (which is the complexity of the original Retinex)
to O(N logN), thus permitting a considerable time saving;
moreover it is not affected by the typical problems related
to paths (or other structures with fixed geometry) such as
noise, artifacts or haloes.

However, just like the original Retinex algorithm, KBR
can only raise up the intensity of a pixel, thus it is unable
to enhance over-exposed images and it is not idempotent.
Comparing the KBR equation with those appearing in the
variational framework introduced in (Palma-Amestoy et al.
2009) to perform perceptually-inspired color correction, we
put in evidence that the sign of the first term in KBR is not

the correct one to enhance contrast. On the contrary, the vari-

ational contrast lightness increases contrast and is able to

deal both with under and over-exposed pictures.

We have also shown that the anti-symmetrization of the

second term of KBR happens to coincide with an existing

color perception algorithm called ACE (Rizzi et al. 2003;

Bertalmío et al. 2007). This explicit relation between the

Retinex theory and ACE, in the authors’ opinion, clarifies

the link among these two models, an issue which has been

matter of research in recent years (Rizzi et al. 2004; Provenzi

et al. 2008; Palma-Amestoy et al. 2009).

Finally, we have introduced an attachment to data term

in KBR and its anti-symmetric versions. The corresponding

algorithms converge to a non-trivial fixed point image.
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Appendix

A.1 Overview on Different Retinex Implementations

As already stated, throughout this article we reserved the
name Retinex to the original algorithm of Land and McCann
(1971). Here we present a brief description of various im-
plementations that followed the original one, in order to be
acquainted both with significative refinements of the origi-
nal model and with other formulations that were inspired by
it. For an exhaustive description of all these algorithms see
the quoted references. To put in evidence the fact that KBR
is a coherent two-dimensional interpretation of the original
Retinex model, we will divide this brief overview in two
parts: firstly, we will discuss one-dimensional algorithms
and then we will focus on two-dimensional Retinex ver-
sions. The terms one and two-dimensional refer to the sam-
pling structures used to implement the Retinex algorithm.

One-dimensional implementations rely on the use of
monodimensional geometrical structures such as paths in
order to scan the image content. They are faithful to the
original model, showing local White Patch (WP) properties.
The major difference between them is the path geometry
used: Land and McCann (1971) originally used piecewise
linear paths, a geometry suggested by the Mondrian pic-
tures. However, for general natural images, many piecewise
linear paths are required to produce a noise-free output, and
this affects the filtering time. To overcome this problem, in
Cooper and Baqai (2004) and in Marini and Rizzi (2000),
piecewise linear paths were substituted by more computa-
tionally efficient ones: double spirals and Brownian paths,
respectively. Finally, there are multilevel one-dimensional
Retinex implementations based on the work of Frankle and
McCann (1983), further refined in Funt et al. (2004). The
idea at the base of these algorithms is the following: the in-
put image is progressively sub-sampled by averaging a num-
ber of pixels that grows as increasing powers of 2, on each
sub-sampled level a ratio-reset computation (without thresh-
old) is iterated a certain number of times, from the coarsest
level to the finest one. This number turns out to be a crucial
image-dependent parameter of the algorithm. Because of the
sub-sampling, as we go far away from the target pixel, we
do not consider actual pixel values, but average values of
macro-areas of increasing size.

Two-dimensional Retinex-like algorithms were pioneered
by Horn (1974) who reformulated Retinex as a Poisson
equation. Horn was the first to criticize the use of paths,

pointing out the need of a two dimensional version of
Retinex. However, the model he proposed cannot be consid-
ered a coherent two-dimensional continuous representation
of the original Retinex, because the fundamental ratio-reset
mechanism is bypassed. Other works in line with Horn’s
Retinex interpretation are Blake (1985), that refined Horn’s
results using more suitable boundary constraints and Kim-
mel et al. (2003), which embedded Horn’s formulation of
Retinex in a variational setting.

Another type of two-dimensional Retinex-like version
was proposed by Land himself in Land (1986), where, with a
suitable modification of his original formulation, he noticed
the possibility to reproduce Mach bands generated by a spin-
ning white square on a black background. More precisely, he
proposed to compute the lightness of the generic image pixel
x as the logarithm of the ratio between its intensity I (x) and
the average value of the surround, sampled with a density
that decays as the inverse of the square distance from the
center. Thus, if we denote with LCS this ‘center/surround
lightness’, we have

LCS(x) = log

(
I (x)

〈{I (y), y ∈ Surround}〉w
)

, (52)

where 〈·〉w represents the weighted average operator. Com-
paring (52) with (1), it can be seen that there is a funda-
mental difference between this formulation and the original
one, where the ratio is performed over the pixel with highest
intensity and not over a weighted average value of the sur-
round. In 1997, Jobson et al. (1997b) proposed a continuous
version of Land’s idea: they computed the weighted average
of the surround by convolving the image function I with a
normalized kernel function F (in the quoted paper they used
a Gaussian). Using again the symbol LCS for simplicity, we
can represent this continuous center/surround lightness as:

LCS(x) = log

(
I (x)

(F ∗ I )(x)

)
. (53)

To overcome halo problems, the same authors refined
their model proposing a multilevel approach (Jobson et
al. 1997a), considering several convolutions with Gaussian
functions with different standard deviations.

In more recent years, Provenzi et al. (2005, 2007) stud-
ied the basic mathematical properties of the original Retinex
function, observed the redundancy implicit in the path for-
mulation, and concluded in favor of the two-dimensional
structure of random spray, as mentioned in Sect. 2.4 where
we presented the RSR implementation.

Finally, inspired by the variational formulations of the
contrast enhancement problem in Bertalmío et al. (2007),
Palma-Amestoy et al. (2009), we reformulated the origi-
nal principles of Retinex theory and proposed a coherent
two-dimensional implementation of them. For that, at each
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pixel x, we used an averaged ratio comparison between the
channel color intensity at x and at a generic pixel y run-
ning over the entire image, avoiding the noise problems
related to random sampling. We observed that, while the
contrast enhancement models in Bertalmío et al. (2007);
Palma-Amestoy et al. (2009) treat over and under-exposure
in a symmetric way, Retinex (including our KBR formula-
tion) does not correct over-exposed images. Mathematically,
this is reflected in the anti-symmetric character of the con-
trast enhancement operators. We have shown that the anti-
symmetrization of one of the terms of KBR leads us to ACE,
which is a particular case of contrast enhancement operator,
and the anti-symmetrization of the other term leads us to an
operator that reduces contrast according to our formulation
in Palma-Amestoy et al. (2009). This gives a clear picture
of KBR and its similarities and differences with ACE and
with the variational color correction algorithms described in
Palma-Amestoy et al. (2009).

A.2 The First Variation of Contrast Functionals

Propositions 1 and 2 in the text were proved in Palma-
Amestoy et al. (2009) and we omit here their proof. We
just state and prove the general differentiation Lemma from
which follow both Propositions.

Lemma 1 Let w : I2 → R be a symmetric function in (x, y)

and S : (0,1]2 → R be a differentiable function in its vari-
ables (a, b). Let S1(a, b) = ∂S

∂a
(a, b). Then, given

E(I) =
∫ ∫

I2
w(x,y)S(I (x), I (y)) dx dy, (54)

its first variation can be written as

δE(I) = 2
∫

I

w(x,y)S1(I (x), I (y)) dy. (55)

Proof Let S2(a, b) = ∂S
∂b

(a, b). Since S(a, b) = S(b, a), for
all a, b > 0, we have

S1(a, b) = S2(b, a). (56)

By definition, the first variation of E(I) in the direction δI

is

δE(I, δI ) =
∫ ∫

I2
w(x,y)S1(I (x), I (y))δI (x) dx dy

+
∫ ∫

I2
w(x,y)S2(I (x), I (y))δI (y) dx dy.

Interchanging the role of x and y in the second integral of
the equation above and using (56) we get
∫ ∫

I2
w(x,y)S2(I (y), I (x))δI (x) dx dy

=
∫ ∫

I2
w(x,y)S1(I (x), I (y))δI (x) dx dy (57)

so that

δE(I, δI ) =
∫

I

(
2
∫

I

w(x,y)S1(I (x), I (y))

)
δI (x) dx (58)

and the proposition follows. �
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