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Abstract Computational Anatomy aims for the study of
variability in anatomical structures from images. Variability
is encoded by the spatial transformations existing between
anatomical images and a template selected as reference. In
the absence of a more justified model for inter-subject vari-
ability, transformations are considered to belong to a con-
venient family of diffeomorphisms which provides a suit-
able mathematical setting for the analysis of anatomical
variability. One of the proposed paradigms for diffeomor-
phic registration is the Large Deformation Diffeomorphic
Metric Mapping (LDDMM). In this framework, transforma-
tions are characterized as end points of paths parameterized
by time-varying flows of vector fields defined on the tan-
gent space of a Riemannian manifold of diffeomorphisms
and computed from the solution of the non-stationary trans-
port equation associated to these flows. With this charac-
terization, optimization in LDDMM is performed on the
space of non-stationary vector field flows resulting into a
time and memory consuming algorithm. Recently, an alter-
native characterization of paths of diffeomorphisms based
on constant-time flows of vector fields has been proposed in
the literature. With this parameterization, diffeomorphisms
constitute solutions of stationary ODEs. In this article, the
stationary parameterization is included for diffeomorphic
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registration in the LDDMM framework. We formulate the
variational problem related to this registration scenario and
derive the associated Euler-Lagrange equations. Moreover,
the performance of the non-stationary vs the stationary pa-
rameterizations in real and simulated 3D-MRI brain datasets
is evaluated. Compared to the non-stationary parameteriza-
tion, our proposal provides similar results in terms of image
matching and local differences between the diffeomorphic
transformations while drastically reducing memory and time
requirements.
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1 Introduction

Computational Anatomy aims for the study of variabil-
ity in anatomical structures from images. Variability is en-
coded by the spatial transformations existing between the
anatomical images and a template selected as reference
(Grenander 1994). In the absence of a more justified phys-
ical model for inter-subject anatomical variability and un-
der the reasonable assumption that the deformation model
responsible of organ growth is related to smooth and in-
vertible maps, transformations are usually assumed to be-
long to a group of diffeomorphisms (i.e. differentiable maps
with differentiable inverse) endowed with the structure of
Riemannian manifold. Statistics on these spaces of trans-
formations allow modeling the anatomical variability of a
population. Different models of anatomical variability have
been successfully used in order to identify anatomical dif-
ferences between healthy and diseased individuals or im-
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prove the diagnosis of pathologies (Thompson et al. 2001;
Wang et al. 2003, 2007; Csernansky et al. 2004; Qiu et al.
2007). Moreover, models of growth have been built for the
assessment of the anatomical change over time (Thomp-
son et al. 2000; Beg 2003; Miller 2004; Gerig et al. 2006;
Davis et al. 2007).

Diffeomorphic registration in the large deformation set-
ting is formulated as the problem of finding the path in
the Riemannian manifold of diffeomorphisms with mini-
mal energy that smoothly transforms the source into the
target image. This problem is approached within a vari-
ational formulation from the minimization of an energy
functional consisting of an image matching term that mea-
sures the similarity between the images after registration
and a regularization term to favor stable numerical solu-
tions. In the so called Large Deformation Diffeomorphic
Metric Mapping paradigm (LDDMM) (Dupuis et al. 1998;
Beg et al. 2005), image matching is selected as the sum of
squared intensity differences and regularization is imposed
on the energy associated to the length of the path.

In the last years, some modifications in the definition
of the elements of the variational problem were proposed
providing different algorithms for diffeomorphic registra-
tion within the LDDMM paradigm. Since Christensen et
al. (1999) different authors proposed inverse consistent ver-
sions of the variational problem incorporating a source
to target symmetry during registration (Joshi et al. 2004;
Avants and Gee 2004; Beg and Khan 2007). Avants et al.
combined landmark with image based diffeomorphic reg-
istration and introduced cross-correlation as image match-
ing in this inverse consistent framework (Avants et al. 2006,
2008). Lorenzen et al. used information theory measures in
the image matching term for multimodal diffeomorphic reg-
istration (Lorenzen et al. 2006). Garcin et al. defined a Rie-
mannian manifold structure in the space of anatomical im-
ages in order to find geodesic paths on the manifold of dif-
feomorphisms as well as on the image manifold (Garcin and
Younes 2006).

In all these methods, transformations are characterized
as end points of paths of diffeomorphisms parameterized
by time-varying flows of smooth vector fields defined on
the tangent space of the Riemannian manifold of diffeo-
morphisms. With this representation, diffeomorphisms con-
stitute solutions of their associated non-stationary transport
equations. Optimization is performed on the space of non-
stationary vector field flows. In consequence, the computa-
tional requirements of these methods linearly grow with the
size of time sampling, resulting into time and memory de-
manding algorithms.

In order to alleviate the computational requirements of
LDDMM, Younes et al. proposed to restrict optimization to
time-varying flows of vector fields that fulfill the momentum
conservation equation (Younes 2007). Thus, the variational

problem associated to LDDMM is restricted to the space of
initial momenta allowing great time and memory savings.
However, the dependence of the diffeomorphisms on the ini-
tial momenta results rather complex and the more expen-
sive although simpler implementation of original LDDMM
is usually preferred in Computational Anatomy applications.

Recently, an alternative way of parameterizing paths of
diffeomorphisms was proposed in Arsigny et al. (2006a).
The parameterization is obtained from constant-time flows
of smooth vector fields. With this representation, diffeomor-
phisms constitute solutions of stationary ODEs. This para-
meterization is closely related to the algebraic structure of
the diffeomorphism group as the paths that can be parame-
terized using these stationary vector field flows are exactly
identified with the one-parameter subgroups.

In this article, the stationary parameterization is included
for diffeomorphic registration in the variational problem as-
sociated to the LDDMM framework. This restricts transfor-
mations to belong to paths identified with one-parameter
subgroups of diffeomorphisms allowing great time and
memory savings. We formulate the variational problem
related to the registration scenario and derive the Euler-
Lagrange equations associated to the minimization of the
energy functional. Moreover, we evaluate the performance
of the non- stationary vs the stationary parameterizations in
real and simulated 3D-MRI brain datasets.

The rest of the article is divided as follows. In Sect. 2
we revisit the differential structure of the Riemannian mani-
fold of diffeomorphisms used in the LDDMM paradigm. In
Sect. 3 we present our method for diffeomorphic registra-
tion. Results in real and simulated datasets are presented in
Sect. 4. Finally, Sect. 5 presents discussion and some con-
cluding remarks.

2 Riemannian Manifolds of Diffeomorphisms

In this section we provide an overview of the fundamen-
tal aspects of Riemannian geometry regarding to infinite di-
mensional manifolds of diffeomorphisms used in Computa-
tional Anatomy. The study of infinite dimensional manifolds
is more complicated than the case of finite dimensions. A fi-
nite dimensional differentiable manifold is an abstract math-
ematical space that is locally homeomorphic, and therefore
topologically equivalent, to an Euclidean space, R

n. In con-
sequence, the local properties of the manifold can be studied
in terms of linear spaces translating the methods of calcu-
lus in linear spaces to differentiable manifolds. On the other
hand, infinite dimensional differentiable manifolds are lo-
cally homeomorphic to infinite dimensional metric vector
spaces (namely, Frechet, Banach or Hilbert spaces), show-
ing a complex differentiable structure.

The group of diffeomorphisms is defined from the set of
homomorphisms (continuous bijective mappings with con-
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tinuous inverse)

Diff (Ω) := {ϕ : Ω → Ω,ϕ and ϕ−1 smooth mappings} (1)

together with the group operations.
Composition:

μ : Diff (Ω) × Diff (Ω) → Diff (Ω),

μ(ϕ1, ϕ2) = ϕ2 ◦ ϕ1 (2)

Inverse:

ν : Diff (Ω) → Diff (Ω), ν(ϕ) = ϕ−1 (3)

where the composition operation μ provides two different
group homomorphisms.

Left composition:

Lϕ : Diff (Ω) → Diff (Ω),Lϕ(ρ) = ρ ◦ ϕ (4)

Right composition:

Rϕ : Diff (Ω) → Diff (Ω),Rϕ(ρ) = ϕ ◦ ρ (5)

The set Ω is a compact simply connected differentiable
manifold. Dealing with the non-compact case is also pos-
sible, although it results much more complicated and is out
of scope of application domain of Computational Anatomy.

Manifolds of diffeomorphisms are defined from the
group of diffeomorphisms Diff (Ω) by endowing with a Rie-
mannian metric to the space of smooth vector fields in Ω .
The structure of differentiable manifold defined on Diff (Ω)

provides a local homeomorphism from every element ϕ in
the manifold to the tangent space Tϕ(Diff (Ω)) at that ele-
ment, which is isomorphic to the algebra of right-invariant
vector fields in Diff (Ω) where the right-composition Rϕ

provides the canonical isomorphism between all the tangent
spaces and this algebra. As in the finite dimensional case, the
tangent space represents the nearest approximation of the
manifold by a vector space on a neighborhood of ϕ. The rest
of elements related to the differentiable structure (charts,
tangent bundle, differentiable curves, differential maps. . . )
can be defined analogously to the finite dimensional case
(DoCarmo 1992).

Depending on the degree of differentiability of the set
of diffeomorphisms (i.e. the meaning of the term “smooth”
in (1)), different degrees of smoothness can be identified
in the corresponding vector fields and therefore, differ-
ent structures of differentiable manifold can be defined
in Diff (Ω) (Schmid 2004). For example, the set of C∞-
diffeomorphisms Diff ∞(Ω) together with the space of C∞-
vector fields in Ω is a Frechet space. As well, the set of
Ck-diffeomorphisms Diff k(Ω) with the space of Ck-vector
fields is a Banach space (k < ∞), and the set of Sobolev

Hs -diffeomorphisms Diff s(Ω) with the space of Hs -vector
fields is a Hilbert space (s > 1

2 dim(Ω), dim(Ω) � 1)
(Schmid 2004).

Dealing with C∞-diffeomorphisms is problematic as
these spaces lack of easy generalizations of inverse and im-
plicit function theorems. Fortunately, suitable extensions for
both theorems are available for both Ck and Hs diffeomor-
phisms. This makes both spaces appropriate candidates for
differential calculus on diffeomorphisms. However, the ex-
istence of a complete scalar product makes Hilbert spaces
preferable. Thus, the properties of finite dimensional vec-
tor spaces can be naturally extended to these infinite dimen-
sional spaces. Furthermore, the theorems of existence and
uniqueness of PDE solutions hold for Hilbert spaces.

Diff s(Ω) has been widely studied in a physical context
(Arnold 1989; Holm et al. 2004; Ebin and Marsden 1970)
as the computation of the motion of a system in continuum
mechanics can be described by a path of diffeomorphisms

φ : [0,1] → Diff s(Ω), t → φ(t) (6)

deforming the ambient space Ω . The analogies existing be-
tween this physical problem and diffeomorphic registration
allow to translate the setting for working with Diff s(Ω)

from continuum mechanics to Computational Anatomy.
Thus, in both disciplines, paths of diffeomorphisms are

usually parameterized as the solution of the transport equa-
tion

dφ(t)

dt
= v(t, φ(t)) (7)

with initial condition φ(0) = id (group identity element),
where

v : [0,1] → T (Diff s(Ω)),

t → v(t, φ(t)) ∈ Tφ(t)(Diff s(Ω)) (8)

is a time-varying flow of smooth vector fields in the tangent
bundle constituted by the directional derivatives associated
to the path at each point. Diffeomorphisms can be therefore
computed as solutions of non- stationary ODEs. The Hilbert
differentiable structure guarantees that the solution to the
transport equation in Diff s(Ω) is a path of diffeomorphisms.
This solution does not exist in Diff ∞(Ω) and Diff k(Ω) as
they are not Sobolev spaces.

The Riemannian metric in Diff s(Ω) is constructed from
the scalar product defined at the identity element, id. Thus,
the scalar product of v, w ∈ Tid(Diff s(Ω)) is defined from

〈v,w〉Tid(Diff s (Ω)) = 〈Lv, Lw〉L2 (9)

where L is a linear invertible differentiable operator, from
which, the Riemannian metric is extended to the whole
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tangent bundle by right-translation. Thus, given v,w ∈
Tϕ(Diff s(Ω))

〈v,w〉Tϕ(Diff s (Ω))

= 〈(dRϕ−1)ϕv, (dRϕ−1)ϕw〉Tid(Diff s (Ω)) (10)

where (dRϕ−1)ϕ denotes the differential map of Rϕ−1 at
Tϕ(Diff s(Ω). From this construction, it follows that this
metric is invariant under right-composition (right-invariant).
However, invariance under left composition is not preserved.

The distance d : Diff s(Ω) × Diff s(Ω) → R
+ associated

to this Riemannian metric is given by

d(ϕ1, ϕ2) = min{L(φ) | φ smooth path between

id and ϕ2 ◦ ϕ−1
1 } (11)

where L(φ) corresponds to the length of the path φ. With
the non-stationary parameterization

L(φ) =
∫ 1

0

∥∥∥dφ(t)

dt

∥∥∥
V (t)

dt

=
∫ 1

0
‖(dRφ(t)−1)φ(t)v(t, φ(t))‖V dt

=
∫ 1

0
‖v(t)‖V dt (12)

where V (t) and V denote the tangent spaces Tφ(t)(Diff s(Ω))

and Tid(Diff s(Ω)), respectively and ‖ · ‖V (t) is the norm as-
sociated to the scalar product 〈·, ·〉V (t). The kinetic energy
of the path in the Riemannian manifold is defined as

Ek(φ) =
∫ 1

0
‖v(t)‖2

V dt (13)

This energy intuitively represents the cost that supposes
walking on the manifold following that path. Paths mini-
mizing this cost, and therefore minimizing their length, are
called geodesic curves (DoCarmo 1992). In the case of geo-
desic paths starting at the identity element, this energy pro-
vides a right-invariant measure of the amount of deformation
associated to the diffeomorphism ϕ = φ(1).

Geodesic paths in Diff s(Ω) are characterized from so-
lutions of the Euler-Poincare equation for diffeomorphisms
(EPDiff equation) (Cotter and Holm 2006)

d(L† Lv(t))

dt
+ v(t) · ∇(L† Lv(t))

+ ∇T v(t) · (L† Lv(t)) + (L† Lv(t)) · div(v(t)) = 0 (14)

The EPDiff equation is equivalent to the conservation of the
momentum L† Lv(t) through geodesic paths (Michor and
Mumford 2006)

L† Lv(t) = (Dφ−1(t))T · (L† Lv(0)) ◦ φ−1(t)

× |det(Dφ−1(t))| (15)

This result was also reached by Miller et al. from the exten-
sion of the Lagrangian momentum conservation in classical
mechanics to diffeomorphisms (Miller et al. 2006). How-
ever, the existence of such conservation law goes back to
Noether’s theorem in 1918 (Noether 1918). From the mo-
mentum conservation, the right geodesic characterized by
a given v0 ∈ V is defined as the solution of the transport
equation dφ(t)/dt = v(t, φ(t)) where v(t) is the unique
non-stationary vector field flow that fulfills the momen-
tum conservation equation for v(0) = v0 (Holm et al. 2004;
Beg and Khan 2006). By definition, the Riemannian expo-
nential map at the identity exp : V → Diffs(Ω) is identified
with the point of path φ(t) at time t = 1.

Recently, an alternative way of parameterization of paths
in Diff s(Ω) has been proposed in the literature (Arsigny et
al. 2006a). In this framework, paths are parameterized as the
solution of the transport equation associated to stationary
vector field flows

dφ(t)

dt
= w(φ(t)) (16)

with initial condition φ(0) = id. With this parameterization,
diffeomorphisms can be computed as solutions of station-
ary (also called autonomous) ODEs. The kinetic energy of a
path parameterized by a stationary vector field w is defined
as

Ek(φ) =
∫ 1

0
‖w(φ(t))‖2

V (t)dt

=
∫ 1

0
‖(dRφ(t)−1)φ(t)w(φ(t))‖2

V dt = ‖w‖2
V (17)

This parameterization is closely related to the algebraic
structure defined in Diff s(Ω) as the paths that can be para-
meterized using stationary vector fields are exactly the one-
parameter subgroups. In this case, the vector field w is an
infinitesimal generator of the subgroup and the solution of
the transport equation is identified with the group exponen-
tial map Exp : V → Diff s(Ω).

As the metric defined in Diff s(Ω) is not bi-invariant, one-
parameter subgroups are not identified with the geodesics
starting at the identity element. Therefore, the group and
Riemannian exponentials, exp and Exp, result into two dif-
ferent maps and the stationary and non- stationary parame-
terizations of diffeomorphisms provide elements belonging
to rather different families of diffeomorphisms.

3 Diffeomorphic Registration of Anatomical Images

In the LDDMM framework, diffeomorphic registration from
a template image I0 to a target I1 is represented by the end
point ϕ = φ(1) of a path of diffeomorphisms φ(t) resulting
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from the minimization of the energy functional

E(ϕ) = Ereg(φ) + 1

σ 2
Eimg(I0 ◦ ϕ−1, I1) (18)

The term Ereg(φ) imposes a regularization on path en-
ergy. The term Eimg(I0 ◦ ϕ−1, I1) measures the similarity
between the images after registration. Although it is usu-
ally selected to be the sum of squared intensity differences,
‖I0 ◦ ϕ−1 − I1‖2

L2 , the image term can be replaced by any
other energy proposed in usual registration techniques. The
weighting factor 1/σ 2 balances the energy contribution be-
tween regularization and matching.

In diffeomorphic registration, the space of transforma-
tions depends on the parameterization chosen to compute
paths of diffeomorphisms and additional imposed con-
straints frequently related to geodesic properties. In this
section we revisit the LDDMM method for diffeomorphic
registration using the non-stationary parameterization, and
formulate the method using the stationary parameterization.

3.1 Registration Using the Non-Stationary
Parameterization

In the LDDMM framework, paths of diffeomorphisms are
parameterized using time-varying vector field flows. Diffeo-

morphic registration is obtained computing the path of vec-
tor fields v(t) ⊆ V resulting from the minimization of the
energy functional

EI0→I1(v) =
∫ 1

0
‖v(t)‖2

V dt + 1

σ 2
‖I0 ◦ ϕ−1 − I1‖2

L2 (19)

and obtaining the solution at time 1 of the non- station-
ary transport equation associated to v(t). The regularization
term is identified with the kinetic energy associated to non-
stationary paths of diffeomorphisms in Diff s(Ω) (13). In or-
der to assure a source to target symmetry in the registration,
the inverse- consistent version of this variational problem
has been preferably used in the literature instead (Joshi et al.
2004)

EI0↔I1(v) =
∫ 1

0
‖v(t)‖2

V dt + 1

2σ 2
(‖I0 ◦ φ(1)−1 − I1‖2

L2

+ ‖I1 ◦ φ(1) − I0‖2
L2) (20)

The solution to the minimization of this variational prob-
lem is approached using gradient descent techniques (Beg
et al. 2005). The gradient of the energy functional is com-
puted from the Euler-Lagrange equation associated to the
minimization of the energy functional given in (21).

∇vE(v)(t) = 2v(t) − (L† L)−1
(

1

σ 2
(I0 ◦ φ(t)−1 − I1 ◦ φ(1) ◦ φ(t)−1) · |det(Dφ(1) ◦ φ(t)−1)| · ∇I0(φ(t)−1)

)

+ (L† L)−1
(

1

σ 2
(I0 ◦ φ(t)−1 − I1 ◦ φ(1) ◦ φ(t)−1) · |det(Dφ(t)−1)| · ∇I1(φ(1) ◦ φ(t)−1)

)
, (21)

∇wE(w) = 2w − (L† L)−1
(

1

σ 2
(I0 ◦ Exp(w)−1 − I1) · ∇(I0 ◦ Exp(w)−1)

)

+ (L† L)−1
(

1

σ 2
(I1 ◦ Exp(w) − I0) · ∇(I1 ◦ Exp(w))

)
(22)

The solution to the variational problem provides a geodesic
path of diffeomorphisms with minimal energy and maxi-
mum image matching at t = 1.

3.2 Registration Using the Stationary Parameterization

In contrast to the usual approach, our framework for dif-
feomorphic registration parameterizes diffeomorphisms us-
ing stationary vector field flows. Diffeomorphisms are com-
puted as solutions of stationary ODEs associated to an el-
ement belonging to a one-parameter subgroup spanned by
some infinitesimal generator w ∈ V . Thus, the diffeomor-

phism that connects I0 and I1 is represented by the group
exponential map Exp(w), where w is computed from the
minimization of the energy functional

EI0→I1(w) = ‖w‖2
V + 1

σ 2
‖I0 ◦ Exp(w)−1 − I1‖2

L2 (23)

that in inverse consistent version is written as

EI0↔I1(w) = ‖w‖2
V + 1

2σ 2

(‖I0 ◦ Exp(w)−1 − I1‖2
L2

+ ‖I1 ◦ Exp(w) − I0‖2
L2

)
(24)
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The Euler-Lagrange equation associated to the minimiza-
tion of the energy functional is given in (22). Its compu-
tation is detailed in the Appendix. The solution to the varia-
tional problem provides the infinitesimal generator of a one-
parameter subgroup of diffeomorphisms with minimal de-
formation and maximum image matching at t = 1.

3.3 Numerical Implementation

Two different gradient descent optimization strategies have
been proposed in the literature of registration in the large de-
formation setting (Christensen et al. 1996; Beg et al. 2005).
Christensen et al. propose to solve the Euler-Lagrange equa-
tion for a given time step tk until convergence. Then, a new
template image is generated by composition of the current
transformation φ(tk) to the former template (regridding),
and optimization is restarted for a new time step tk+1. The
resulting path of diffeomorphisms is computed from the suc-
cessive composition of the transformations associated to the
sequence of propagated templates. Optimization strategy in
Beg et al. method, solves the Euler-Lagrange equation as-
sociated to the whole vector field flow. In contrast to Chris-
tensen’s method, temporal continuity is preserved during op-
timization providing more stable results. Hence, in this arti-
cle, we use Beg et al. optimization strategy.

Thus, the numerical implementation for finding the min-
imum of the energy functionals EI0↔I1(v) and EI0↔I1(w)

proceeds within a multi-resolution strategy in a gradient de-
scent fashion. In order to make both algorithms compara-
ble, the same implementation criteria have been adopted in
their common stages. At the coarsest resolution level, the
algorithm based on the non-stationary parameterization ini-
tializes with iteration k = 0, v(t) = 0V (t) and φ(t) = id, ∀t

whereas the algorithm based on the stationary parameteriza-
tion initializes with w = 0V , and ϕ = id. In the finer reso-
lution levels, both algorithms initialize v(t) and w by inter-
polating the vector fields resulting from the convergence in
the previous resolution level using a tri-linear interpolator.
Every iteration in the gradient descent consists of the steps
collected in Table 1.

In both algorithms, standard line search strategies are
used to estimate the step size ε (Nocedal and Wright 1999).
The computation of the diffeomorphisms is performed by
solving the corresponding transport equations ((7) and (16))
using a semi-Lagrangian numerical scheme (Staniforth and
Cote 1991). The operator associated to 〈., .〉V is selected to
be L = γ Id − α∇2, and L† L is computed in the Fourier do-
main as in Beg et al. (2005). The convergence in each reso-
lution level is reached if the value of ε in the search strategy
is too small or the absolute rate of change in the energy is
less than a tolerance value.

4 Results

In this section we focus on evaluating and comparing the
influence of the parameterization in the performance of the
registration methods associated to the variational problems
EI0↔I1(v) and EI0↔I1(w). We provide results on real and
simulated MRI brain datasets.

4.1 Evaluation Metrics

Registration performance is evaluated in terms of the fi-
nal image matching and the differences between the diffeo-
morphic transformations. The image matching is quantified
from the relative sum of squared intensity differences,

RSSD = 1

2

‖I0 ◦ ϕ−1 − I1‖2
L2 + ‖I1 ◦ ϕ − I0‖2

L2

‖I0 − I1‖2
L2

(25)

The differences between transformations are evaluated
from the sum of squared differences (SSD)

SSD(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖L2 (26)

and a distance between the associated Jacobian matrices
(J = Dϕ). In this work, we use a distance defined on the
group of symmetric positive definite matrices Sym+(3) ap-
plied to the strain matrix S = (J T · J )1/2 (Arsigny et al.
2006b)

Table 1 Algorithm for non-stationary and stationary diffeomorphic registration

(1) Compute the energy gradient from the Euler-Lagrange Equation: ∇vE(vk) and ∇wE(wk), respectively

(2) Gradient descent update: vk(t) = vk−1(t) − ε∇vE(vk−1)(t) and wk = wk−1 − ε∇wE(wk−1), respectively

(3) Compute the inverse path of diffeomorphisms: φ−1
k (t) and ϕk = Exp(−wk), respectively

(4) Compute the direct path of diffeomorphisms: φk(t) and ϕk = Exp(wk), respectively

(5) Compute the transformed images: I0 ◦ φ−1
k (1), I1 ◦ φk(1) and I0 ◦ ϕ−1

k , I1 ◦ ϕk , respectively

(6) Check for convergence criterion

(7) Prepare the next resolution level
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dAI(S1, S2) =
√

trace(log(S
−1/2
1 S2S

−1/2
1 )2) (27)

This is motivated by the fact that Riemannian metrics de-
fined on Sym+(3) are being increasingly used in morpho-
metric studies showing a great local discriminative power
between transformations (Lepore et al. 2006).

In contrast to those metrics based on the logarithm of
the Jacobian determinant ((Leow et al. 2006) and references
therein),

dlog(J1, J2) =
√

(log(det(J1)) − log(det(J2)))2 (28)

Riemannian metrics use the whole strain matrix informa-
tion. In the case of the distance dAI , there exist many differ-
ent Jacobian matrices with the same determinant (dlog = 0)
associated to different strain forces where dAI > 0. More-
over, in the simplest case of Jacobian matrices expressing
local expansion or contraction without torsion, straightfor-
ward computations show that

dlog = | log(RVC)| (29)

and

dAI(S1, S2) = √
3| log(RVC)| (30)

where RVC denotes the relative volume change existing be-
tween J1 and J2, and therefore both metrics provide the
same information. Furthermore, dAI is a natural metric de-
fined in the usual group structure of Sym+(3) and it is in-
variant under affine transformations.

4.2 Real Datasets

The population of anatomical brain images was composed
by a total of 18 T1-MRI from the Hospital Clinic Barcelona,
Spain. These images were acquired using a General Elec-
tric Signa Horizon CV 1.5 Tesla scan. As preprocessing
steps, the images were first resampled yielding volumes of
size 256 × 256 × 220 with a spatial resolution of 0.9 ×
0.9 × 0.9 mm. Next, the skull was removed from the im-
ages (Dodgas et al. 2005). Finally, the image intensity was
normalized using a histogram matching algorithm and all
the images were aligned to a common coordinate system us-
ing a similarity transformation (7 dof) with the algorithms
available in the Insight Toolkit (ITK).

4.3 Registration in Real Datasets

4.3.1 Quantitative Evaluation

In this experiment, we evaluate the performance of the dif-
feomorphic registration algorithm in real datasets. The ex-
periment consists in the registration of one of the images

randomly selected in our datasets to the rest of images. In
this case, the image matching metric comprises errors in the
registration due to photometric variations between the im-
ages and inaccurate matching consequence of diffeomorphic
regularization constraints.

The definition of the operator L influences the registra-
tion results. This operator is usually related to the physi-
cal deformation model imposed on Ω . It remains an open
question how to choose the best model in non-rigid regis-
tration algorithms (Modersitzki 2004). In this work we have
selected L = γ Id − α∇2 with γ = 1 and α = 0.02 as exten-
sively used in LDDMM literature since (Beg et al. 2005).
This selection has provided smooth enough transformations
with acceptable matching for our application. In future work
we will study the performance of the registration algorithms
with different definitions for L.

From the rest of tunable parameters involved in the regis-
tration algorithms, the selection of 1/σ 2 is the most critical.
As shown in Table 2, the selection of this parameter strongly
influences the final image matching (RSSD) and the ex-
trema of the Jacobian determinant Jmax = max(det(Dϕ−1))

and Jmin = min(det(Dϕ−1)). From those registration results
with the same relative differences, the ones with the high-
est minimum determinant and the lowest maximum deter-
minant (i.e. the smoothest ϕ−1 and ϕ, respectively) are more

Table 2 Registration in real datasets. Average and standard deviation
of the relative L2 differences, RSSD, and the extrema of the Jacobian
determinant, Jmax, Jmin. Up and down tables show the results obtained
with EI0↔I1 (w) and EI0↔I1 (v), respectively

1/σ 2 RSSD Jmin Jmax

EI0↔I1 (w)

1.0e0 0.66 ± 0.04 0.82 ± 0.02 1.21 ± 0.03

5.0e1 0.36 ± 0.04 0.36 ± 0.14 2.25 ± 0.57

1.0e2 0.32 ± 0.03 0.29 ± 0.14 3.10 ± 1.31

5.0e2 0.30 ± 0.03 0.26 ± 0.14 3.79 ± 2.31

1.0e3 0.27 ± 0.02 0.23 ± 0.14 4.37 ± 2.75

5.0e3 0.27 ± 0.02 0.23 ± 0.13 4.15 ± 2.31

1.0e4 0.26 ± 0.02 0.23 ± 0.13 4.13 ± 2.34

5.0e4 0.26 ± 0.01 0.23 ± 0.13 4.23 ± 2.53

1.0e5 0.27 ± 0.02 0.23 ± 0.13 4.10 ± 2.18

EI0↔I1 (v)

1.0e0 0.66 ± 0.04 0.68 ± 0.01 1.39 ± 0.03

5.0e1 0.37 ± 0.04 0.30 ± 0.20 2.19 ± 0.56

1.0e2 0.34 ± 0.04 0.29 ± 0.12 2.89 ± 1.26

5.0e2 0.31 ± 0.03 0.25 ± 0.11 3.76 ± 2.32

1.0e3 0.29 ± 0.02 0.22 ± 0.12 4.17 ± 2.74

5.0e3 0.28 ± 0.02 0.21 ± 0.08 4.29 ± 2.62

1.0e4 0.27 ± 0.02 0.19 ± 0.10 4.35 ± 2.58

5.0e4 0.27 ± 0.02 0.19 ± 0.11 4.27 ± 2.30

1.0e5 0.27 ± 0.02 0.19 ± 0.09 4.56 ± 2.55
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Table 3 Registration in real datasets. Average and standard deviation
of the relative L2 differences, RSSD, the absolute L2 differences be-
tween the transformations obtained from stationary and non-stationary
registration, SSD, and the distance between the associated strain ma-
trices, dAI

RSSD SSD dAI

EI0↔I1 (w)

EI0↔I1 (v)

0.26 ± 0.01

0.27 ± 0.02
0.26 ± 0.24 0.02 ± 0.02

desirable. In the following, we select 1/σ 2 equal to 5.0e4,
as it guarantees the maximum average image matching in
our experiments. In Table 3 we show the average and stan-
dard deviation of the RSSD metric, the SSD between the
non-stationary and stationary transformations and the dAI

between the associated strain matrices for this selection of
1/σ 2.

4.3.2 Visual Evaluation

We show a representative example of diffeomorphic regis-
tration. In order to visually assess the registration accuracy
in terms of image matching, the image differences before
and after registration are shown in Fig. 1. In addition, the
histogram of the differences between the template, the tar-
get and the corresponding transformed images is shown in
Fig. 2. Figure 3 shows the grids of the corresponding trans-
formations. In order to visually localize the differences be-
tween the diffeomorphisms obtained with the stationary and
the non-stationary parameterizations we also show the cor-
responding values of dAI .

4.4 Simulated Datasets

The population of simulated anatomical brain images was
composed by two groups of 20 images. Each group was gen-
erated from simulated diffeomorphic deformations respec-
tively parameterized with stationary and non-stationary vec-
tor field flows applied to a template image randomly selected
from the real datasets.

Stationary diffeomorphisms were simulated from the
vector fields w1, . . . ,wN resulting from the registration of
the template to the rest of the real datasets using the station-
ary parameterization. Principal Geodesic Analysis (PGA)
was performed on the covariance matrix associated to the
wi residuals using the method in Hernandez (2008). New
instances of vector fields were generated from the modes
of variation u1, . . . , uN and the corresponding eigenvalues
λ1, . . . , λN as wnew = �N

i=1αiλiui . The parameters αi were
randomly selected from a normal distribution of zero mean
and standard deviation 1. The simulated diffeomorphisms
were obtained computing the corresponding group expo-
nential map, Exp. The Jacobian determinant of the resulting
simulated transformations ranged from 0.13 to 7.41.

The simulated non-stationary diffeomorphisms were gen-
erated from the non-stationary vector field flows v1(t), . . . ,

vN(t) resulting from the registration of the template to
the rest of the real datasets. As the space of time-varying
vector field flows is non linear, the computation of PGA
was applied to the linear space of initial vector fields
v1(0), . . . , vN(0) instead. This way, new instances of initial
vector fields were generated as explained in the stationary
case. The non-stationary flows associated to the simulated
initial vector fields were generated via momentum conser-
vation (15). The simulated diffeomorphisms were obtained
solving the corresponding non-stationary transport equation.
The Jacobian determinant of the resulting simulated trans-
formations ranged from 0.08 to 8.17.

4.5 Registration in Simulated Datasets

4.5.1 Quantitative Evaluation

In this experiment, we have a priori knowledge of the true
transformation. In this case, photometric variations between
the template and target images are null. Therefore, the per-
formance of the diffeomorphic transformation in the regis-
tration algorithm can be fully evaluated from the RSSD met-
ric. This measure comprises the errors in the registration due
to inaccurate matching consequence of diffeomorphic regu-
larization constraints (in this case, the used parameteriza-
tion). The simulated diffeomorphisms have been compared
with the ones obtained via registration using the SSD metric
between the transformations and the distance between the
associated strain matrices. Table 4 presents the average and
standard deviation of these measurements.

4.5.2 Visual Evaluation

We show two representative examples of diffeomorphic reg-
istration associated to the simulated datasets generated from
the stationary and the non-stationary diffeomorphisms, re-
spectively. In order to visually assess the registration ac-
curacy Fig. 4 shows the image differences before and after
registration. In addition, the histogram of the differences be-
tween the template, the target and the corresponding trans-
formed images is shown in Fig. 5. Figures 6 and 7 show the
grids of the corresponding transformations and the distance
between the associated strain matrices.

4.6 Computational Complexity

Computational complexity is measured in terms of memory
and time requirements. The optimization for diffeomorphic
registration in EI0↔I1(v) and EI0↔I1(w) requires the stor-
age in memory of the diffeomorphic path parameterizations
v(t) and w, respectively, and the corresponding energy gra-
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Fig. 1 Registration in real
datasets. Illustration of axial,
coronal and sagittal views of a
registration experiment. The
first and second rows show the
template (I0) and the target (I1)
used for registration. The third
row shows the differences
between the template and the
target before registration. The
fourth and fifth rows show the
differences between the target
and the deformed template
obtained with EI0↔I1 (w) and
EI0↔I1 (v), respectively. In this
experiment, the image matching
resulted equal to 0.26 in the case
of stationary parameterization
and 0.30 in the case of
non-stationary parameterization
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Fig. 2 Registration in real datasets. Histograms of the intensity dif-
ferences. Black plot corresponds to the differences before registra-
tion (I0 − I1). Grey plots correspond to the differences after regis-
tration using the stationary and the non-stationary parameterizations,
(I0 ◦ ϕ−1 − I1 and I0 ◦ φ(1)−1 − I1). Each histogram has been plotted
just taking into account differences not equal to zero

dients ∇vE(v)(t) and ∇wE(w), respectively. If the path of
diffeomorphisms in the non-stationary parameterization is
sampled into T pieces, memory and time requirements in
this algorithm linearly increase with this parameter. As ex-

Table 4 Registration in simulated datasets. Average and standard de-
viation of the relative L2 differences, RSSD, the absolute L2 differ-
ences between the transformations obtained from registration and the
ground truth transformations, SSD, and the distance between the as-
sociated strain matrices, dAI . Up table shows the results obtained with
the simulated datasets generated from the stationary parameterization.
Down table shows the results corresponding to the non stationary pa-
rameterization

RSSD SSD dAI

EI0↔I1 (w) 0.03 ± 0.00 0.48 ± 0.45 0.03 ± 0.05

EI0↔I1 (v) 0.03 ± 0.01 0.50 ± 0.46 0.03 ± 0.05

RSSD SSD dAI

EI0↔I1 (w) 0.02 ± 0.01 0.44 ± 0.35 0.04 ± 0.05

EI0↔I1 (v) 0.03 ± 0.01 0.45 ± 0.37 0.03 ± 0.05

Fig. 3 Registration in real datasets. Upper row, projection of the diffeomorphic transformations in axial, coronal and sagittal views. Blue grid
corresponds to the stationary and cyan grid to the non-stationary transformations. Lower row, illustration of the distance between the corresponding
strain matrices, dAI
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Fig. 4 Registration in simulated datasets. Illustration of axial, coronal
and sagittal views of simulated data registration experiments generated
from stationary (left) and non-stationary (right) diffeomorphisms. The
first and second rows from each example show the template (I0) and
the target (I1) used for registration. The third row shows the image
differences before registration. The fourth and fifth rows show the dif-
ferences between the target and the deformed template obtained with

EI0↔I1 (w) and EI0↔I1 (v), respectively. In the experiment generated
from stationary diffeomorphisms, the image matching resulted equal
to 0.04 in both parameterizations. In the experiment generated from
non-stationary diffeomorphisms, the image matching resulted equal to
0.01 in the case of stationary parameterization and 0.02 in the case of
non-stationary parameterization

ample,1 in a volume of size 155 × 205 × 170 registration
using the non-stationary parameterization in the finer reso-
lution level required up to 1.9 GB while stationary parame-
terization required about 800 MB. Time requirements for a
single iteration took up to 143.20 seconds using the non-
stationary parameterization whereas the stationary parame-
terization took 10.25 seconds in a machine of 2327 MHz.
This supposes a considerable time reduction of the whole
registration algorithm.

1Code implemented in C++ based on the ITK library.

5 Discussion and Conclusions

In this article, we have presented a method for diffeomor-
phic registration based on the Large Deformation paradigm
studied in Computational Anatomy. In contrast to traditional
methods, we estimate the optimal transformation connecting
two anatomical images constrained to lie on paths of diffeo-
morphisms parameterized by stationary vector field flows.

The performance of the stationary vs non-stationary pa-
rameterizations has been compared in a set of 18 MRI real
brain datasets. Both algorithms have similar accuracy in
terms of image matching (in the optimal case shown in Ta-
ble 2, the average RSSD resulted to be 0.26 vs 0.27). The
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Fig. 5 Registration in simulated datasets. Histogram of the intensity
differences. Up figure corresponds to the simulated example generated
from a stationary diffeomorphism. Down figure corresponds to the ex-
ample generated from a non-stationary transformation. In both figures,
black plot corresponds to the differences before registration. Grey plots
correspond to the differences after registration using the stationary and
the non-stationary algorithms, respectively. The histogram has been
plotted just taking into account differences not equal to zero

similarity between the diffeomorphic transformations was
under half the voxel resolution (in average, SSD = 0.26 and
dAI = 0.02). In the representative example, the differences
before and after registration were reduced in the same de-
gree in both cases (Figs. 1 and 2). Subcortical structures pre-
sented a maximum image matching. However, image match-
ing seemed to fail in the cortex. This may be due to the
differences of intensity between images are higher in these
regions of the brain. Another reason could be that the regu-
larization constraints imposed on diffeomorphic registration
makes the transformation not able to warp between struc-

tures with this high geometrical variability. The transforma-
tions presented local differences located at the cerebellum
and the cortex with a maximum RVC ≤ 1.67.2

In addition, the performance of both algorithms has been
compared in two populations of 20 MRI datasets generated
from simulated stationary and non-stationary parameterized
diffeomorphisms. As pointed out by Table 4 and supported
by Figs. 4 and 5, both algorithms have shown a high im-
age matching (average RSSD less than 0.03 in all cases) re-
gardless the parameterization used to generate the simulated
diffeomorphisms. The average differences of corresponding
grid points between the simulated diffeomorphisms and the
ones obtained via registration resulted to be within half the
voxel resolution in all cases. The average dAI was less than
0.04 in all cases. In the representative examples the grids
presented local differences located at the cerebellum, the
ventricles, and the cortex with a maximum RVC ≤ 2.06.

Regarding time and memory requirements, our algorithm
has shown to provide a considerable reduction of the com-
putational requirements for registration with identical ac-
curacy results. For this reason, our algorithm may provide
an alternative fast method for computing diffeomorphic reg-
istration in state of the art Computational Anatomy appli-
cations (for example, in the computation of anatomical at-
lases from group-wise diffeomorphic registration (Joshi et
al. 2004) or temporal regression (Davis et al. 2007)). More-
over, our algorithm allows to generate elements belonging to
one-parameter subgroups of diffeomorphisms where Log-
Euclidean statistics on diffeomorphisms can be performed
using algebraic techniques (Arsigny et al. 2006a).

As a possible limitation to the use of the stationary para-
meterization in Computational Anatomy, it has been shown
that the set of diffeomorphisms obtained with the station-
ary parameterization does not span all diffeomorphisms in
Diff s(Ω). In fact, the group exponential map is not onto
(Grabowski 1988). This means that there exist diffeomor-
phisms arbitrarily close to the identity that cannot be pa-
rameterized by stationary vector field flows and, therefore,
there may exist two images where the non-stationary para-
meterization would provide much better registration perfor-
mance than the stationary parameterization. Nevertheless,
the experiments reported in this work show that, at least for
MRI anatomical brain images, one can find elements from
both parameterizations that provide similar and acceptable
registration results in terms of image matching and transfor-
mation similarity.

As future directions, it would be interesting to explore the
equivalence of both parameterizations in the registration of
a wider range of datasets, different anatomies and Computa-
tional Anatomy applications.

2The maximum is reached if torsion free deformations provide the
value 1.67.
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Fig. 6 Registration in simulated datasets generated from stationary
diffeomorphisms. The first two rows correspond to registration results
associated to the stationary parameterization and the last two rows cor-
respond to the non-stationary parameterization. From each example,
the upper row shows the projection of the diffeomorphic transforma-

tions in axial, coronal and sagittal views. The blue grid corresponds
to the ground truth and the cyan grid to the transformation obtained
from registration. The lower row, illustrates the distance between the
corresponding strain matrices, dAI
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Fig. 7 Registration in simulated datasets generated from non-
stationary diffeomorphisms. The first two rows correspond to regis-
tration results associated to the stationary parameterization and the
last two rows correspond to the non-stationary parameterization. From
each example, the upper row shows the projection of the diffeomor-

phic transformations in axial, coronal and sagittal views. The blue grid
corresponds to the ground truth and the cyan grid to the transforma-
tion obtained from registration. The lower row, illustrates the distance
between the corresponding strain matrices, dAI
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Appendix: Euler-Lagrange equation for diffeomorphic
registration

In this appendix, we present the computations to obtain
the Euler-Lagrange equation for the energy functional given
in (24). In general convex vector spaces, the Euler-Lagrange
equation associated to a Frechet differentiable energy func-
tional E(w) is obtained from ∇wE(w) = 0. In Frechet
spaces, the gradient operator relates the Frechet derivative
and the Gateaux derivative (whenever both derivatives exist)
by ∂hE(w) = 〈∇wE(w),h〉V . Thus, in our case, the Euler-
Lagrange equation is computed from Gateaux derivatives.

The Gateaux derivative of the energy functional along
h ∈ V is defined as the variation of E(w) under the per-
turbation of w in the direction of h

∂hE(w) = lim
ε→0

E(w + εh) − E(w)

ε
(31)

For simplicity, we divide the computation of ∂hE(w) into
∂hE1(w), ∂hE2(w), and ∂hE3(w) where

E1(w) = ‖w‖2
V , (32)

E2(w) = 1

σ 2
‖I0 ◦ Exp(w)−1 − I1‖2

L2, (33)

and

E3(w) = 1

σ 2
‖I1 ◦ Exp(w) − I0‖2

L2 (34)

Straightforward computations provide

∂hE1(w) = 2〈w,h〉V (35)

The chain rule allows to compute the variation of E2(w) and
E3(w)

∂hE2(w) = 2

σ 2
〈I0 ◦ Exp(w)−1 − I1,∇(I0 ◦ Exp(w)−1)

× ∂hExp(w)−1〉L2 (36)

∂hE3(w) = 2

σ 2
〈I1 ◦ Exp(w) − I0,∇(I1 ◦ Exp(w))

× ∂hExp(w)〉L2 (37)

The Gateaux derivative of the exponential map is ob-
tained using a first order approximation, Exp(w) = x + w.

The Gateaux derivative of the inverse exponential map
is obtained from the fact Exp(w)−1 = exp(−w). Thus,

∂hExp(w) = h and ∂hExp(w)−1 = −h and

∂hE2(w) = − 2

σ 2
〈(L†L)−1((I0 ◦ Exp(w)−1 − I1)

× ∇(I0 ◦ Exp(w)−1)), h〉V (38)

∂hE3(w) = 2

σ 2
〈(L†L)−1((I1 ◦ Exp(w) − I0)

× ∇(I1 ◦ Exp(w))), h〉V (39)

Collecting the results in (35, 38, and 39), the Euler-Lagrange
equation associated to the energy functional is

∇wE(w) = 2w + ∂hE2(w) + ∂hE3(w) (40)
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