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Abstract In this work we describe the usage of bilinear sta-
tistical models as a means of factoring the shape variability
into two components attributed to inter-subject variation and
to the intrinsic dynamics of the human heart. We show that
it is feasible to reconstruct the shape of the heart at discrete
points in the cardiac cycle. Provided we are given a small
number of shape instances representing the same heart at
different points in the same cycle, we can use the bilinear
model to establish this.

Using a temporal and a spatial alignment step in the pre-
processing of the shapes, around half of the reconstruction
errors were on the order of the axial image resolution of
2 mm, and over 90% was within 3.5 mm. From this, we
conclude that the dynamics were indeed separated from the
inter-subject variability in our dataset.
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1 Introduction

1.1 Statistical Shape Models and Time

The use of statistical models of shape has established itself
as a popular approach to image analysis problems, in the
domain of both natural (Pantic and Rothkrantz 2000) and
medical image analysis (McInerney and Terzopoulos 1996;
Duncan and Ayache 2000). Along the way, much research
has been devoted to the development of various types of
shape models, as well as to solving problems arising from
the construction of such models. Many of those models,
however, are essentially spatial models, and extension to the
spatiotemporal domain is not as trivial or trivially justifiable
as the extension from d to d + 1 spatial dimensions.

The analysis of Point Distribution Models (PDM’s) in
shape space received a significant amount of attention from
the mid-1980’s to the early 1990’s (Cootes et al. 1992;
Kendall 1984; Le and Kendall 1993; Mardia and Dryden
1989). The most renowned result from this work applied
in computer vision is the emergence of the Principal Com-
ponent Analysis (PCA)-based statistical shape model from
Cootes et al. (1995), who applied PCA to the covariance
matrix of their data set in order to extract a set of orthogonal
variations of the sampled points. These became well-known
as the modes of variation of the shape class.

Efforts to extend linear shape models to the spatiotem-
poral domain have been made before, for example by
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Hamarneh and Gustavsson (2004), in whose work each sam-
ple in the dataset consists of an entire sequence of observa-
tions of the same object sampled throughout the temporal
exposure window. Mitchell et al. (2002) and Bosch et al.
(2002) employ the same strategy, extending Active Appear-
ance Models (Cootes et al. 2001) to Active Appearance Mo-
tion Models in order to segment the endocardium in echo-
cardiograms and Magnetic Resonance image sequences, re-
spectively. Perperidis (2005) constructs two linear models
using PCA: one which models the variation across the mean
shapes of the subjects, and another one which models the
variation within the cardiac cycle. Another approach to add
the element of time to 3-dimensional segmentation using
statistical shape models was presented by Montagnat and
Delingette (2005). After building a PCA-based model treat-
ing all subjects and all phases as separate samples, they
employ a scheme which segments the cycle as one single
object, rather than employing a sequential scheme to seg-
ment each frame separately. During segmentation, temporal
constraints are introduced in the optimization to limit the
differences between segmentations of subsequent frames to
reasonable values. Lynch et al. (2008) model the temporal
processes in their level-set approach for cardiac segmenta-
tion as a distance function between a set of control points
and the level sets.

Statistical models of cardiac left ventricular (LV) de-
formation only were constructed by Chandrashekara et al.
(2003), using data from one single subject. A comparable
approach to modeling respiratory motion of the liver was
taken by Blackall et al. (2001).

To the best of our knowledge, our previous work
(Hoogendoorn et al. 2007) was the first to model individ-
ual and temporal variations of cardiac shape as two dif-
ferent sources of variability within the same set of data.
Before, inter-subject variation and dynamics were not de-
coupled at all (Bosch et al. 2002; Mitchell et al. 2002;
Hamarneh and Gustavsson 2004). Later, the application of
the model was equipped with constraints to limit the first-
order derivative of shape points over time (Montagnat and
Delingette 2005) or by constraining it using a distance prior
(Lynch et al. 2008). By creating a spatiotemporal model of
cardiac dynamics that decouples individual and temporal
variations, we can extrapolate cardiac phases from the sta-
tistical model even when they are not available from the
individual measurements. The models most similar to our
approach are those from Perperidis (2005). However, our
method does not result in a massively higher-dimensional
parameterization for intra-subject variability, resulting in a
more compact model.

1.2 Bilinear Statistical Models

In biometrics, the separation of two (independent) processes
that contribute to the overall pattern variability is a well-

known problem, which has led to the introduction of bilin-
ear models by Tenenbaum and Freeman (1996). The reader
is referred to Tenenbaum and Freeman (2000) for a more
detailed description. Dubbing the two sources of variability
style and content, these names can be assigned freely de-
pending on which is most natural given a specific problem.
Aside from the examples used in Tenenbaum and Freeman
(2000), the literature contains examples of the separation of

• face identity and facial expression (Abboud and Davoine
2004)

• location and content for sparse coding of natural images
(Grimes and Rao 2005)

• emotion and speech content (Chuang and Bregler 2005)
• gait (walking characteristics) and viewing conditions

(Hsu et al. 2005; Lee and Elgammal 2004)
• pairs from the set {identity, action, viewpoint} (Cuzzolin

2006)
• face identity and viewpoint (González-Mora et al. 2007)
• face identity and illumination (Shin et al. 2008).

While in Tenenbaum and Freeman (2000) the bilinear
models and their construction are formulated quite specif-
ically for bilinear decomposition, which we expand on in
Sect. 2, they follow the same principles of the multilinear de-
compositions of higher order tensors presented by De Lath-
auwer et al. (2000), which was followed by Vasilescu and
Terzopoulos (2003) for their trilinear decomposition of ex-
pression, identity and illumination.

1.3 Clinical Context

The use of statistical models in cardiac image analysis ini-
tially focused primarily on segmentation (Suri 2000; Bosch
et al. 2002; Mitchell et al. 2002; Montagnat and Delingette
2005; Lynch et al. 2008). However, the analysis of cardiac
function—dynamics and deformation—has since emerged
as a relatively new field of application to which intensive re-
search has been dedicated. In the context of congestive heart
failure (CHF) assessment, left ventricular (LV) function in
particular has been the focus of automated localization and
quantification algorithms, employing various types of mod-
els. Automated methods for objective modeling and analysis
of cardiac morphology and function are therefore desirable
and relevant. For an overview of cardiac modeling, we refer
to Frangi et al. (2005).

Most recently, deformation recovery and modeling was
done by Bistoquet et al. (2007), who make use of the
near non-compressibility of myocardial tissue to constrain
the segmentation of the LV and simultaneously extract the
underlying within-tissue deformation. Liu and Shi (2007)
analysed cardiac motion under constraints obtained from
biomechanical priors.

Lekadir et al. (2007) model LV deformation as interland-
mark motion in a local circular coordinate system in which
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anomalies present themselves as outliers. Leung and Bosch
(2007) create a sparse shape variation decomposition us-
ing PCA and subsequent orthomax rotations to characterize
local abnormal deformations, while Syeda-Mahmood et al.
(2007) use registration and the associated deformation pat-
terns to characterize deformation abnormalities in 2D ultra-
sound sequences.

While they may be robust to intersubject variability, none
of the above approaches really takes this source of variation
into account. By factoring from a dataset the variation at-
tributed to inter-subject differences from that of cardiac dy-
namics, be it shapes, deformation fields or the images them-
selves, the contraction pattern of an entire population can
be modeled, and then used in various clinical applications.
In this paper we employ bilinear models to establish this
factorization on cardiac shapes, and illustrate their power to
parameterize the dynamics (or rather a set of discrete phases
within the cardiac cycle) and the subject by extrapolating
from a small subset of phases to the remaining phases in the
cycle.

The remainder of this work is organized as follows:
we introduce the concept of and techniques behind bilin-
ear models in Sect. 2. Our extrapolation experiments are
described in Sect. 3. The results are presented in Sect. 4,
followed by a discussion and future research directions in
Sect. 5. We conclude this work with Sect. 6.

2 Bilinear Statistical Models

A bilinear model is a two-factor model which is linear in
either factor when the other one is kept constant:

y = aTWb, (1)

where y is a scalar observation, a and b are parameterization
vectors defined by the factors, and W is a constant matrix
governing the interaction between the factors.

Extending this to the case of multivalued observations,
each element ysc

k of a K-sized observation ysc in style s and
content c can be described by a bilinear model as

ysc
k =

I∑

i=1

J∑

j=1

wijka
s
i b

c
j . (2)

I and J are the sizes of the parameterization vectors a and b,
respectively. W is now a 3-dimensional matrix, which forms
a mapping from the style and content spaces into observa-
tion space and as such is of size I × J × K . Each wij is a
K-sized base observation, much akin to the eigenface (Turk
and Pentland 1991) and eigenshape (Cootes et al. 1995). In
the case of speech recognition, one could think of them as
voice harmonics that need to be combined to form a certain

Fig. 1 The structure of a symmetric bilinear model. Along the hori-
zontal axis, three phases from the cardiac cycle are shown. Along the
vertical axis we have four different subjects. The set of basis observa-
tions W can not be visualized in a meaningful manner

phoneme in a certain accent or intonation. The a and b vec-
tors provide the information on how to combine those base
observations. For the time being, we will adhere to the orig-
inal nomenclature and call these the content and style vec-
tors, respectively (hence the c and s superscripts). Figure 1
illustrates how the model consists of the sets of parameters
a and b, providing a compact representation of the style and
the content, and the base observations W, derived from the
examples in the bottom-right quadrant.

The choice for bilinear models stems from the idea that
variations in a set of observations are the consequence of
the variation of two independent factors. The examples used
to illustrate the usefulness of bilinear models in Tenenbaum
and Freeman (2000) call upon analyzing the way we man-
age to recognize known characters, people or phonemes in
a font or under viewing circumstances not observed before,
or uttered in an accent not heard before. Somehow, we know
the invariants of that character, person, or phoneme, and in
an observation we can recognize those irrespective of the
variations introduced by the circumstances.

2.1 Asymmetric Models

A combining matrix A can be the result of contracting aW
into a single matrix, leading to an asymmetric model:

ysc
k =

J∑

j=1

as
jkb

c
j , (3)
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where

as
jk =

I∑

i=1

ws
ijka

s
i . (4)

This is useful when the mapping from content to observa-
tion is dependent on style. The J observations of size K

each that make up A are then style-specific base observa-
tions that can be mixed using the parameterization in b. In
essence, the model has then become a unilinear model. It
is possible to invert the roles of style and content, and thus
build a different asymmetric model from the same training
data.

2.2 Symmetric Models

The symmetric model is the original bilinear model as al-
ready presented in (2):

ysc
k =

I∑

i=1

J∑

j=1

wijka
s
i b

c
j ,

where the mapping from the style and content spaces to ob-
servation space, W , is dependent on neither style nor con-
tent. The elements of W are base observations that look like
eigenfaces (Turk and Pentland 1991) but do not represent
an orthogonal basis like eigenelements. The base observa-
tions can then be mixed using the a and b parameterizations
to form any element from the training set, and other para-
meterizations can be used to construct observations of new
style and/or new content.

2.3 Factoring Inter-Subject Variability and Cardiac
Dynamics

2.3.1 Representation of Training Data

The construction of the bilinear models as presented in
Tenenbaum and Freeman (2000) assumes a vector represen-
tation of the observations. This is easily achieved by em-
ploying a surface representation as is commonly used for
the construction of PDM’s like those in Cootes et al. (1995).
In d-dimensional Euclidean space, each training shape is
landmarked with nL points—pseudolandmarks (Dryden and
Mardia 1998)1—of anatomical correspondence throughout
the training set. The set of point coordinates is then concate-
nated to form an (nLd)-dimensional shape vector, or a single
point in an (nLd)-dimensional shape space.

After landmarking and vectorization of our observations,
we have CS (nLd)-dimensional shape vectors: C frames

1In medical image analysis, ‘landmarks’ can refer to either anatomical
landmarks or pseudolandmarks.

per time sequence, S subjects (with one sequence each), nL

landmarks in d dimensions. As is the case in Hamarneh and
Gustavsson (2004), we construct our observation matrix by
‘stacking’ all vectors for one subject onto each other, such
that we obtain a CnLd × S shape matrix Y:

Y =
⎡

⎢⎣
y11 · · · y1C

...
. . .

yS1 ySC

⎤

⎥⎦ . (5)

This is the starting point for the construction of both
the asymmetric and the symmetric bilinear shape models.
Rather than using a 3-dimensional matrix W , we use W
which has a format similar to Y, with the number of ele-
ments limited by the sizes of the parameterization vectors:

W =
⎡

⎢⎣
w11 · · · w1J

...
. . .

wI1 wIJ

⎤

⎥⎦ . (6)

The modeling consists of minimizing the squared recon-
struction error between the original observations and the ap-
proximation the model will provide. Denoting the approxi-
mation of ysc in shorthand notation as

ŷsc =
{

Asbc if the model is asymmetric

asT
Wbc if the model is symmetric

, (7)

we minimize

E =
S∑

s=1

C∑

c=1

‖ysc − ŷsc‖2. (8)

2.3.2 Asymmetric Training

The training of an asymmetric model has a closed-form so-
lution if the number of observations is (nearly) equally dis-
tributed over the style and content classes (Tenenbaum and
Freeman 2000). As the matrix with training data Y is the re-
sult of the product AB, it suffices to compute the Singular
Value Decomposition (SVD) Y = USVT. Then, the matrix
B, containing the phase parameters, can be defined as the
first J rows of VT, while A will be defined as the first J

columns of US.

2.3.3 Symmetric Training

The training of the symmetric model requires the notion of
the vector transpose (Marimont and Wandell 1992). Unlike
the original application of this term, namely the conversion
of a column vector into a row vector and vice versa, the vec-
tor transpose we use here is a matrix operation.

Given an IK × J matrix, where each column was con-
structed by stacking I K-dimensional column vectors onto
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each other, the vector transpose of this matrix is a JK × I

matrix, with the positions of the K-dimensional column vec-
tors transposed rather than the individual elements. In the
case where K = 1, the vector transpose is the normal trans-
pose of the matrix. Otherwise, the vector transpose looks
like

XVT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12

x21 x22

x31 x32

x41 x42

x51 x52

x61 x62

x71 x72

x81 x82

x91 x92

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VT

=

⎡

⎢⎢⎢⎢⎢⎢⎣

x11 x41 x71

x21 x51 x81

x31 x61 x91

x12 x42 x72

x22 x52 x82

x32 x62 x92

⎤

⎥⎥⎥⎥⎥⎥⎦
(9)

for K = 3. It is easy to see from (9) that the vector transpose
operation is invertible: (XVT)VT ≡ X.

For the symmetric model, an iterative method is required
to minimize E in (8). To this end, first A and B are com-
puted. Upon convergence of these computations, W is com-
puted using the results.

Analogously to the case of K = 1 using matrix transpo-
sitions, Y = AWB, the simplified model equation, can be
rewritten as Y = (WVTA)VTB as well as YVT = (WB)VTA.
This leads to two equations that are familiar from the train-
ing of the asymmetric model:

(YBT)VT = WVTA = USVT (10)

and

(YVTAT)VT = WB = USVT. (11)

By iterating over these equations, starting from an initial es-
timate of B using the SVD of Y, convergence towards the
real A and B is guaranteed (Magnus and Neudecker 1988).
As was the case in the previous section, dimensionality re-
duction can be achieved by picking a fixed number of rows
of A and B. Unlike linear models based on PCA, this cannot
be left until the end, as a change in dimensionality of one set
of parameters will affect the other set of parameters. There-
fore this truncation is done in each iteration. Upon conver-
gence of the computation of A and B, what is left is the
computation of W:

W = ((YBT)VTAT)VT, (12)

which satisfies Y = (WVTA)VTB.
In Sect. 1 we already mentioned the relation between the

bilinear models as they are formulated in Tenenbaum and
Freeman (2000) and here, and tensor space decomposition
(De Lathauwer et al. 2000). The two vector transpositions
we use correspond to two of the three tensor unfoldings (De

Lathauwer et al. 2000) of the third-order tensor we could
construct along the axes of subject, phase and pseudoland-
mark coordinate.

3 Experiments

The assumption that shape variation introduced by inter-
subject variation is independent from the dynamics is a sim-
plification of reality. However, hearts with equal geometry at
rest do not necessarily contract in the same way, while hearts
with different geometry may. Factors such as myofiber ori-
entation, local contractility defects like infarction, dilation
or hypertrophy, and wall stress influenced by blood pressure
and loading all influence the contraction pattern, and none
of these are really independent of one another. Therefore we
performed experiments to verify the suitability of bilinear
modeling to capture the dynamics of the shape of the beat-
ing heart. To this end we constructed models factoring the
inter-subject variations (as the style) and the dynamics (as
the content), as illustrated in Fig. 1. Then, the models were
used for extrapolating the learnt dynamics to subjects not
present in the training set. In addition, we compared predic-
tions based on a single phase to the difference between this
shape and phases following it.

3.1 Data

3.1.1 Population

Our data consists of 80 full hearts acquired consecutively,
with closed surface representations for each of five subparts,
listed in Table 1 and visualized in Fig. 3. The population is
distributed as 60% healthy and asymptomatic subjects, 20%
subjects with Coronary Artery Disease (CAD) without a his-
tory of Myocardial Infarction (MI), and 20% subjects with
CAD and a history of MI. Subject age was 58 ± 8 years, and
men made up 56% of the population.

For the experiments we built models of the entire heart as
well as models of only the right and left ventricle (biventric-
ular model) and the LV only.

Table 1 The parts of the heart shape that have a closed surface repre-
sentation, with the associated number of landmarks nL. The parts are
visualized in Fig. 3

Symbol Description nL

LV Left ventricular endo- and epicardium. 2677

RV Right ventricle without septum, with trunk of
pulmonary artery.

7902

LA Left atrium with trunks of pulmonary veins. 6789

RA Right atrium with trunks of venae cavae. 7243

AO Trunk of the aorta. 3000
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Fig. 2 RMS P2S differences between subsequent phases of the left
ventricles, averaged over all 80 subjects, plus and minus one standard
error. The solid line shows the differences before the temporal align-
ment step, while the dashed line shows the differences after this step
(see Sect. 3.1.4 for details on this process). At time 0, the difference
shown is that between phases 15 and 1. The dotted curve at the bottom
represents a schematic ECG, the R-peak at the left being the reference
for the ECG gating (all acquisitions are at R plus a fraction of the R-R
interval). The light grey vertical lines indicate the interval over which
each of the phases was sampled

3.1.2 Imaging Parameters

The imaging was performed using a Toshiba Aquilion 64
multi-slice Computed Tomography (CT) system (Toshiba
Medical Systems, Tochigi, Japan) with a 64-row detector.
Between 80 and 100 ml of contrast material (Xenetic 350)
was administered at an injection rate of 5 ml/s. The rota-
tion time of the scanner was, depending on the subject’s
heart rate, between 400 and 500 ms, and image reconstruc-
tion was performed on a Vitrea post-processing worksta-
tion (Vital Images, Minnetonka, MN, USA). The resulting
dataset consisted of 15 image volumes (temporal phases) ob-
tained using retrospective electrocardiographic (ECG) gat-
ing (Ohnesorge et al. 2002) with voxel dimensions of 0.4 ×
0.4 × 2.0 mm3 per subject. Figure 2 shows the gating se-
quence over the cardiac cycle, albeit that the ECG used is
schematic. Temporal relationships are only preserved with
respect to the R-R interval.2 Overlaid on this sequence are
the Root Mean Square (RMS) Point-to-Surface (P2S) dif-
ferences between subsequent full heart shapes, using a land-
marking scheme as explained hereafter. The value at time 0
reflects the RMS P2S difference between phases 15 and 1.

2The R-R interval is the mean time between the R-peaks—the big
peaks—in the ECG, indicating the firing of an electrical impulse to
the heart muscle, which then contracts.

3.1.3 Landmarking

The data set was then used for the landmarking as presented
in Ordás et al. (2007), resulting in nL = 27611 points per
volume. The point set sampled on the average shape was
triangulated using Amira V3.0 (Visage Imaging, Carlsbad,
CA, USA) to facilitate visualization of this shape, all shapes
in the training set, and all shapes generated using the bilinear
model. Table 1 lists the number of points sampled uniformly
on each of the closed surfaces.

3.1.4 Spatial and Temporal Alignment

The subjects were imaged without sedation, which lead to
heart rates of 62.2 ± 11.9 beats per minute. As the time
it takes the heart to contract is largely independent of the
heart rate, this causes inter-subject phase shifts due to the
time points of the phases not being synchronized. Tempo-
ral alignment would therefore be desired. To this end, we
explored using the method by Perperidis et al. (2005) for
temporal alignment. For each phase, the normalized cross-
correlation coefficient (CC) of image intensities between the
phase at hand and the first phase in the cycle is computed.
As the heart contracts, this scalar reduces as the images be-
come less similar to the first frame. The phase of maximum
contraction (end-systole) is identified as the phase with the
minimum CC. Subsequently, the phase of maximum decel-
eration of relaxation (end-diastole) is identified as the phase
with the minimum second derivative of the CC after the end-
systolic phase. Together with the first and last phase, these
form the phases which are to be aligned. All phases in be-
tween are to be interpolated.

We adapted this approach slightly. We did not use a ref-
erence cycle to identify at which phase end-systole and end-
diastole should be placed. Instead, we used the mode of the
set of identified phases for each, resulting in phase 5 for end-
systole and phase 10 for end-diastole. It should be noted,
however, that of the 80 subjects, the subjects for which the
end-systolic phase was identified as the fifth only slightly
outnumbered those for which the end-systolic phase was
identified as the sixth. Figure 4 shows CC values as the tem-
poral alignment procedure progresses.

It will become apparent, however, that the temporal align-
ment has its limitations. The spread of the heart rates, to-
gether with the low temporal resolution (15 phases, com-
pared to 30 in Perperidis et al. (2005)), could result in a loss
of information in some of the sequences due to linear inter-
polation, which may not be compensated for by the result-
ing correspondence. In some extreme cases, five phases used
information from three original phases, while elsewhere in
the same cycle, five phases were the result of interpolating
between nine. Figure 5 shows how the phases identified as
end-systolic and end-diastolic depended to some extent on
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Fig. 3 Surface rendering of one of the training hearts. In dark (a) the left ventricle, (b) right ventricle, (c) left atrium, (d) right atrium, and (e) aorta

Fig. 4 The effect of the
alignment on the CC of the CT
images. For clarity, only values
for 10 subjects are shown,
including the subjects with
shortest and longest R-R
interval. The volume of the left
ventricle follows a very similar
curve (Perperidis et al. 2005).
(a) CC against time in
milliseconds before alignment.
Note the spread along the
temporal axis. (b) CC against
time in percentage of the cardiac
cycle before alignment. This
corresponds to aligning the first
phase of the cycle and the first
phase of the next cycle. (c) CC
against time in percentage of the
aligned canonic cycle. Positions
in time of the original
acquisitions are interpolated.
(d) Interpolated resampled CC
after full alignment. In practice,
the shapes were aligned by
linear interpolation of
corresponding landmarks

Fig. 5 Scatter plots of the
relationship between heart rate
and the phases in which
(a) maximum contraction
(minimum CC) and
(b) maximum deceleration
(minimum CC′′) are observed.
Note that a higher heart rate
means a shorter R-R interval
and thus the largely
rate-independent duration of the
beat itself taking up a larger part
of this interval
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the heart rate, but that even for equal heartrates a significant
spread in identified phases may be observed.

Since the identification of the end-systolic and end-
diastolic phases was based on the intensities of the original
images, we extracted the left ventricle and the biventricu-
lar meshes at this point, as the result of temporally aligning
those shapes separately would not be influenced.

After the temporal alignment, we also aligned the shapes
spatially. With nL landmarks describing each of our shapes,
we denote the point set in R

3 equivalent to shape vector x as
the nL × 3 matrix X. The mean phase X̄j

input of each subject
j was translated to position its center of gravity at the origin.
Then, it was rescaled to have unit norm. Subsequently, Pro-
crustes alignment (Goodall 1991) was performed on these
shapes, which, for each subject j , yielded a translation tj ,
rotation Rj and isotropic scaling sj . Then, for each phase i,

Xji
output = sj × Xji

inputRj + tj . (13)

This way, the spatial relationships within the cycles were
preserved. Removal of those relationships would reduce the
overall variation observed in the data set, which in turn
would lead to smaller reconstruction errors. By retaining the
relationships instead, we possibly sacrificed some extrapo-
lation accuracy in exchange for clinical meaningfulness of
the results.

3.2 Experiments

We performed leave-n-out experiments with increasing
training set sizes (n = {40,20,10,5}). Thus, we divided our
set of subjects into 80

n
disjoint subsets, where each subset

plays the role of test set once and forms part of the training
set for the remainder of cases, as illustrated on the left side
of Fig. 6. For each of the subjects from the test subset, five
phases were used to derive the subject parameterization us-
ing the constructed model, shown at the top right in Fig. 6.

Fig. 6 Overview of the leave-n-out experiments. Dark grey blocks
represent known shape data. White blocks with a b# and aN# denote
phase parameterizations from the model and new subject parameteri-
zations, respectively. The subscript N is used to indicate that this is a
newly derived parameterization. Arrows with open heads indicate that
the elements on either side are the same, yet transported for clarity of
the figure. Each of the 80

n
disjoint sets of n subjects (left side) is used

as a test set once, with the other sets combining to form the training
data. For each of the subjects in the test set, a set of shapes, corre-

sponding to an equally sized known set of phases (in the figure this is
the set {11, . . . ,15}), is used to derive the subject parameterizations
aN# (top right), using W (not in the figure) and the phase parameter-
izations from the model. The resulting subject parameterizations are
then combined with W and the remaining phase parameterizations to
extrapolate the shapes to the other phases for the test subjects (bottom
right). The resulting shapes are represented in the figure by light grey
blocks, and correspond to the block with the question mark (left side)
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The remaining ten phases were then approximated (bottom
right in Fig. 6) and the reconstruction errors recorded. Er-
rors were grouped by phase and model dimensionality, and
by phase set. The four sets of five phases covered systole, di-
astole, rest, and a combination of these (2 each from systole
and diastole, 1 from rest), respectively.

3.3 Extrapolation

What we wish to do amounts to extrapolation, which is only
one of several applications of bilinear models, as is shown in
Tenenbaum and Freeman (2000). For a set of data Ynew de-
fined over an incomplete set of content classes associated
with Binc ⊂ B, in a new style with unknown parameteri-
zation anew, the missing elements need to be reconstructed
using the characteristics of those contents learned from the
training data (other styles) and the style characteristics that
are to be derived from the newly presented observations.

The models we built were symmetric models so that we
could reduce the dimensionality of both sets of parameteri-
zations to eliminate noise and improve robustness. Knowing
which are the phases we have for deriving the new subjects’
parameters, we used the phase parameters from the model
associated with these known phases:

CVT
1 = WVTB

T
inc. (14)

What remains is a linear system of equations

Ynew = C1anew (15)

which, when solved, gives us a parameterization anew of the
new subject. This system has many more equations than un-
knowns (the ratio running into the tens of thousands). There-
fore, a least squares approximation is found.

Since computing both the subject parameters aj and
phase parameters bi in the models involves SVD’s, the last
column of both A and B should be a zero vector. In practice
we have found that this is not always the case, possibly due
to limitations in numerical precision. Additionally, the last
few columns typically contain but noise as observed in the
data. We used the dimensionality reduction as described in
Sect. 2.3.3 to remove these columns. In the first iteration, we
use the associated singular values to determine the number
of dimensions required to capture at most 95% of the vari-
ance observed, both between subjects and between phases.
The resulting dimensionalities are then fixed throughout the
remainder of the training procedure.

3.4 Reconstruction

Using the resulting anew from (15), we approximate the re-
maining set of phases Yrem by

CVT
2 = WVTBT

rem, (16)

Ŷrem = C2anew, (17)

with

(Brem ⊂ B) ∧ (Brem ∩ Binc = ∅). (18)

The reconstruction error is then recorded as the RMS P2S
error between each predicted shape ŷremi

in Ŷrem and its cor-
responding ground truth shape:

RMS(ŷ) =
√∑

i d
2
i

nL
, (19)

where nL again is the number of landmarks used to describe
each of the shapes, and di is the distance from the i-th land-
mark of ŷ to the surface defined by the ground truth shape y
of the corresponding phase and subject.

3.5 Comparison to Direct Approximation

In image sequence segmentation, it is not uncommon that
the segmentation result of a phase is used as the initialization
for the next phase. We believe that the bilinear models can
provide an alternative in offering an initialization for a larger
part of the sequence, or even the entire sequence, based on
a (preliminary) result on the first phase. Subsequently the
subject parameters would be optimized to complete the seg-
mentation.

In order to compare the initialization for multiple phases
based on one phase, we used an experiment similar to the
one described in the previous sections. However, this time
we extrapolated five phases from one, for each of the three
cardiac periods: systole, diastole, and rest. We compare the
extrapolation errors—initialization errors in the segmenta-
tion setting—to the errors we would obtain should we use
the one phase directly for the initialization of these phases.

4 Results

4.1 Extrapolation

The results are presented for four sets of phases {1 . . .5},
{6 . . .10}, {11 . . .15} and {4,5,9,10,15} used for the deriva-
tion of a new subject’s parameters and thus for the four
groups of 10 reconstructed remaining phases. The results
were produced using the temporally and spatially aligned
data, unless stated otherwise.

The results of the LV models, the biventricular mod-
els and the full heart model results were highly correlated.
Therefore we refrain from reporting the results on the biven-
tricular and full heart models in the same detail as those from
the LV models.
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Fig. 7 The best, worst and mean RMS P2S reconstruction errors for the left ventricular model plus and minus one standard error in mm, after
deriving the new subjects’ parameters using (a) phases 1 through 5, (b) 6 through 10, (c) 11 through 15, and (d) phases 4, 5, 9, 10 and 15, using
models built with increasing training set sizes

In Fig. 7, we present the mean RMS error of the worst
and best reconstructed phases in the LV models, as well as
the mean over all phases, against the size of the training sets
(and consequently against the number of folds). It can be
noted that larger training set sizes generally produced more
accurate reconstructions. Additionally, the tendency of the
curves suggests that some performance improvement could
be achieved by further increasing the training set size. The
errors are comparable to the differences between subsequent
phases, reported in Fig. 2. Figure 8 shows the mean recon-
struction errors and the standard errors for each set of phases
used for extracting the subject parameters, for the biventric-
ular and full heart models. The same tendency can be ob-

served here, although it is more obvious in the results for
the more complex structure.

From Fig. 7, it is possible to conclude that, in general,
the worst and best reconstructed phases retain that status ir-
respective of the training set size. Thus, the quality of the
reconstruction depends to some extent on the reconstructed
phase, yet quite likely more on the combination of the recon-
structed phase and the phases used for parameter extraction.
The set of phases used for parameter extraction alone has
some influence, but difference between the results for phase
set 4 ({4,5,9,10,15}) and the other phase sets, presented in
Figs. 7(d) and 8, would best be attributed to the spread of
the phases instead of the phases themselves.
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Fig. 8 The mean RMS P2S reconstruction errors for (a) the biventricular models and (b) the full heart models, plus and minus one standard
error in mm, using models built with increasing training set sizes. Each line represents a set of phases used for the derivation of the new subjects’
parameters, numbered in the order as they occur in Fig. 7

Fig. 9 The cumulative histogram of errors for the left ventricular
(black), biventricular (dark grey) and full heart (light grey) models,
using the data preprocessed without (solid line) and with (dash-dot)
the temporal alignment step. Reconstructions included were all those
obtained from the 16-fold experiments

Figure 9 shows the RMS P2S errors against the per-
centage of reconstructions, both for the data set that was
aligned spatially and temporally, and for the set that was
only aligned spatially. It gives an idea of the distribution of
the error sizes. For each of the structures, the median error
lies around 2 mm, while an error of 3 mm or more is well
past the 80th percentile.

Fig. 10 The mean RMS P2S reconstruction error for each subject, plus
and minus one standard error. It shows that some subjects have a worse
reconstruction over the full range of structures and phases, whereas
other subjects’ shapes were relatively easy to approximate

Another factor that has a certain degree of influence is
which subjects’ shapes are being reconstructed. Figure 10
shows the mean approximation error for each subject in the
16-fold experiments. The order of the subjects in the plot
follows that of the folds. It is obvious that the shapes of
certain subjects turn out to be reconstructed poorly at every
phase, regardless of the phase set used for deriving the sub-
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Fig. 11 Reconstructions of the
shapes with the median RMS
P2S errors, constructed using
the highest dimensional models.
(a) Left ventricle (1.869 mm),
(b) biventricular (2.212 mm)
and (c) full heart (2.344 mm).
The wireframe shows the
ground truth for these shapes. In
(b) and (c), the difference in
point density between the left
ventricle and the other structures
is clearly visible

ject parameters. Thus, the model did not generalize well to
these subjects.

Finally, the local errors of the reconstructions are shown
in Fig. 11. The errors are color-coded on the surface rep-
resentations of the reconstructions with the median RMS
P2S error, while the wireframe mesh shows the ground truth
shape. Figure 11(c) shows that some error can accumulate in
the most complex subparts, namely the atria, and especially
in Fig. 11(b) it shows that the greater number of points on
the right ventricle can result in lower accuracy for the left
ventricle.

4.2 Comparison to Direct Approximation

The comparison between the approximation errors obtained
using phases 1, 6 and 11 as approximations for the 5 fol-
lowing phases, and the approximation errors obtained when
the subject parameterizations are derived from these same
phases, each one separately, is presented in Fig. 12(a), (b)
and (c) for the LV, biventricular and full heart model, re-
spectively. In the set of phases approximated using the first
phase, we can see that the bilinear approach clearly outper-
forms the direct approximation. This set of phases shows a
dramatic change in shape as the heart goes from a state of
rest to full contraction. The bilinear approach maintains the
mean error within 3 mm. Less dramatic is the shape change
in the second set of phases, approximated using phase 6.
This is diastole, during which the heart does not return en-
tirely to its full resting state. Recall from Sect. 3.1.4 that
the end of diastole was identified as the phase of greatest
deceleration; the heart is still relaxing after this point. In
this group, the bilinear approach is more favored as the dis-
tance from the original phase increases. For the final set of
phases, the direct use of phase 11 is favored, although the
difference with the bilinear approach is not always signifi-
cant.

In Fig. 12(d) we show how the two approaches compare
overall, with respect to the number of phases separating the
approximated phase and the phase used for the approxima-
tion or subject parameter extraction. It is clear to see that the
big differences from the first set of phases dominate.

5 Discussion and Future Work

In the previous section we reported extrapolation errors
obtained using bilinear models of the heart of varying
complexity. We compared the performance of the models
built from spatially and temporally aligned shape data with
merely spatially aligned data, and we compared the extrap-
olation errors with the differences between the ground truth
of phases, simulating the initialization for image sequence
segmentation, which is our intended future use of these
models.

Errors of up to 3 mm, as observed in both experiments,
should be considered very acceptable, given that the approx-
imated shapes were not seen before. This contrasts with the
generalization ability measure commonly used to evaluate
PCA-based shape models (Styner et al. 2003), where the
shape to be approximated is known. When providing the
initialization for image segmentation, it can offer a better
initialization than using a mean shape or the segmentation
result of the previous phase, and it can accumulate evidence
to improve the initialization as one progresses through the
sequence.

We confined ourselves to test data with phases matching
those that the model was built with. As is demonstrated in
Tenenbaum and Freeman (2000), this is not a prerequisite.
We are keen to look into the performance of the extrapola-
tion regarding both phase and subject, and to include this in
the application of the models to image sequence segmenta-
tion.

Although we find the performance of the models very ac-
ceptable, there are certainly some limitations regarding both
the modeling and the temporal alignment which may have
influenced the results. For one, the acquisition scheme as
shown in Fig. 2 is geared towards maximizing visibility of
the coronary arteries. Therefore, phases 14 and 15 both have
a short time span. The bulk of cardiac motion, however, lies
just behind the QRS complex, resulting in the first five to
six phases to be integrated over a time interval with larger
spatial changes than the rest. A different temporal section-
ing might therefore influence the results. More specifically,
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Fig. 12 The approximation errors plus and minus one standard error
when deriving subject parameters from one phase only, for (a) the LV,
(b) biventricular model and (c) the full heart model. These would be the
initialization errors if used in a segmentation setting. Note that phase

1 is approximated using phase 11, as if it were the 16th phase. Plot
(d) shows the errors per distance from the one phase that was used to
derive the subject parameters, for each of the three model types: left
ventricular, biventricular and full heart

higher frequency sampling should result in improved perfor-
mance both without the temporal alignment as well as of the
temporal alignment. Additionally, sedation of patients with
higher heart rates would have reduced the spread in heart
rate and the resulting mismatch of the phases (up to 5 phases
for end-systole and up to 7 phases for end-diastole, as shown
in Fig. 5) before the temporal alignment step.

Secondly, the poor approximations of certain subjects’
shapes, as seen in Fig. 10, may be due to the fact that both
training and testing data were mixes of healthy and patho-
logical heart shapes. The ratios of these shapes (3:1:1) may
have resulted in a bias towards the healthy hearts, result-
ing in poor derivations of the subjects’ parameters in case

of pathology. While it was out of the scope of this paper,
whether the bilinear models are powerful enough to sepa-
rate these groups may be a topic of further research. Also,
whether the results would be better if model and test data
consisted of only a single class—healthy, or one specific
pathology—is an issue that warrants further looking into.
When this point is resolved by patient selection, bilinear sta-
tistical shape models may provide a means to homogenize
multiple acquisition protocols, which could greatly facilitate
retrospective studies.

As the statistics in Table 2 and the reconstructions in
Fig. 11 suggest, it is not a given that the more complex shape
will always be more difficult to reconstruct. There seems to
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Table 2 The main statistics for the reconstruction errors using the
largest training set. Statistics were computed using all 3200 reconstruc-
tions for each model type

Stat Median Min Max

Struct With temporal alignment

LV 1.869 mm 0.978 mm 7.224 mm

LV + RV 2.212 mm 1.084 mm 7.940 mm

FH 2.344 mm 1.380 mm 6.642 mm

Without temporal alignment

LV 1.999 mm 0.820 mm 8.557 mm

LV + RV 2.359 mm 1.102 mm 8.923 mm

FH 2.436 mm 1.401 mm 7.473 mm

be a tradeoff between complexity and the amount of infor-
mation that can be extracted from the example shapes used
for the derivation of the new subjects’ parameters. However,
considering the greater variability that can be observed in the
atrial area, and especially around the trunks of the attached
vessels and arteries, one would have expected the biventric-
ular models to outperform the full heart model.

How to align sequences of shapes is a question that is
not answered entirely. We believe to have taken the most
straightforward approach by aligning the mean shapes of
each cycle after the temporal alignment step, such that the
mean would be computed over the same phases for each sub-
ject. It would deserve preference, however, to use a more
unified approach to align the shapes both temporally and
spatially at the same time. Nevertheless, Fig. 9 does show
that employing the temporal alignment indeed improves the
extrapolation performance.

We reported the RMS Point-to-Surface errors of the re-
constructions. While these numbers were not unsatisfactory,
they do not necessarily have a clinical meaning. Future ex-
periments will focus on the prediction of clinical parameters
such as Left Ventricular Volume and Ejection Fraction, Wall
Thickening and Wall Motion, and classification of the dy-
namics based on the parameters acquired using the models.

Finally, the reconstruction errors could decrease further if
the training set were larger, which can clearly be concluded
from Figs. 7 and 8. Assuming that an appropriate number
of training samples for PCA-based models of a complex
shape, such as the human heart, easily runs into the triple
digits (Ordás et al. 2007), there is room for improvement by
increasing the number of training samples for the bilinear
model as well.

6 Conclusion

We have shown in this work how to construct bilinear mod-
els of the human heart, and how to derive parameters for new

subjects using these models and a limited amount of data
from these new subjects. For the construction, simple SVD’s
and vector transpositions of the data matrix were employed
to establish parameterizations for the training subjects and
phases, after which a mixing matrix was computed by solv-
ing a linear system. The extraction of subject parameters was
also reduced to a linear system.

Subsequently, we showed that with such parameters we
could predict the shape of the heart over the previously un-
seen remaining two thirds of cardiac phases with a median
RMS P2S error around 2 mm, and that 90% of predictions
returned an error below 3.5 mm. Additionally the extrac-
tion of parameters from one phase and extrapolation over
five following phases returned errors that compare favorably
with the differences between subsequent phases. This sug-
gests that a bilinear factorization of the heart shape may be
appropriate to separate inter-subject variation from dynam-
ics.

Acknowledgements The authors thank Dr. R. Leta and Dr. F. Car-
rera from the Cardiology Service, Hospital Santa Creu i Sant Pau,
Barcelona, Spain, for the acquisition of the images. We also thank
Dr. G. Avegliano of the Instituto Cardiovascular de Buenos Aires, Ar-
gentina, Prof. B.H. Bijnens and the anonymous reviewers for their use-
ful comments.

References

Abboud, B., & Davoine, F. (2004). Bilinear factorization for facial ex-
pression analysis and synthesis. IEE Proceedings—Vision, Image
and Signal Processing, 152(3), 327–333.

Bistoquet, A., Oshinski, J., & Škrinjar, O. (2007). Left ventricular
deformation recovery from cine MRI using an incompressible
model. IEEE Transactions on Medical Imaging, 26(9), 1136–
1153.

Blackall, J. M., King, A. P., Penney, G. P., Adam, A., & Hawkes, D. J.
(2001). A statistical model of respiratory motion and deformation
of the liver. In W. J. Niessen & M. A. Viergever (Eds.), Lecture
notes in computer science: Vol. 2208. Proc. 4th int. conf. medical
image computing and computer assisted intervention (MICCAI),
Utrecht, The Netherlands (pp. 1338–1340). Berlin: Springer.

Bosch, J. G., Mitchell, S. C., Lelieveldt, B. P. F., Nijland, F., Kamp,
O., Sonka, M., & Reiber, J. H. C. (2002). Automatic segmenta-
tion of echocardiographic sequences by active appearance motion
models. IEEE Transactions on Medical Imaging, 21(11), 1374–
1383.

Chandrashekara, R., Rao, A., Sanchez-Ortiz, G. I., Mohiaddin, R. H.,
& Rueckert, D. (2003). Construction of a statistical model for
cardiac motion analysis using nonrigid image registration. In
C. J. Taylor & J. A. Noble (Eds.), Lecture notes in computer sci-
ence: Vol. 2732. Proc. 18th int. conf. information processing in
medical imaging (IPMI), Ambleside, United Kingdom (pp. 599–
610). Berlin: Springer.

Chuang, E., & Bregler, C. (2005). Mood swings: Expressive speech
animation. ACM Transactions on Graphics, 24(2), 331–347.

Cootes, T. F., Cooper, D. H., Taylor, C. J., & Graham, J. (1992). Train-
able method of parametric shape description. Image & Vision
Computing, 10(5), 289–294.



Int J Comput Vis (2009) 85: 237–252 251

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance
models. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 21(6), 681–685.

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active
shape models—their training and application. Computer Vision
and Image Understanding, 61(1), 38–59.

Cuzzolin, F. (2006). Using bilinear models for view-invariant action
and identity recognition. In Proc. IEEE int. conf. on computer vi-
sion and pattern recognition (CVPR), New York, NY, USA (pp.
1701–1708) 2006.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear
singular value decomposition. SIAM Journal on Matrix Analysis
and Applications, 21(4), 1253–1278.

Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New
York: Wiley.

Duncan, J. S., & Ayache, N. (2000). Medical image analysis: progress
over two decades and the challenges ahead. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(1), 85–106.

Frangi, A. F., Niessen, W. J., Viergever, M. A., & Lelieveldt, B. P. F.
(2005). A survey of three-dimensional modeling techniques for
quantitative functional analysis of cardiac images. In L. Landini,
V. Positano, & M.F. Santarelli (Eds.), Advanced image process-
ing in magnetic resonance imaging (Chap. 9, pp. 267–342). Boca
Raton: CRC Press.

González-Mora, J., De la Torre, F., Murthi, R., Guil, N., & Zapata,
E. L. (2007). Bilinear active appearance models. In R. Goecke,
S. Lucey, & I. Matthews (Eds.), Proc. int. workshop on non-rigid
registration and tracking through learning, Rio de Janeiro, Brazil,
2007.

Goodall, C. (1991). Procrustes methods in shape analysis. Journal of
the Royal Statistical Society—Series B: Statistical Methodology,
53(2), 285–339.

Grimes, D. B., & Rao, R. P. N. (2005). Bilinear sparse coding for in-
variant vision. Neural Computation, 17(1), 47–73.

Hamarneh, G., & Gustavsson, T. (2004). Deformable spatio-temporal
shape models: extending active shape models to 2D + time. Image
& Vision Computing, 22(6), 461–470.

Hoogendoorn, C., Sukno, F. M., Ordás, S., & Frangi, A. F. (2007). Bi-
linear models for spatio-temporal point distribution analysis: ap-
plication to extrapolation of whole heart cardiac dynamics. In:
M. Nielsen, W. Niessen & C. F. Westin (Eds.), Proc. 8th int.
workshop on mathematical methods in biomedical image analysis
(MMBIA), Rio de Janeiro, Brazil, 2007.
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