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Abstract Iterative algorithms are often used for range im-
age matching. In this paper, we treat the iterative process of
range image matching as a live biological system: evolving
from one generation to another. Whilst different generations
of the population are regarded as range images captured at
different viewpoints, the iterative process is simulated us-
ing time. The well-known replicator equations in theoreti-
cal biology are then adapted to estimate the probabilities of
possible correspondences established using the traditional
closest point criterion. To reduce the effect of image reso-
lutions on the final results for efficient and robust overlap-
ping range image matching, the relative fitness difference
(rather than the absolute fitness difference) is employed in
the replicator equations in order to model the probability
change of possible correspondences being real over succes-
sive iterations. The fitness of a possible correspondence is
defined as the negative of a power of its squared Euclidean
distance. While the replicator dynamics penalize those in-
dividuals with low fitness, they are further penalised with a
parameter, since distant points are often unlikely to represent
their real replicators. While the replicator equations assume
that all individuals are equally likely to meet each other and
thus treat them equally, we penalise those individuals com-
peting for the same points as their possible replicators. The
estimated probabilities of possible correspondences being
real are finally embedded into the powerful deterministic
annealing scheme for global optimization, resulting in the
camera motion parameters being estimated in the weighted
least squares sense. A comparative study based on real range
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images with partial overlap has shown that the proposed al-
gorithm is promising for automatic matching of overlapping
range images.
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1 Introduction

The latest laser range scanners have become more and more
popular for 3D measurement. The output of laser range
scanners is a set of structured data points with or without
reflectance strength information, depicting the reflectance
characteristics of the 3D objects of interest. The structured
data points can easily be triangulated and rendered as range
images (Fig. 1). These range images are described in local
camera-centred coordinate systems. Accurate matching of
overlapping range images finds numerous applications of
the latest laser scanning techniques in areas such as im-
age recognition, image retrieval, image transmission, ob-
ject modelling, simultaneous localization and map building
(SLAM), and industrial inspection. Range image matching
has two goals: one is to establish correspondences between
overlapping range images, and the other is to estimate the
camera motion parameters that bring one range image into
the best possible alignment with the other. Fixing one goal
renders the other trivial.

1.1 Previous Work

Due to the challenging nature of automatic range image
matching, a large number of algorithms have been devel-
oped. In Besl and McKay (1992), Zhang (1992), the closest
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points in one range image to the transformation of points
in another are selected as possible correspondences. When
the surface represented by one range image is a subset of
that represented by another, there is no need for too much
concern over outliers, due mainly to noisy points, occlusion,
appearance and disappearance of points in different range
images. Otherwise, if the distance between a possible cor-
respondence is larger than a threshold, then it should be re-
garded as an outlier. A scheme for dynamically setting up
this threshold is proposed in Zhang (1992). While the sum
of the squared distances between possible correspondences
is minimized for the camera motion estimation in Besl and
McKay (1992), Zhang (1992), it is proposed in Chen and
Medioni (1992) to minimise the sum of the squared dis-
tances from the transformation of points in one range im-
age to the tangent planes at the intersection points between
the normals at the transformed points and the surface rep-
resented by another. The algorithm proposed in Besl and
McKay (1992), Zhang (1992), Chen and Medioni (1992) is
usually collectively called the iterative closed point (ICP)
algorithm. The ICP algorithm has attracted intensive atten-
tion from 3D imaging community and has become a stan-
dard approach for range image matching. Its brief analysis
is given in the next section. In Gold et al. (1998), Dewaele
et al. (2004), the probabilities of possible correspondences
as a complete combination of all the points in the two im-
ages being matched are estimated through maximizing the
entropy of these probabilities. While a two-way constraint
is imposed to refine the probabilities of possible correspon-
dences in Gold et al. (1998), a one-way constraint is imposed
instead in Dewaele et al. (2004). In Liu (2005, 2006), it is
proposed to consider the closest points for efficient registra-
tion, instead of the complete combination of all the points in
the two images being matched.

In Johnson and Hebert (1999), spin images are firstly ex-
tracted for the representation of the points in different im-
ages and then matched for the establishment of possible cor-
respondences between the images being registered. To elim-
inate false correspondences, a geometric consistency test is
performed with regard to the similarity measure between
two spin images and the discrepancy between the spin-map
coordinates. Spin images are chosen in Huber and Hebert
(2003) for pair-wise registration of data sets in the process
of automatic registration of multiple data sets. Overlapping
distance, free space violation fraction, and free space viola-
tion odds are defined between two registered surfaces and
are used to rank the results of pair-wise matching. While the
dimensionality of spin images (Johnson and Hebert 1999) is
two, the information in Brusco et al. (2005) used for creat-
ing the spin image histogram is three dimensional with axes
representing the grey level value as a function of chromatic
values (R,G,B) of the surface texture and the distances of
any neighbouring point from and along the normal vector at

the point of the interest. The dimensionality of the spin im-
age depends on the number of features used to encapsulate
the local geometric and/or optical information for the repre-
sentation of points. The size of the spin image depends on
the spatial quantization of these features. After surfaces have
been represented as triangular meshes, the including angle
between a facet of interest and any of its neighbours within
a certain distance and the weighted distance from all the
points in the neighbouring facet to the plane that contains the
facet of interest are used in Ashbrook et al. (1998) to con-
struct a 2D frequency histogram, where the weight is com-
puted as the product of the areas of the two facets. Through
matching the frequency histograms from two surfaces, facet
correspondences are established and applied to estimate the
transformation for the alignment of the two surfaces using
the Hough accumulator. In Xiao et al. (2007), signed dis-
tance vectors are computed in 3D volumetric space for each
voxel and matched using dynamic programming, yielding
corresponding voxel pairs, from which a list of candidate
transformations is estimated and optimized by minimizing
the sum of residuals of corresponding surface voxels. A 2D
histogram about the 3D shape index and the including angle
between the normal vector at a point of interest and that of its
neighbour is constructed in Chen and Bhanu (2007) for the
representation and matching of the points of interest with the
final results being refined using a ICP variant (Zhang 1992).
In Chang et al. (2004), a medial scaffold graph is extracted
from each 3D shape and matched against that from another
using the graduated assignment algorithm (Gold and Ran-
garajan 1996). In Makadia et al. (2006), the constellation
image is extracted from each range scan. To deal with the
computational efficiency, the spherical harmonics and the
rotational Fourier transform of these constellation images
are computed. The camera rotation parameters are estimated
as those maximizing the correlation of the transformed con-
stellation images from two range scans, while the camera
position parameters are estimated as those maximizing the
convolution of the occupancy grid of one range scan and the
shifted occupancy grid of another.

In Lomonosov et al. (2006), a genetic search algorithm
(GA) is used to pre-register two overlapping surfaces. This
algorithm encodes 7 parameters as integers: one for overlap,
three for Euler angles of camera rotation and three for cam-
era position, and minimizes the trimmed mean of squared
errors of possible correspondences divided by a power of
the overlap. It is proposed in Silva (2005) that in the begin-
ning iterations of registration, the GA minimizes the mean
of squared errors of possible correspondences with outliers
rejected by a threshold, while in the later iterations it maxi-
mizes the surface interpenetration measure (SIM). The hill-
climbing offset range for the generation of a new candidate
solution to each of the six parameters, three for camera rota-
tion and three for camera position, is dynamically decreased.
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Instead of randomly selecting and combining the candidate
solutions, the scatter search (Santamaria et al. 2007) adopts
for computational efficiency a complete combination of all
the possible solutions in a reference set whose size is much
smaller than that of the population as in the traditional GA.
To combine different solutions, the BLXα method is em-
ployed.

The aforementioned automatic range image matching
algorithms can be classified into three main categories:
(1) feature extraction and matching (Johnson and Hebert
1999; Huber and Hebert 2003; Brusco et al. 2005; Ash-
brook et al. 1998; Chang et al. 2004), (2) iterative possible
correspondence establishment and camera motion estima-
tion from these possible correspondences (Besl and McKay
1992; Zhang 1992; Chen and Medioni 1992), and (3) it-
erative camera motion search and evaluation of the result-
ing camera motion parameters (Lomonosov et al. 2006;
Silva 2005; Santamaria et al. 2007). All these approaches
have their own advantages and disadvantages and could suc-
ceed in one situation, but degrade catastrophically in an-
other. Feature extraction and matching approaches are sus-
ceptible to outliers and common ambiguities Makadia et al.
(2006). The establishment of possible correspondences and
camera motion parameter re-estimation from these possible
correspondences are interwoven (Gold et al. 1998) and re-
quire an accurate initialization of camera motion parame-
ters. Iterative camera motion search requires prior knowl-
edge about range and desired accuracy of the camera motion
parameters and is usually computationally intensive. Conse-
quently, automatic range image matching still remains a ma-
jor hurdle in 3D data acquisition (Zagorchev and Goshtasby
2005).

1.2 Brief Analysis of ICP

The ICP algorithm has become a standard approach for
range image matching. However, it introduces false corre-
spondences in almost every iteration of the matching for the
following reasons.

1. Occlusion, appearance and disappearance of points in
different range images are almost always present.

2. The imaging process introduces noise due to point sam-
pling on the object surface, measurement quantization,
electrical and mechanical errors, shape discontinuities,
and various reflectance properties of the object surface.

3. A single distance constraint is employed to determine the
correspondent of a point and a single constraint in general
cannot uniquely determine the exact position of a point in
3D space.

4. The initial camera motion parameters are not necessarily
very accurate. Even though they are relatively accurate,
they cannot guarantee that the ICP algorithm will always

produce more accurate camera motion parameter estima-
tion results (Brusco et al. 2004). While the matching ob-
jective function is a complex non-linear function of cam-
era motion parameters and may have a large number of
local optima determined by the actual range images be-
ing matched, the iterative optimization procedure in the
ICP algorithm cannot guarantee that the global optimum
of the matching objective function is always found.

As a result, a large number of ICP variants have been pro-
posed for more accurate and robust matching results based
on techniques such as removing boundary points (Turk and
Levoy 1994); using rigid motion constraints (Liu et al. 2000)
or collinearity constraints (Liu et al. 2006a); combining rigid
motion constraints with structural constraints (Liu and Wei
2004); checking the interpoint distance compatibility (Do-
rai and Wang 1998) or orientation consistency (Pulli 1999;
Zhang 1992); increasing the dimensionality of points us-
ing invariant features (Sharp et al. 2002), colour (Schutz
et al. 1998), or laser reflectance strength value (Allen et al.
2003); matching interpoint distances (Chen et al. 1999), 2D
spin images (Andreetto et al. 2004; Huber and Hebert 2003;
Johnson and Hebert 1999), textured 2D spin images (Br-
usco et al. 2005), or surface signatures (Yamany and Farag
2002); resampling points in the normal space (Rusinkiewicz
and Levoy 2001); dynamically thresholding false correspon-
dences (Zhao et al. 2004); using ε reciprocal points for
the camera motion estimation (Pajdla and Van Gool 1995);
bootstrapping camera motion models and transformation es-
timate (Stewart et al. 2003); and taking the confidence value
of each point into account for camera motion estimation
(Zhu et al. 2007).

In order to update the camera motion parameters, it is
vital to evaluate the possible correspondences established.
The existing evaluation methods can be classified into two
main categories: (1) classify these correspondences into ei-
ther real or false ones (Zhang 1992; Turk and Levoy 1994;
Liu et al. 2000; Liu et al. 2006a; Pulli 1999), and (2) esti-
mate the probabilities of these correspondences being real
(Liu 2005; Liu 2006; Granger and Pennec 2002). While the
first class of methods usually requires that the range im-
ages include objects with complex enough geometry so that
reliable features can be extracted and employed to do the
classification, the second class has to deal with outliers in
one way or another and accurately estimate and globally op-
timize the probabilities of possible correspondences being
real. The former has an advantage in being more computa-
tionally efficient, but often fails in the following two sce-
narios: (1) when the range images include objects either
with symmetry or with relatively simple geometry such as
spheres, cones, and cylinders; and (2) when extracted fea-
tures are either too sensitive to imaging noise, occlusion,
appearance and disappearance of points in any image or too
inexpressive for the representation of the objects of interest
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Fig. 1 Sample real range images used. Images in top two rows are
used for training. The other images are used for performance test.
From top left to bottom right in top two rows: buddha140, 160, 180,
200, and 220, duck160, 180, 200, 220, and 240, cow48, 51, 54, 57,
and 60, and tubby180, 220, 260, 300, and 340. Images in rows 3, 4
and 5 from left column to right column: value0, 10, and 20, buddha40,
20, and 0, duck100, 120, and 140, frog40, 20, and 0, cow39, 42, and

45, dinosaur0, 36, and 72, tubby60, 100, and 140, and lobster60, 100,
and 140. Images in rows 6 and 7 from left column and right column:
adapter-2 and 3, agpart2-2 and 1, curvblock-2, adapter+curvblock,
hump-3 and 1, block1-2 and 1, occl4 and 5, cap2 and 3, and bigwye3,
and 4. The images in the top 5 rows were captured using a Minolta
Vivid 700 range camera, while those in the bottom two rows were cap-
tured using a Technical Arts 100X range scanner

from different viewpoints. The latter has an advantage in be-
ing more robust and stable and producing accurate matching
results, but often requires an explicit modelling of outliers
and accurate estimation and optimization of the probabili-
ties of possible correspondences being real.

1.3 Inspiration from Replicator Equations

Since the fundamental theorem of natural selection was first
formulated by Fisher in his 1930 book (Fisher 1930), it has
been intensively employed to investigate the dynamics of in-
teractive game and biologically evolutionary processes (No-
vak and Sigmund 2004; Stadler and Stadler 2003). The fun-
damental theorem of natural selection (Fisher 1930) states
that the rate of increase in fitness of any organism at any
time is equal to its genetic variance in fitness at that time.

It describes the evolution of a population in which, unless
there is accidental mutation, the offspring will completely
inherit the traits of their parents. All individuals behave ac-
cording to pre-programmed patterns, that is, pure strategies.

In contrast, as far as we are aware, this useful principle
has attracted little attention from the 3D imaging commu-
nity. Careful analysis reveals that range image matching, in-
teractive game and biological systems differ in the following
six aspects.

1. While the replicator equations describe a pseudo-dynam-
ic system whose payoff matrix is usually determined in
advance, range image matching represents a truly dy-
namic system in which the fitness of each individual has
to be re-estimated at each iteration.



34 Int J Comput Vis (2009) 83: 30–56

2. While the replicator equations describe a process whose
evolutionary behaviour is determined by the fixed payoff
matrix, the trajectory of evolutionary range image match-
ing process is determined by the target range image P′ for
the first range image P to evolve towards.

3. While the replicator equations assume that the individu-
als in the population can be selected multiple times, range
image matching algorithms assume that each individual
can only be selected at most once.

4. While the replicator equations assume that the individu-
als are completely mixed and thus are equally likely to
meet each other, range image matching algorithms as-
sume that closer points are more likely to be their repli-
cators.

5. While the replicator equations assume that the individ-
uals with low fitness will shrink, range image matching
algorithms assume that such individuals can even be fur-
ther penalized.

6. While the replicator equations treat all individuals equal-
ly, range image matching algorithms usually have to pe-
nalise those individuals that compete for the same points
as their possible replicators.

Thus, the replicator equations have to be adapted so that they
are applicable to accurate automatic range image matching.
The adaptation, however, is not trivial.

It is believed that range image matching provides a per-
fect platform to test, understand and further develop the
replicator equations for various real world applications,
since the data can be easily captured for the verification of
the theoretical analysis results using the latest laser range
scanners within seconds. This is in sharp contrast with the
fact that, when the replicator equations have been analysed
in the context of interactive game and evolutionary biology,
limited data is often used to validate system behaviour and
only unsuitable incomplete ecological data is available.

1.4 The Proposed Work

In this paper, a novel automatic range image matching algo-
rithm is developed. Range images are represented as point
clouds captured using laser range scanners. The novelty of
the proposed algorithm lies in that the replicator equations
are adapted from the field of interactive game and mathemat-
ical biology for the modelling of the dynamics in the itera-
tive process of automatic overlapping range image match-
ing.

We regard the automatic iterative range image matching
process as an evolutionary one. Thus, the replicator equa-
tions are applicable to the description of its dynamics. In
this process, we consider that the population consists of all
the points in one range image, and the relative frequency of
each individual is defined as its normalized probability be-
ing in the overlapping area with another. The fitness of each

individual is defined as a negative function of the squared
Euclidean distance between its resulting possible correspon-
dence in the two overlapping range images established us-
ing the traditional closest point criterion (CPC) (Besl and
McKay 1992). The average fitness of the entire population is
defined as the weighted average fitness over the entire pop-
ulation. While the replicator equations consider the absolute
fitness difference, we consider the relative fitness difference
instead in the replicator equations for the modelling of the
probability change of each individual being in the overlap-
ping area over successive iterations.

The replicator dynamics penalize those individuals with
low fitness. We further penalise them using a parameter with
an attempt to increase the average fitness of the entire pop-
ulation. While the replicator equations assume that different
individuals are equally likely to meet each other and treat
them equally, we penalise those individuals that compete for
the same points in the target range image as their possible
replicators, since they are unlikely to lie simultaneously in
the overlapping area. The estimated probability of any in-
dividual being in the overlapping area is finally embedded
into the powerful deterministic annealing scheme (Puzicha
et al. 1997) for global optimization with an attempt to obtain
accurate range image matching results. Since our algorithm
is a novel variant of the traditional ICP algorithm (Besl and
McKay 1992; Zhang 1992) and models the dynamics of the
evolutionary overlapping range image matching process, it
is called the EvolICP algorithm in the rest of this paper.

For a comparative study of performance, we duplicated
the experimental results of the genetic algorithm (GA) in
Silva (2005) and the feature extraction and matching of lo-
cal surface patches (LSP) (Chen and Bhanu 2007) and im-
plemented the extended version, SoftICP (Liu 2005; Liu
2006), of the SoftAssign algorithm (Gold et al. 1998) and
the GenICP algorithm proposed in Liu et al. (2006b). These
four algorithms were selected respectively from the three
different classes of methods discussed above in Sect. 1.1 and
represent the state of the art technique for automatic over-
lapping range image matching. The other reasons why the
latter two algorithms were chosen for a comparative study
are that:

• They are all extensions of the popular traditional ICP
algorithm (Besl and McKay 1992; Zhang 1992), apply-
ing the same criterion to establish possible correspon-
dences and then using various strategies for their evalu-
ation. While the SoftICP algorithm applies the traditional
Shannon entropy to estimate the probabilities of possi-
ble correspondences being real, the GenICP algorithm ap-
plies Tsallis entropy. They all have an advantage of easy
implementation;

• The classification based ICP variants (Turk and Levoy
1994; Zhang 1992; Pulli 1999; Liu and Wei 2004;
Rusinkiewicz and Levoy 2001) are usually not robust,
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since it is often difficult for them to develop universally
effective classification rules. In contrast, the probabil-
ity based ICP variants (Liu 2005; Liu 2006; Liu et al.
2006b), as is the case for both the SoftICP and GenICP
algorithms, often succeed in explicitly modelling outliers,
applying the entropy maximization principle (Gold et al.
1998) for the estimation of the probabilities of possi-
ble correspondences being real, and globally optimizing
them using the powerful deterministic annealing scheme
(Puzicha et al. 1997) and thus, are generally more robust;
and

• The dynamics these two algorithms describe in the it-
erative process for automatic overlapping range image
matching is closely related to that the proposed EvolICP
algorithm does. The actual relations are outlined in the
next section.

Thus, such comparative study is interesting and valuable and
can reveal which dynamic is more effective for the descrip-
tion of the iterative process for automatic overlapping range
image matching.

While the CPC searches possible correspondences in the
image space, the GA searches camera motion parameters
in the camera motion space for overlapping range image
matching. Such comparative study is again interesting, since
it can reveal which strategy is more effective for automatic
overlapping range image matching: either firstly search pos-
sible correspondences and then evaluate these correspon-
dences for camera motion parameter re-estimation or firstly
search camera motion parameters and then evaluate these
parameters usually involving the resulting possible corre-
spondences for camera motion optimization.

While the proposed EvolICP algorithm evolves the prob-
abilities of possible correspondences being real, the LSP
method directly identifies possible point matches. Such
comparative study is again interesting, since it can reveal
whether a closed form or iterative solution is more effective
for the establishment of real correspondences.

1.5 Experimental Setup and Performance Measurement

The experiments carried out in this paper were based on 86
real range images all downloaded from a publicly available
range image database currently hosted by the Signal Analy-
sis and Machine Perception laboratory at Ohio State Uni-
versity. These images were captured using either a Minolta
Vivid 700 range camera or a Technical Arts 100X range
scanner and were represented as point clouds. 20 images
captured using the Minolta Vivid 700 range camera were
used to fine tune the parameters involved in the proposed
EvolICP algorithm. Another 66 images were used for a com-
parative study of performance of different algorithms. All
the images captured using the Minolta Vivid 700 range cam-
era are named as the object name followed by the rotation

angle of the camera motion. All the images captured using
the Technical Arts 100X range scanner are named the same
as those in the original database.

All experiments were performed on a Pentium IV,
2.80 GHz, 504 MB RAM computer using the programming
language C within the MS visual C++ 6.0 package. The pro-
posed EvolICP algorithm was always initialised by the pure
translational motion derived from the centroid difference of
the two point clouds being matched. It was directly applied
to real range images without any image pre-processing or
feature extraction and matching and also without any prior
knowledge about the distribution of points, occlusion, ap-
pearance and disappearance of points in different images, or
motion information. Thus, experiments based on such im-
ages are objective in revealing its performance for automatic
overlapping range image matching.

To measure the performance of matching algorithms, the
following parameters were defined: the average eμ and stan-
dard deviation eσ of matching errors in millimetres based on
reciprocal correspondences (RCs), and the matching time in
seconds. A RC is such a possible correspondence (pi ,p′

c(i))

between two overlapping range images P and P′ that pi in
P finds p′

c(i)
in P′ as its possible correspondent and p′

c(i)
in

P′ finds also pi in P as its possible correspondent. In the fig-
ures of matching results, yellow colours represent the trans-
formed first range images and green colours represent the
second range images.

The rest of this paper is structured as follows: Sect. 2
briefly analyses the replicator equations and discusses
the inherent relations amongst the EvolICP, SoftICP and
GenICP algorithms in the sense of the dynamics they de-
scribe in the iterative process for overlapping range image
matching. Section 3 develops the novel range image match-
ing algorithm, while Sect. 4 presents the experimental re-
sults. Finally, Sect. 5 discusses a number of issues related to
overlapping range image matching and draws some conclu-
sions.

2 Brief Analysis of Replicator Equations

In this section, we briefly analyse the properties of the repli-
cator equations that are useful for overlapping range image
matching algorithm development. The following notations
are used throughout this paper: capital letters denote vec-
tors or matrices, lower case letters denote scalars, ‖ · ‖ de-
notes the Euclidean norm of a vector, | · | denotes the ab-
solute value of a scalar, and parameters with and without
ˆ denote estimated and real ones respectively. Two pairs of
terms, (1) the fitness of an individual being in the overlap-
ping area and the fitness of a possible correspondence being
real, and (2) the normalized probability of a possible corre-
spondence being real and the relative frequency of a point in
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one range image being in the overlapping area with another,
will be used interchangeably without causing any ambiguity
in understanding the relative contents.

2.1 Properties of Replicator Equations

As early as 1930, R.A. Fisher proposed a well known the-
orem (Fisher 1930), called the fundamental theorem of nat-
ural selection. This theorem states that the rate of increase
in fitness of any organism at any time is equal to its genetic
variance in fitness at that time. Mathematically, this theorem
can be represented as:

ẇi = wi(ei − E), (1)

where ẇi denotes the derivative with regard to time t of the
relative frequency wi of an individual i in the population,
ei is its fitness, and E is the weighted average fitness of the
entire population. This equation describes the dynamics of
natural selection. The state of the population at time t is de-
scribed simply as a vector w(t) = {w1(t),w2(t), . . . ,wn(t)}
which is clearly constrained to lie in the standard sim-
plex in the n-dimensional Euclidean space: Sn = {w ∈ Rn :∑

i wi = 1, wi ≥ 0}.
Replicator equations make the following assumptions:

• Infinite population size: Assuming an infinitely large pop-
ulation makes the equations easier to understand and an-
alyze, as the dynamics of populations become determin-
istic when an infinite number of individuals is assumed.
In the case of a finite population size, the dynamics of
populations become stochastic;

• Continuous time: The dynamics in a replicator equation
are defined by the rates of birth and death of individuals,
resulting in differential equations;

• Complete mixing: It is assumed that all individuals in the
population have an equal chance to meet each other in a
game to determine their interdependent payoff or fitness;
and

• Strategies breed true: Strategies are assumed to be inher-
ited into the next population dependent on their expected
payoff.

While the assumptions of the replicator equations hold
true to varying degrees in different situations, they find wide
applications in interactive game theory and mathematical bi-
ology (Novak and Sigmund 2004; Stadler and Stadler 2003).
In population genetics, the population represents all pos-
sible individuals. Let Ai denote the expected number of
offspring from individual i. Then the payoff matrix of the
population can be defined as: U = {uij = AiAj }. In game
theory, the population represents a set of available strate-
gies. Let uij denote the payoff of playing strategy i against
strategy j . Then the fitness of strategy i is: ei = ∑

j uijwj

and the weighted average fitness of the entire population is:

E = ∑
i

∑
j uijwiwj . The replicator equation has the fol-

lowing appealing properties:

• The state vector w(t) always lies in the simplex Sn due
simply to the fact that:

∑
i ẇi = 0. This means that the

state vector always represents the relative frequency of
each individual in the population;

• When U = {uij } is symmetric, then the weighted average
fitness E of the entire population always increases over
time;

• When U = {uij } is symmetric, the dot product of vectors
w(t) and Uw(t) is a Lyapunov function. Thus, a system
with the replicator dynamics is always stable; and

• If w ∈ Sn is evolutionarily stable, then w is in asymptoti-
cal equilibrium. The converse is not valid. For n ≤ 3, the
replicator equation has no limit cycles. For n ≥ 4, it has
limit cycles for certain payoff matrices. If there is no fixed
point in the interior of Sn, then every trajectory converges
to the boundary of Sn. If, on the other hand, the boundary
is repelling, then there exists a unique fixed point in the
interior, which corresponds to the time average of every
trajectory in the interior of Sn.

The first property actually implements a normalisation of
the state vector through the dynamics themselves; the sec-
ond makes sure that under certain conditions, the system
will improve its performance steadily over time; the third
guarantees that under certain conditions, the evolutionary
system is stable no matter where the system starts the evo-
lution from; and the fourth reveals when there are optimal
solutions and where these solutions are. All these proper-
ties are appealing for overlapping range image matching.
The first property normalises the probabilities of possible
correspondences required for the estimation of camera mo-
tion parameters; the second implies that the average match-
ing error of the entire population is likely to monotonically
decrease over successive iterations; the third implies that
the final matching results have nothing to do with and thus
greatly facilitate the initialization of the parameters of in-
terest; and the fourth shows how to efficiently search the
optimal state variables and how to evaluate the final state
variables for camera motion estimation. When the system is
stable: ẇi = wi(ei − E) = 0, then either wi = 0 or E = ei .
The former implies that individual i dies and thus, is a disap-
pearing point, while the latter implies that individual i sur-
vives and thus, is a point in the overlapping area. Although
range image matching algorithms seek to possess all these
appealing properties, the problem lies in how to establish
their corresponding pre-conditions. While we emphasise the
range image matching algorithm development in this paper,
the theoretical investigation of these pre-conditions are left
for our future research. These pre-conditions will help gain
knowledge about the behaviour of the proposed EvolICP al-
gorithm which is developed in the next section for automatic
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overlapping range image matching: whether it will success-
fully evolve one range image towards another.

2.2 Inherent Relations amongst EvolICP, SoftICP, and
GenICP

The SoftAssign algorithm (Gold et al. 1998) constructs the
following objective function for free form shape matching:

E3D(M,R, t) = min
M,R,t

n2∑

j=1

n1∑

i=1

mij‖p′
j − Rpi − t‖2

− α

n2∑

j=1

n1∑

i=1

mij

+ 1

β

n2∑

j=1

n1∑

i=1

mij (lnmij − 1). (2)

This objective function simultaneously optimises the corre-
spondence matrix M = {mij } (mij ∈ [0,1]) and the camera
motion parameters rotation matrix R and translation vec-
tor t. In this objective function, the first term is the match-
ing error of a point match (pi ,p′

j ), the second term max-
imises the overlapping area between the free form shapes
being matched, and the third term is a barrier function mak-
ing sure that mij is positive.

Careful analysis reveals that the objective function equa-
tion (2) maximises the traditional Shannon entropy: HS =
−∑

j

∑
i mij lnmij . While the parameter α does not affect

the estimation of mij due to normalization, the dynamic em-
bedded in the objective function equation (2) can be de-
scribed as:

ṁij = −βmij‖p′
j − Rpi − t‖2. (3)

Comparing (1) with (3), it can be seen that they are very
similar and the latter assumes that the weighted average fit-
ness of the entire population is zero. Hence, the SoftAssign
algorithm describes a special case of replicator dynamics.

While the SoftAssign algorithm applies the traditional
Shannon entropy to estimate the probabilities of possible
correspondences being real, the GenICP algorithm (Liu et
al. 2006b) employs the generalised Tsallis entropy: H

q
T =

∑
j

∑
i m

q
ij −1

1−q
(q > 0, q �= 1) for the same purpose. In this

case, the GenICP algorithm describes a more general dy-
namic:

ṁij = −βm
q
ij‖p′

j − Rpi − t‖2. (4)

From the above analysis, it is interesting to note that even
though the EvolICP, SoftICP, and GenICP algorithms are

apparently different, the dynamics they describe in the iter-
ative process for automatic overlapping range image match-
ing can actually be subsumed into the same more general
form:

ẇi = βw
q
i (ei − E), (5)

from which we gain a deep insight into the relationship be-
tween survival probability and fitness of different individ-
uals and the interaction between different individuals and
the environment. Such insight is very valuable to advance
overlapping range image matching algorithm development
as demonstrated in the next section.

3 The Novel Algorithm

In this section, a novel algorithm is developed based on
the replicator equation discussed in the last section for
the automatic matching of two overlapping range images
that are represented as point clouds: P={p1,p2, . . . ,pn1 } and
P′={p′

1,p′
2, . . . ,p′

n2
}. The n1 and n2 differ mostly since they

are different samplings of partially different surface areas.
The points from P and P′ respectively with the same sub-
script do not mean that they represent correspondences.

To develop the novel algorithm, we make no assumptions
about the point clouds to be matched except that the geome-
try they represent is complex enough for camera motion in-
formation delivery and that they have a relatively large (e.g.
60%) overlap in 3D space. These assumptions are reason-
able, since it is difficult for any automatic algorithm to deal
with sliding errors caused by data with simple (e.g. plane,
sphere) geometry. A relatively large overlap between neigh-
bouring views represents typical imaging configurations and
can facilitate range image matching. In the process of iter-
ative overlapping range image matching algorithm develop-
ment, a number of issues often need to be addressed such
as establishing possible correspondences, evaluating their
probabilities being real, dealing with outliers, minimizing
their weighted average matching error, updating camera mo-
tion parameters, etc. In this section, the novel algorithm is
developed from the following seven aspects: possible corre-
spondence establishment, adaptation of the replicator equa-
tion, parameter derivation, fitness estimation, penalty pa-
rameter, many-to-one mapping established possible corre-
spondences, and mean field annealing. The final subsection
summarizes the novel algorithm.

3.1 Establishment of Possible Correspondences

Given that the camera motion parameters rotation matrix R
and translation vector t have been initialised or estimated,
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Fig. 2 Matching results of different overlapping range images for the proposed EvolICP algorithm using relative (odd column) and absolute (even
column) fitness differences. Left two: buddha140-160; Second two: duck160-180; third two: cow48-51; Right two: tubby180-220

Table 1 The average eμ and standard deviation eσ in millimetres of
matching errors over RCs, expected and estimated rotation angles θ

and θ̂ in degrees of the camera motion, the number N of finally estab-
lished RCs, and matching time in seconds for the matching of different

overlapping range images using the proposed EvolICP algorithm based
on relative fitness difference (Reldiff) and absolute fitness difference
(Absdiff) respectively

Image Diff eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

buddha140-160 Reldiff 0.60 0.30 20 20.34 10113 73

Absdiff 0.60 0.30 20.34 10120 111

duck160-180 Reldiff 0.35 0.15 20 19.00 10553 82

Absdiff 0.35 0.15 19.00 10554 111

cow48-51 Reldiff 0.49 0.39 30 29.90 1892 28

Absdiff 0.49 0.39 29.87 1892 32

tubby180-220 Reldiff 0.25 0.13 40 40.67 3860 27

Absdiff 0.26 0.13 40.59 3877 38

for any point pi in P, the traditional CPC can be used to
determine its possible correspondent p′

c(i) in P′ as:

p′
c(i) = argminp′∈P′ ‖p′ − Rpi − t‖, (6)

where c(i) represents the subscript of a point in P′: c(i) ∈
[1, n2]. This criterion minimises the Euclidean distance be-
tween the transformed point Rpi + t and any point p′ in P′.
The search space is determined by P′. This criterion is es-
sentially a mapping that associates point p′

c(i)
in P′ with a

point pi in P. The optimised k-D tree data structure (Fried-
man et al. 1977) was employed to accelerate the closest
point search. As a result of this mapping, a set of possible
correspondences (pi ,p′

c(i)) has been established between P
and P′. In the following sections, wi represents the relative
frequency, subject to a constraint

∑n1
i=1 wi = 1, of a point

pi in P being in the overlapping area with P′ and the nor-
malized probability for pi in P to select p′

c(i) in P′ as its
possible replicator for estimation of the camera motion pa-
rameters, ei is its fitness whose definition will be discussed
below in Sect. 3.4. The relative frequency wi can be inter-
preted as the normalized probability of possible correspon-
dence (pi ,p′

c(i)) being real.

3.2 Adaptation of the Replicator Equation

The replicator equation assumes that the relative rate of in-
crease ẇi/wi equals the difference between the fitness of an
individual and the average fitness E = ∑

j wj ej over the en-
tire population. For more computationally efficient and ro-
bust range image matching results, we consider the relative
fitness difference, rather than the absolute fitness difference,
in (1):

ẇi = wi

ei − E

E
(7)

so that the effect of the scanning resolutions of range im-
ages on the final matching results can be reduced. In this
case, the trajectory of evolutionary overlapping range image
matching process still lies in the simplex S defined above,
since

∑
i ẇ = 0 holds.

Some experimental results are presented in Fig. 2 and
Table 1, clearly showing that while the replicator equation
based on the relative fitness difference produces similar eμs
and eσ s to those based on the absolute fitness difference
for the matching of four pairs of overlapping range images,
the former reduces the computational time of the latter by
a maximum of 34.23% and 25.45% on average. Thus, in
the rest of this paper, we will always use the relative fitness
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Fig. 3 Matching results of different overlapping range images for the
proposed EvolICP algorithm with the fitness of a point defined as
functions of the SED between its resulting possible correspondence.

Columns 1,4,7, and 10: τ = 0.0001; Columns 2,5,8, and 11: τ = 0.01;
Columns 3,6,9 and 12: τ = 0.017. Left three: buddha160-180; Second
three: duck180-200; Third three: cow51-54; Right three: tubby220-260

difference for efficient automatic overlapping range image
matching.

3.3 Parameter Derivation

We would like to apply the replicator equation to model
dynamics of the automatic iterative overlapping range im-
age matching process which is actually a discrete one. In
this case, we may require the discrete form of the replica-
tor equation which was derived in Alboszta and Miekisz
(2004) as: wi(t + 1) = wi(t)ei (t)∑

j wj (t)ej (t)
. This equation has been

applied to successfully find the isomorphism between two
graphs in Pelillo (1999). Unfortunately, this equation does
not work for overlapping range image matching. This may
be because its assumption outlined in the last section was
violated. While the existing research usually first discretizes
the replicator equations and then applies their discrete form
to investigate the problems of interest (Pelillo 1999), we di-
rectly use their continuous form to derive the parameters of
interest. We rewrite (7) as: ẇi

wi
= ei−E

E
. Integrating both sides

of this equation about relative variables wi on the left hand
side and ei on the right hand side leads to:

wi = exp((0.5ei − E)ei/E). (8)

While we are more interested in whether wi can realistically
characterise the probabilities of possible correspondences
being real, we temporarily relax the constraint

∑
wi = 1

without affecting the camera motion parameter estimation
at all in the weighted least squares sense, while wi ≥ 0.

3.4 Fitness Estimation

The fitness ei of an individual pi in the current population P
is crucial to determine whether it expands or shrinks in the
process of evolution. Thus, it must be carefully defined. In
this paper, it is defined as the negative squared Euclidean
distance between the possible correspondence (pi ,p′

c(i)):

ei = −‖p′
c(i) − Rpi − t‖2. In this case, the fitness of one

individual was estimated independent of that of another. In
the real world, however, different individuals in the popula-
tion usually interact with each other and compete for lim-
ited resources in the environment. To simulate the interac-
tion among different individuals and the environment, for

the sake of computational efficiency and overlapping range
image matching accuracy, the fitness ei of each individual
pi in the current population P is defined as the negative of
a power of the squared Euclidean distance (SED) between
(pi ,p′

c(i)
):

ei = −‖p′
c(i) − Rpi − t‖2τ , (9)

where parameter τ ≥ 0 and it denotes the extent to which
different individuals in the population interact with each
other and the environment.

Some experimental results are presented in Fig. 3 and Ta-
ble 2, showing that τ must not be too large. For example,
when it was set as 0.017, the proposed algorithm failed to
match the buddha160-180 and tubby220-260 images, as one
intersects the other in 3D space, instead of one being super-
imposed onto the other. The proposed EvolICP algorithm
with τ = 0.0001 produced similar eμs and eσ s to those with
τ = 0.01. The former, however, increases the computational
time of the latter by a maximum of 68.11% and 31.46%
on average. To achieve a good compromise among stability,
accuracy, and computational efficiency, in the rest of this pa-
per, we let τ = 0.01.

3.5 Penalty Parameter

While the fitness of an individual pi is defined as the neg-
ative of a power of the squared Euclidean distance between
(pi ,p′

c(i)), it may be useful for range image matching algo-
rithms to penalise those individuals with low fitness, since
the distant points are less likely to be their real replicators.
To this end, we introduce a parameter η (η ≥ 1) into (8) as:

wi = exp((0.5ηei − E)ei/E) (10)

so that these individuals are penalised throughout the whole
process of evolution, instead of just at later stages.

Some experimental results on how to determine the
penalty parameter η are presented in Fig. 4 and Table 3,
showing that η must not be either too large or too small.
The proposed algorithm with η taking a value of 5 produced
similar eμs and eσ s to those with η taking a value of 40.
However, the latter reduced the computational time of the
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Table 2 The average eμ and standard deviation eσ of matching errors
in millimetres over RCs, expected and estimated rotation angles θ and
θ̂ in degrees of the camera motion, the number N of finally established
RCs, and matching time in seconds for the matching of different over-

lapping range images using the proposed EvolICP algorithm with the
fitness of a point defined as functions of the SED between its resulting
possible correspondence

Image τ eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

buddha160-180 0.0001 0.59 0.24 20 19.96 10982 95

0.01 0.59 0.25 20.12 10961 66

0.017 1.25 3.26 81.27 203 187

duck180-200 0.0001 0.31 0.14 20 19.43 12214 116

0.01 0.31 0.14 19.25 12266 69

0.017 0.31 0.14 19.27 12223 122

cow51-54 0.0001 0.75 0.40 30 31.25 1096 24

0.01 0.74 0.41 30.98 1081 23

0.017 0.73 0.41 30.91 1073 22

tubby220-260 0.0001 0.26 0.14 40 39.22 2494 139

0.01 0.26 0.14 39.45 2469 127

0.017 0.74 0.97 89.79 128 164

Fig. 4 Matching results of different overlapping range images for the
proposed EvolICP algorithm with penalty parameter η taking different
values. Columns 1,4,7, and 10: η = 5; Columns 2,5,8, and 11: η = 40;

Columns 3,6,9, and 12: η = 50. Left three: buddha180-200; Second
three: duck200-220; Third three: cow54-57; Right three: tubby260-300

Table 3 The average eμ and standard deviation eσ of matching er-
rors in millimetres over RCs, expected and estimated rotation angles θ

and θ̂ in degrees of the camera motion, the number N of finally estab-

lished RCs, and matching time in seconds for the matching of different
overlapping range images using the proposed EvolICP algorithm with
penalty parameter η taking different values

Image η eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

buddha180-200 5 0.58 0.25 20 19.76 11389 112

40 0.58 0.26 19.93 11412 81

50 0.58 0.26 19.90 11410 134

duck200-220 5 0.30 0.13 20 19.42 12087 126

40 0.30 0.13 19.67 12056 78

50 0.30 0.13 19.66 12084 149

cow54-57 5 0.68 0.37 30 30.35 2971 1383

40 0.67 0.36 30.32 2974 1022

50 3.97 9.25 180.00 32 1032

tubby260-300 5 0.27 0.14 40 39.61 1951 44

40 0.26 0.14 39.89 1926 39

50 0.26 0.15 39.91 1925 43
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Fig. 5 Matching results of different overlapping range images for the
proposed EvolICP algorithm with exponential penalty parameter γ

taking different values. Columns 1,4,7, and 10: γ = 0.05; Columns

2,5,8, and 11: γ = 2; Columns 3,6,9, and 12: γ = 2.525. Left three:
buddha200-220; Second three: duck220-240; Third three: cow57-60;
Right three: tubby300-340

Table 4 The average eμ and standard deviation eσ of matching er-
rors in millimetres over RCs, expected and estimated rotation angles
θ and θ̂ in degrees of the camera motion, the number N of finally es-

tablished RCs, matching time in seconds for the matching of different
overlapping range images using the proposed EvolICP algorithm with
exponential penalty parameter γ taking different values

Image γ eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

buddha200-220 0.05 0.59 0.25 20 19.79 11165 68

2 0.59 0.26 20.05 11117 49

2.525 0.59 0.26 20.08 11104 78

duck220-240 0.05 0.31 0.15 20 18.94 11314 126

2 0.30 0.14 19.38 11257 77

2.525 0.57 0.66 180.00 123 161

cow57-60 0.05 0.49 0.19 30 30.32 3251 26

2 0.49 0.20 30.58 3246 23

2.525 0.49 0.20 30.60 3242 26

tubby300-340 0.05 0.25 0.15 40 40.44 2695 28

2 0.25 0.15 40.65 2689 22

2.525 0.33 0.25 180.00 146 30

former by a maximum of 38.09% and 25.71% on average.
The proposed algorithm with η taking a value of 50 failed
to match the cow57-60 images, as the two images have been
entirely displaced in 3D space. To exert appropriate penalty
and balance accuracy, robustness, and computational effi-
ciency for automatic overlapping range image matching, in
the rest of this paper, we let η = 40.

3.6 Many-to-One Mapping Established Possible
Correspondences

While the replicator equation assumes that all the strategies
in the population can be chosen by an arbitrary number of
players, the range image matching algorithms often assume
that a point in one image can only correspond to at most a
single point in another and vice versa due simply to the oc-
clusion, appearance and disappearance of points in different
range images. The points in P that choose the same points
in P′ as their possible correspondents have to compete for
these points (limited resources) as their real correspondents.
The resulting correspondences are called many-to-one map-
ping established possible correspondences (MTOCs). Since

MTOCs are unlikely to be simultaneously real, they should
be penalised for accurate overlapping range image match-
ing results. To this end, the following three-step scheme is
proposed:

• Initialize w′
j = 1 (j = 1,2, . . . , n2);

• Accumulate probabilities of MTOCs: w′
c(i)

← w′
c(i)

wi

(i = 1,2, . . . , n1);
• Re-estimate the probability of each possible correspon-

dence (pi ,p′
c(i)): wi ← (wiw

′
c(i))

γ (i = 1,2, . . . , n1)

where a parameter γ (γ > 0) was introduced to control the
extent to which MTOCs were penalized. The rationale be-
hind this penalization scheme is threefold: (1) The relative
ranks of different individuals according to their fitnesses are
retained; (2) The MTOCs are heavily penalized due to their
accumulated probabilities that are usually smaller than 1;
and (3) All others are also affected by such MTOCs, since
as long as they exist, there is potential for them to compete
for limited resources.

Some experimental results are presented in Fig. 5 and
Table 4, showing that the exponential penalty parameter γ

must not be either too small or too large. The proposed
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EvolICP algorithm with γ taking a value of 0.05 produces
similar eμs and eσ s to those with γ taking a value of 2. How-
ever, the latter reduces the computational time of the former
by a maximum of 38.89% and 24.95% on average. For the
matching of the duck220-240 images, the estimated rotation
angle of the camera motion has been increased by 2.32%,
while the original 18.94◦ is already quite accurate with re-
spect to the expected 20◦. The proposed EvolICP algorithm
with γ taking a value of 2.525 failed completely to match
the duck220-240 and tubby300-340 images, as it established
just hundreds, rather than thousands, of RCs. To exert appro-
priate penalization and for the sake of robustness, accuracy,
and computational efficiency, in the rest of this paper, we let
γ = 2.

3.7 Mean Field Annealing

In order to optimize the probabilities wi of possible corre-
spondences (pi ,p′

c(i)) being real, we embed them into the
powerful deterministic annealing scheme (DAS) (Puzicha et
al. 1997):

wi = exp(β(0.5ηei − E)ei/E), (11)

where parameter β (β > 0) denotes the inverse temperature.
The rationale behind this DAS is twofold: (1) It is often pow-
erful enough for a global optimization of the probabilities
of possible correspondences established, and (2) It is used
to simulate time over which one range image evolves to-
wards another. At the beginning of overlapping range image
matching, the camera motion parameters rotation matrix R
and translation vector t are inaccurate, resulting in the es-
tablished possible correspondences (pi ,p′

c(i)) being unjus-
tified. This means that all these possible correspondences
(pi ,p′

c(i)) are equally likely to be real. Consequently, the in-
verse temperature β should be small. With the range image
matching progressing, the camera motion parameters rota-
tion matrix R and translation vector t become more and
more accurate, differentiating real correspondences from
false ones. In this case, the inverse temperature should be
large, penalising those possible correspondences whose fit-
nesses are significantly lower than the weighted average fit-
ness over the entire population.

3.8 Summary of the Novel EvolICP algorithm

Putting together all the ingredients described in the previous
sections, we have the following algorithm for the automatic
matching of two overlapping range images represented re-
spectively as point clouds:

Initialize R to be the identity matrix, t to be the pure
translational motion derived from the centroid difference

of the point clouds being matched, starting inverse tem-
perature β0, inverse temperature β = β0, inverse temper-
ature increasing rate βr , final inverse temperature βf ,
desired relative variation ρ of camera motion parame-
ters over two successive iterations, maximum iteration
number I0, iteration number k = 0, and w

(k)
i =1/n1(i =

1,2, . . . , n1).
Begin A: Do A until β ≥ βf

Begin B: Do B until the relative variation of both rota-
tional and translational vectors at two successive itera-
tions is smaller than ρ or # of iterations ≥ I0

Use (6) to establish a set of possible correspondences
(pi ,p′

c(i)) between P and P′ being matched;
Compute the fitness ei of each individual pi in the
population P using (9);
Compute the weighted average fitness over the entire

population: E =
∑

i w
(k)
i ei

∑
i w

(k)
i

;

Update the state variables w
(k+1)
i using (11);

Use the procedure described in Sect. 3.6 to penalise
the MTOCs;
Begin C: Update camera motion parameters

Use the quaternion method (Besl and McKay
1992) to update camera motion parameters ro-
tation matrix R and translation vector t in the
weighted least squares sense through optimizing
the objective function:

J3D(R, t) = min
R,t

n1∑

i=1

w
(k+1)
i ‖p′

c(i) − Rpi − t‖2;

End C
w

(k)
i ← w

(k+1)
i

k ← k + 1
End B
β ← βrβ;

End A

From the development of the proposed EvolICP algorithm
above, it can be seen that it retains the computational com-
plexity, O(n lnn), of the traditional ICP algorithm acceler-
ated by the k-D tree data structure (Friedman et al. 1977).
In the experiments described in this paper, unless other-
wise stated, the following parameter values were used: β0 =
0.00001, βr = 1.05, βf = 1.0, I0 = 10, ρ = 0.001, τ =
0.01, η = 40, and γ = 2.

4 Experimental Results

In this section, we experimentally validate the proposed
EvolICP algorithm for automatic matching of overlapping
range images depicting objects with various geometrical
complexities. For a comparative study of performance, we
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duplicated the experimental results of the GA in Silva (2005)
and the feature extraction and matching of local surface
patches (LSP) (Chen and Bhanu 2007) and implemented the
extended version, SoftICP (Liu 2005; Liu 2006), of the Sof-
tAssign algorithm (Gold et al. 1998) and the GenICP algo-
rithm described in Liu et al. (2006b). To deal with main
concerns of performance of the proposed EvolICP algo-
rithm, the comparative study is conducted from the follow-
ing eight aspects: probability evolution, ICP variants for rel-
atively small motions, ICP variants for relatively large mo-
tions, image orders, image resolutions, ICP variants and GA,
EvolICP and LSP, and overall analysis.

4.1 Probability Evolution

In order to get a rough idea of how the replicator equation
evolves the probabilities of possible correspondences estab-

lished by the traditional CPC being real for the automatic
matching of overlapping range images, in this section, we
show two examples. One is based on the cow42-39 images
and the other on the tubby100-60 images in Fig. 1. For leg-
ibility, 10 points were first randomly selected with uniform
distribution over all the points in the cow42 and tubby100
images respectively and the evolution of probabilities of
their resulting possible correspondences being real is then
illustrated. The experimental results are presented in Fig. 6.

Figure 6 shows that at the beginning of matching, all pos-
sible correspondences have almost the same probability be-
ing real due to inaccurate camera motion parameters. With
the matching process progressing, while the probabilities
of all these correspondences become smaller and smaller,
the relative difference between the minimum and maximum
probabilities wmin and wmax of these correspondences be-

Fig. 6 The evolutionary process of probabilities of possible corre-
spondences established using the traditional CPC being real based on
different overlapping range images. Top row: cow42-39. Bottom row:
tubby100-60. Left column: the evolutionary process of probabilities of

sampled correspondences being real. Right column: the relative differ-
ence between the minimum and maximum probabilities of all possible
correspondences



44 Int J Comput Vis (2009) 83: 30–56

Fig. 7 Matching results of different overlapping range images subject
to relatively small motions using different algorithms. From left col-
umn to right column: valve10-0, valve20-10, buddha20-40, buddha0-

20, duck120-100, duck140-120, frog20-40, and frog0-20. Top row:
EvolICP; Middle row: SoftICP; Bottom row: GenICP

comes larger and larger: 2(wmax − wmin)/(wmax + wmin).
After the evolution has terminated, the real correspondences
have probabilities larger than zero and false correspon-
dences have probabilities close to zero, resulting in real
correspondences being eventually differentiated from false
ones. In these two cases, the average registration error eμ

over RCs is 0.67 mm with a scanning resolution of 1.73 mm
and the estimated rotation angle of the camera motion is
30.04◦ with an expectation of 30◦ for the matching of the
cow42-39 images and 0.26 mm with a scanning resolution
of 0.84 mm and 39.72◦ with an expectation of 40◦ for the
matching of the tubby100-60 images. These results clearly
show that, despite the fact that the cow42 image is cluttered
by the background and has an overlap with the cow39 im-
age as little as 2786/max(11540,4774) × 100% = 24.14%
and the tubby images were captured from side views with
an overlap as little as 2041/max(4713,4361) × 100% =
43.31%, the replicator equations have been successfully
adapted to model the dynamics in the iterative process for
the automatic matching of these images, since the estimated
rotation angles of the camera motions are close to the ex-
pected ones and the average registration errors are as small
as about 1/3 their scanning resolutions. This is a sub-pixel
accuracy that a registration algorithm at best can obtain.

4.2 ICP Variants for Relatively Small Motions

In this section, we report the experimental results for the
matching of overlapping range images subject to relatively

small motions whose rotation angles range between 10◦ and
20◦. Doing so provides ideal conditions for the EvolICP,
SoftICP and GenICP algorithms to match overlapping range
images. Twelve images were chosen and were three each
of a valve, buddha, duck, and frog, as depicted in Fig. 1.
The experimental results are presented in Fig. 7 and Ta-
ble 5.

Figure 7 and Table 5 show that all the three algorithms ac-
curately matched the three valve images with a large amount
of interpenetration (Silva 2005) and produced similar eμs
and eσ s. This shows that high quality images are relatively
easier to match and different algorithms in this case produce
similar matching results. While both the proposed EvolICP
and GenICP algorithms estimated a similar rotation angle
of the camera motion around 20.00◦, the SoftICP algorithm
displaced the eyes, noses, and mouths of the buddha in the
three buddha images, since it estimated a rotation angle of
the camera motion smaller than the expected 20◦, increasing
the average matching error by as much as 50.00% compared
with that produced by the proposed EvolICP algorithm. This
shows that the traditional Shannon entropy is less compe-
tent for describing the dynamics of iterative automatic over-
lapping range image matching process. While the proposed
EvolICP algorithm produced a relative error of 2.45% in the
estimation of the rotation angle of the camera motion for the
matching of the duck140, duck120, and duck100 images,
the SoftICP and GenICP algorithms produced the same pa-
rameter as much as 70.90% and 7.40% respectively. The
inaccurate matching results have been illustrated as sepa-
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Table 5 The average eμ and standard deviation eσ of matching errors
in millimetres over RCs, expected and estimated rotation angles θ and
θ̂ in degrees of the camera motion, the number N of finally established

RCs, and matching time in seconds for different algorithms applied to
different overlapping range images subject to relatively small motions

Image Algo. eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

valve10-0 EvolICP 0.38 0.20 10 10.12 11024 34

SoftICP 0.38 0.21 10.11 11028 39

GenICP 0.38 0.21 10.11 11056 32

valve20-10 EvolICP 0.40 0.23 10 10.13 10827 153

SoftICP 0.40 0.22 10.10 10856 59

GenICP 0.40 0.23 10.11 10867 67

buddha20-40 EvolICP 0.58 0.25 20 20.22 10753 136

SoftICP 0.87 0.53 8.49 8825 68

GenICP 0.58 0.25 20.01 10784 124

buddha0-20 EvolICP 0.58 0.25 20 20.38 10997 109

SoftICP 0.72 0.35 17.67 10251 45

GenICP 0.58 0.24 20.05 11022 141

duck120-100 EvolICP 0.26 0.11 20 19.51 7541 75

SoftICP 0.36 0.23 11.55 7137 45

GenICP 0.27 0.13 18.52 7522 66

duck140-120 EvolICP 0.29 0.13 20 19.91 8372 136

SoftICP 0.47 0.32 5.82 7107 41

GenICP 0.30 0.14 18.89 8423 88

frog20-40 EvolICP 0.29 0.30 20 19.18 5574 156

SoftICP 0.42 0.36 16.50 3112 37

GenICP 0.29 0.30 19.13 5559 57

frog0-20 EvolICP 0.30 0.15 20 18.96 5799 98

SoftICP 0.32 0.17 17.82 5667 52

GenICP 0.30 0.15 19.10 5776 51

rating the left wings of the duck in the three duck images
with less interpenetration. This shows that the generalized
Tsallis entropy is less powerful in characterising the dynam-
ics of iterative automatic overlapping range image matching
process. While both the proposed EvolICP and GenICP al-
gorithms aligned the three frog images very well with an av-
erage matching error over RCs being around 0.29 mm, the
SoftICP algorithm increased their average matching error by
as much as 44.83%, as confirmed by the fact that the frogs
in the transformed frog20 and frog40 images intersect in 3D
space. These results show that the adapted replicator equa-
tion in conjunction with the deterministic annealing scheme
is powerful in estimating and optimizing the probabilities of
possible correspondences for automatic overlapping range
image matching, producing accurate and stable results, even
though the prior knowledge about occlusion, appearance and
disappearance of points in different range images was not
available at all.

4.3 ICP Variants for Relatively Large Motions

Large motions are of practical importance, since they can
reduce the overhead of image acquisition and also result-
ing image processing. Thus, in this section, we carry out
experiments using overlapping range images subject to rel-
atively large motions with rotation angles as large as 40◦
in 3D space. Such images however are more challenging to
match, since they usually include a large number of appear-
ing and disappearing points, which lead the CPC to establish
a large number of false correspondences, rendering it harder
for any ICP variant to differentiate feasible correspondences
from false ones. Due to the fact that large motions violate the
assumption of the traditional ICP algorithm that requires a
good initialization of the camera motion parameters, it is ex-
pected that all the ICP variants will generally produce poor
matching results. However, our interest is in testing how
the proposed EvolICP algorithm actually behaves in match-
ing overlapping range images subject to relatively large mo-
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Fig. 8 Matching results of different overlapping range images subject
to relatively large motions using different algorithms. From left column
to right column: cow42-39, cow45-42, dinosaur36-0, dinosaur72-36,

tubby100-60, tubby140-100, lobster100-60, and lobster140-100. Top
row: EvolICP; Middle row: SoftICP; Bottom row: GenICP

tions. For this purpose, twelve real images were selected of a
cow, dinosaur, tubby, and lobster, as depicted in Fig. 1. The
experimental results are presented in Fig. 8 and Table 6.

From Fig. 8 and Table 6, it can be seen that even though
the cow42 image is cluttered, the proposed EvolICP algo-
rithm still accurately matched the cow42-39 images. In con-
trast, the GenICP algorithm failed to match them, since the
transformed cow42 image intersects the cow39 image in 3D
space. All of the EvolICP, SoftICP, and GenICP algorithms
accurately matched the high quality dinosaur images. While
all the three algorithms estimated for the matching of the
tubby140-100 images the rotation angle of the camera mo-
tion close to the expected 40◦, the SoftICP algorithm con-
verged pre-maturely for the matching of the tubby100-60
images and estimated a rotation angle of the camera motion
smaller than 36◦, increasing the average matching error by
as much as 23.08% compared with that produced by the pro-
posed EvolICP algorithm. The inaccurate matching of the
SoftICP algorithm has been manifested as clearly separat-
ing the hands of the tubby in the transformed tubby100 and
tubby60 images. While the GenICP algorithm produced a
relative error of 7.07% in the estimation of the rotation an-
gle of the camera motion for the matching of the lobster100-
60 images, all the three algorithms produced a similar av-
erage matching error around 0.43 mm for the matching of
the lobster140-100 images. These results show that, even

though it was still initialized by the pure translational mo-
tion derived from the centroid difference of the images being
matched that were subject to relatively large motions with
rotation angles as large as 40◦ in 3D space, the proposed
EvolICP algorithm still successfully evolved the first range
images towards the target ones, yielding accurate and stable
results.

4.4 Image Orders

Since only the closest points in the second image were used
for matching, a concern as to whether the order of images
(from image A to image B or from image B to image A)
affects the proposed EvolICP algorithm on the final match-
ing results arises. To deal with this concern, we carried out
experiments in this section while reversing the order of im-
ages. The experimental results are presented in Fig. 9 and
Table 7.

Figure 9 and Table 7 show that all the three algorithms
exhibit similar behaviour in matching both the buddha and
duck images to that in matching the original images. They
all accurately matched the cow39-42 images with the esti-
mated rotation angle of the camera motion close to the ex-
pected 30◦. The GenICP algorithm produced a relative vari-
ation of 14.42% in the estimated rotation angle of the cam-
era motion for the matching of the cow42-39 and cow39-
42 images. While the proposed EvolICP algorithm still
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Table 6 The average eμ and standard deviation eσ of matching errors
in millimetres over RCs, expected and estimated rotation angles θ and
θ̂ in degrees of the camera motion, the number N of finally established

RCs, and matching time in seconds for different algorithms applied to
different overlapping range images subject to relatively large motions

Image Algo. eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

cow42-39 EvolICP 0.67 0.99 30 30.04 2786 999

SoftICP 0.72 0.41 29.83 2784 165

GenICP 1.03 1.08 26.05 572 382

cow45-42 EvolICP 0.75 0.47 30 30.18 3026 35

SoftICP 0.87 0.59 27.38 2840 25

GenICP 0.80 0.51 28.54 2958 37

dinosaur36-0 EvolICP 0.57 1.19 36 35.80 5189 137

SoftICP 0.57 1.19 35.66 5214 45

GenICP 0.57 1.19 35.73 5214 53

dinosaur72-36 EvolICP 0.60 0.37 36 35.20 3790 61

SoftICP 0.60 0.36 35.11 3778 29

GenICP 0.60 0.36 35.12 3799 37

tubby100-60 EvolICP 0.26 0.19 40 39.72 2041 116

SoftICP 0.32 0.23 35.66 2052 24

GenICP 0.26 0.19 39.60 2059 48

tubby140-100 EvolICP 0.27 0.13 40 39.53 3015 55

SoftICP 0.27 0.17 39.55 3005 28

GenICP 0.27 0.13 39.61 2994 33

lobster100-60 EvolICP 0.45 0.31 40 39.36 3129 127

SoftICP 0.47 0.37 40.04 2754 44

GenICP 0.43 0.34 37.17 3172 106

lobster140-100 EvolICP 0.44 0.26 40 38.51 6180 65

SoftICP 0.42 0.23 38.85 6123 42

GenICP 0.43 0.24 38.55 6103 65

produced accurate matching results, both the SoftICP and
GenICP algorithms misplaced the necks and tails of the lob-
ster in the transformed lobster60 and lobster100 images,
yielding a relative variation as much as 42.02% in the av-
erage matching error of RCs and as much as 39.84% in the
estimated rotation angle of the camera motion before and
after reversing the image orders. These results show that im-
age orders do impose a subtle effect on the final matching
results of the ICP variants.

4.5 Image Resolutions

Image resolution imposes a remarkable effect on the final
matching results. Denser sampling in the process of scan-
ning is often useful to capture more accurately the geome-
try of the objects of interest. Different scanning processes
usually do not produce exactly the same sampled data. The
denser the sampling, the less the difference between the
sampled data, and thus the more likely the established real

correspondences represent exactly the same points on the
surface of the objects of interest. However, the error in
the assumption regarding pointwise correspondence never
truly goes away. This is a limitation of all the matching ap-
proaches based on sampled data. In this section, we carry
out experiments with the data acquired using another scan-
ner, MSU’s Technical Arts 100X. The images include not
only isolated objects, as is the case for the range images
captured using the Minolta Vivid 700 range camera, but also
two objects occluding each other. The resolutions of these
images vary from 77 × 114 (adapter-3) to 240 × 240 (occl4
and occl5). The experiments based on such images can re-
veal whether the proposed EvolICP algorithm is sensitive to
different sampling densities, noise characteristics, etc. Due
to the fact that the images include a large number of points
(23353 in bigwye-3), for the sake of computational effi-
ciency, the inverse temperature increasing rate was reset as
βr = 1.1. The experimental results are presented in Fig. 10
and Table 8.



48 Int J Comput Vis (2009) 83: 30–56

Fig. 9 Matching results of different algorithms based on different
overlapping range images with reversed orders. From left column to
right column: buddha40-20, buddha20-0, duck100-120, duck120-140,

cow39-42, cow42-45, lobster60-100, and lobster100-140. Top row:
EvolICP; Middle row: SoftICP; Bottom row: GenICP

Figure 10 and Table 8 show that, while all the three algo-
rithms accurately matched the high quality adapter2-3 im-
ages, they all failed to match the agpart2-1 images. It is in-
teresting to note that, while the transformed agpart2 and ag-
part1 images aligned by either the SoftICP or GenICP algo-
rithm intersect in 3D space, the proposed EvolICP algorithm
maximized the overlapping area between the two perpen-
dicular cylinders in the two images, yielding decent match-
ing results. While the SoftICP algorithm failed to match the
curvblock2 and adapter+curvblock images, both the pro-
posed EvolICP and GenICP algorithms managed to cor-
rectly align them, despite the fact that the curvblock in the
adapter+curvblock image was occluded by an adapter. Even
though all the three algorithms estimated the rotation angle
of the camera motion around 40◦ for the matching of the
hump3-1 images, the SoftICP algorithm produced an av-
erage matching error 25.15% larger than that produced by
either the proposed EvolICP or GenICP algorithm. While
both the proposed EvolICP and SoftICP algorithms pro-
duced similar results for the matching of the block12-1 im-
ages, the GenICP algorithm increases the average matching
error by as much as 197.81% compared with that produced
by the proposed EvolICP algorithm. The occl4-5 images are
even more challenging to match, since they include only a
small cylinder in the overlapping area. Even so, the pro-
posed EvolICP algorithm still succeeded in matching. Both
the SoftICP and GenICP algorithms displaced the two cylin-
ders in the occl4 and occl5 images, increasing the average

matching error by up to 201.92% compared with that of the
proposed EvolICP algorithm. All the three algorithms pro-
duce similar average errors for the matching of the cap2-3
images. The reason why their estimated rotation angles of
the camera motion are quite different is that the cap in the
two images includes relatively simple geometry and thus,
sliding matching error occurred. While both the proposed
EvolICP and GenICP algorithms produced similar results
for the matching of the bigwye3-4 images, the SoftICP al-
gorithm increased the average matching error by as much
as 18.29% compared with that produced by either the pro-
posed EvolICP or GenICP algorithm. These results show
that the variation of scanning resolution, noise characteris-
tics, etc. does not really impose a significant effect on the
proposed EvolICP algorithm for accurate and robust over-
lapping range image matching results.

4.6 ICP Variants and GA

While the ICP variants firstly search possible correspon-
dences in the image space and then update the camera mo-
tion parameters, we compare them in this section to the latest
genetic algorithm (GA) (Silva 2005) that takes an opposite
strategy for overlapping range image matching. Due to lack
of details, we did not implement the original GA. Instead,
we duplicated part of Table 2 with respect to the comparative
MSE and SIM results in the original paper. The definitions
of MSE (mean square error) and SIM (surface interpenetra-
tion measure) can be found in Silva (2005). To show the
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Table 7 The average eμ and standard deviation eσ of matching errors
in millimetres over RCs, expected and estimated rotation angles θ and
θ̂ in degrees of the camera motion, the number N of finally established

RCs, and matching time in seconds for different algorithms applied to
different overlapping range images with reversed orders

Image Algo. eμ (mm) eσ (mm) θ (◦) θ̂ (◦) N Time (sec.)

buddha40-20 EvolICP 0.58 0.24 20 20.15 10583 94

SoftICP 0.82 0.48 11.92 9050 47

GenICP 0.58 0.25 19.95 10566 117

buddha20-0 EvolICP 0.58 0.25 20 20.39 10732 66

SoftICP 0.71 0.35 17.69 9986 40

GenICP 0.58 0.24 20.13 10756 164

duck100-120 EvolICP 0.26 0.13 20 19.25 6952 53

SoftICP 0.33 0.19 13.90 6673 27

GenICP 0.28 0.13 17.95 6940 59

duck120-140 EvolICP 0.29 0.14 20 19.98 6987 50

SoftICP 0.33 0.17 17.34 6868 31

GenICP 0.31 0.15 18.78 7014 60

cow39-42 EvolICP 0.73 0.41 30 29.74 1822 24

SoftICP 0.73 0.41 29.94 1800 19

GenICP 0.73 0.42 30.10 1781 22

cow42-45 EvolICP 0.72 0.52 30 30.07 3794 322

SoftICP 0.84 0.81 19.04 3046 73

GenICP 0.74 0.46 28.97 3847 120

lobster60-100 EvolICP 0.43 0.30 40 38.90 2913 250

SoftICP 0.72 0.67 59.96 2159 50

GenICP 0.54 0.40 31.52 2422 97

lobster100-140 EvolICP 0.42 0.23 40 38.84 5389 61

SoftICP 0.44 0.27 38.37 5499 42

GenICP 0.44 0.27 38.17 5485 53

implementation difference, we also implemented Zhang’s
ICP algorithm (Zhang 1992). The experimental results are
presented in Table 9, in which the proposed EvolICP and
Zhang’s ICP algorithms were implemented in this paper,
while the ICP3 and GA algorithms were implemented in
Silva (2005). While Zhang’s ICP algorithm classifies all
possible correspondences into either real or false ones, the
proposed EvolICP algorithm uniformly estimates their prob-
abilities being real. Thus, while the MSE for the former is
computed over real correspondences, the same parameter for
the latter is computed over RCs.

From Table 9, it can be seen that the implementation,
ICP3, of Zhang’s ICP algorithm in Silva (2005) differs from
ours, as they did not produce the same matching results in
the sense of either MSE or SIM, even though the same im-
ages were used for the experiments. This may be because
they used different methods to estimate surface normals re-
quired either for the orientation consistency test in the algo-
rithm or for the calculation of SIM in this paper. While 7
SIMs out of 10 from our implementation of Zhang’s ICP

algorithm are smaller than those in Silva (2005), 9 SIMs
out of 10 from the novel EvolICP algorithm are smaller
than those of the GA (Silva 2005). As admitted in Silva
(2005), SIM is most effective at refining good alignments to
achieve precise alignments. For instance, a “correct” align-
ment with low MSE may exhibit no interpenetration if the
aligned surfaces are parallel but slightly displaced. The pro-
posed EvolICP algorithm always produces the smallest MSE
and thus, in this case is the best, compared with the ICP3
and GA algorithms for the matching of the 15 range im-
ages selected. These 15 images were chosen by Ref. (Silva
2005). The reason why we also selected them for the ex-
periments was to compare the proposed EvolICP algorithm
against the GA based on the same data. It is also noted that
the classification based Zhang’s ICP algorithm is not sta-
ble. While it accurately matched the tubby images, it inaccu-
rately matched the bird and frog images. This also explains
why we did not choose the classification based ICP variants
(Liu et al. 2000, 2006a; Pulli 1999; Turk and Levoy 1994;
Liu and Wei 2004) for a comparative study in this paper.
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Fig. 10 Matching results of different algorithms based on different
overlapping range images with various resolutions. From left column
to right column: adapter2-3, agpart2-1, curvblock2-adapter+curvblock,

hump3-1, block12-1, occl4-5, cap2-3, and bigwye3-4. Top row:
EvolICP; Middle row: SoftICP; Bottom row: GenICP

4.7 EvolICP and LSP

The proposed EvolICP algorithm evolves the probabilities
of possible correspondences established using the traditional
CPC. In this section, we compare it against a latest algorithm
(Chen and Bhanu 2007) that extracts and matches features
of local surface patches (LSP) based on the same data. Due
to limited time, we did not implement the original LSP al-
gorithm. Instead, we duplicated part of Table 4 with respect
to verification results for single-object scenes in the original
paper. The experimental results are presented in Table 10.

Table 10 shows that for the registration of 20 pairs
of overlapping range images, the proposed EvolICP algo-
rithm increased in the worst two cases the registration error
slightly by 17.86% for the registration of the cow71-73 im-
ages and by 6.57% for the registration of the pat-2img108-
144 images. In the best two cases, however, it decreased the
registration error remarkably by as much as 39.98% for the
registration of the brain144-180 images and by as much as
32.97% for the registration of the frog2-220-240 images.
These results show that the proposed EvolICP algorithm is
powerful in registering various range images with different
complexities of geometries through an effective modelling
of the dynamics in the iterative process of registration.

To elaborate the performance of the proposed EvolICP
algorithm, we estimated the overlap between the cow71-73
images to be 3155/max(11575,5005) × 100% = 26.91%
and the rotation angle of their camera motion to be 19.82◦,
the overlap between the pat-2img108-144 images to be

9879/max(14773,15941) × 100% = 61.97% and the rota-
tion angle of their camera motion to be 17.58◦ with an ex-
pectation of 20◦. The final registration results of these two
pairs of images are presented in Fig. 11, clearly showing that
the images have not been registered as poorly as either the
registration error or the rotation angle of the camera motion
indicated.

These results show that despite the fact that the LSP algo-
rithm extracts and matches features of points of interest, pro-
ducing a coarse estimate of the camera motion parameters,
which are then refined by a classification based ICP vari-
ant (Zhang 1992), the final registration results in the sense
of root mean square (RMS) registration error are not al-
ways more accurate than those produced by the proposed
EvolICP algorithm initialized using just the pure transla-
tional motion derived from the centroid difference of over-
lapping range images being registered. This is because the
estimation of either the shape index or surface orientation in
the LSP method is sensitive to imaging noise, low image res-
olution, occlusion, appearance and disappearance of points,
it is difficult for the LSP features to represent the simple and
repetitive geometry in the brain and frog2 images, for ex-
ample. Due to data dependence, it is also difficult for the
classification based ICP variant (Zhang 1992) to set up rel-
ative thresholds for the rejection of false matches, yielding
poor registration results. This observation is consistent with
the experimental results reported in the last section on the
comparative study of ICP variants and GA.
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Table 8 The average eμ and standard deviation eσ of matching er-
rors in millimetres over RCs, estimated rotation angle θ̂ in degrees
of the camera motion, the number N of finally established RCs, and

matching time in seconds for different algorithms applied to different
overlapping range images with various resolutions

Image Algo. eμ (mm) eσ (mm) θ̂ (◦) N Time (sec.)

adapter2-3 EvolICP 0.0162 0.0074 19.75 4087 11

SoftICP 0.0165 0.0070 19.03 4064 7

GenICP 0.0162 0.0072 19.17 4057 13

agpart2-1 EvolICP 0.0205 0.0171 89.27 2145 222

SoftICP 0.0349 0.0412 37.94 435 59

GenICP 0.0322 0.0305 30.51 460 134

curvblock2-adapter+curvblock EvolICP 0.0175 0.0077 25.98 6615 529

SoftICP 0.0415 0.0430 8.11 816 207

GenICP 0.0173 0.0071 25.94 6574 264

hump3-1 EvolICP 0.0159 0.0063 40.45 6355 210

SoftICP 0.0199 0.0072 39.51 6253 91

GenICP 0.0159 0.0061 40.53 6384 132

block12-1 EvolICP 0.0183 0.0068 51.44 5761 126

SoftICP 0.0209 0.0079 51.10 5788 99

GenICP 0.0545 0.0642 44.97 3772 273

occul4-5 EvolICP 0.0208 0.0500 10.69 5172 844

SoftICP 0.0628 0.0837 11.99 1525 159

GenICP 0.0551 0.0654 7.14 1761 689

cap2-3 EvolICP 0.0152 0.0067 46.10 4004 9

SoftICP 0.0154 0.0069 44.64 3992 9

GenICP 0.0150 0.0059 26.75 4246 13

bigwye3-4 EvolICP 0.0164 0.0065 42.69 15669 515

SoftICP 0.0194 0.0078 42.68 15579 270

GenICP 0.0167 0.0067 42.71 15627 401

Table 9 The mean square error (MSE) in squared millimetres and surface interpenetration measure (SIM) in percentage of different algorithms
applied to different overlapping range images

Image EvolICP Zhang ICP3 GA

pair MSE (mm2) SIM (%) MSE (mm2) SIM (%) MSE (mm2) SIM (%) MSE (mm2) SIM (%)

bird0-20 0.0976 53.2 2.6030 52.6 0.3950 64.6 0.4299 90.7

bird20-40 0.0943 53.0 1.6696 49.3 1.2689 53.8 1.4440 91.3

duck0-20 0.2119 38.9 0.4503 39.1 0.7002 39.9 0.8017 57.0

duck20-40 0.2049 39.8 3.0000 51.0 0.8968 38.7 0.9841 56.3

frog0-20 0.1165 60.6 3.5063 68.2 0.3468 74.5 0.3615 82.7

ww frog20-40 0.1749 41.9 1.5649 44.5 0.8300 69.5 0.8180 80.8

lobster0-20 0.1941 60.0 0.6041 60.1 0.9949 38.1 1.2573 60.9

lobster20-40 0.2135 61.2 1.8362 61.4 3.1948 28.8 3.9504 55.9

tubby0-20 0.0695 60.3 0.1923 60.4 0.2270 80.9 0.2393 91.0

tubby20-40 0.0714 59.0 0.2730 59.7 0.4334 80.2 0.4495 90.3
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Table 10 The root mean square (RMS) registration error in millimetres of different algorithms applied to different overlapping range images

Image Algo. RMS (mm) Image Algo. RMS (mm)

angel20-40 EvolICP 0.537 lobster0-20 EvolICP 0.373

LSP 0.624 LSP 0.525

bunny40-60 EvolICP 0.212 tubby340-0 EvolICP 0.245

LSP 0.217 LSP 0.252

frog240-260 EvolICP 0.280 brain144-180 EvolICP 0.548

LSP 0.263 LSP 0.913

peach240-260 EvolICP 0.248 duck0-20 EvolICP 0.379

LSP 0.236 LSP 0.426

bird300-320 EvolICP 0.286 orange-dino0102-0104 EvolICP 0.456

LSP 0.314 LSP 0.481

cow71-73 EvolICP 0.6638 valve0-20 EvolICP 0.405

LSP 0.5632 LSP 0.395

frog2-220-240 EvolICP 0.250 buddha20-40 EvolICP 0.584

LSP 0.373 LSP 0.632

pooh180-200 EvolICP 0.283 frame015-017 EvolICP 0.416

LSP 0.306 LSP 0.459

blue-dino0125-0375 EvolICP 0.491 pat-2img108-144 EvolICP 0.779

LSP 0.504 LSP 0.731

dough-boy20-0 EvolICP 0.215 yellowhorn252-288 EvolICP 0.508

LSP 0.214 LSP 0.732

Fig. 11 Matching results of the cow71-73 (left) and pat-2img108-144
(right) images using the proposed EvolICP algorithm

4.8 Overall Analysis

The statistics of the experimental results reported above in
this section are presented in Table 11. From Table 11, it
can be seen that: (1) while both SoftICP and GenICP algo-
rithms sometimes produced misalignments, the EvolICP al-
gorithm usually produces relatively stable alignments. This
conclusion has been verified by the fact that the GenICP al-
gorithm completely failed to match the cow42-39 images.
While the SoftICP algorithm failed to match the agpart2-
1, curvblock2-adapter+curvblock, and occl4-5 images, the
GenICP algorithm failed to match the agpart2-1 and occl4-5
images. The resolutions, noise characteristics, etc. do not re-

ally impose a significant impact on the behaviour of the pro-
posed EvolICP algorithm in the sense of robustness for auto-
matic overlapping range image matching; and (2) The pro-
posed EvolICP algorithm produced the most accurate and
stable matching results in the sense of average and stan-
dard deviation of matching errors of RCs, but is the most
time consuming, for the automatic matching of overlapping
range images captured using either the Minolta Vivid 700
or Technical Arts 100X range scanner. For the range im-
ages captured using the Minolta Vivid 700 range scanner,
even though the SoftICP algorithm requires just about 30%
of the time required by the proposed EvolICP algorithm for
matching and is thus the most computationally efficient, it
produced the worst matching results, increasing the aver-
age matching error by as much as 17.39% compared with
that produced by the proposed EvolICP algorithm. For the
range images captured using the Technical Arts 100X range
scanner, the proposed EvolICP algorithm reduces the aver-
age matching error by as much as 39.10% compared with
that produced by the SoftICP algorithm and by as much as
36.92% compared with that produced by the GenICP algo-
rithm. The proposed EvolICP algorithm produced smaller
MSE over RCs, and also smaller SIM than the GA.

Compared with the LSP method, the proposed EvolICP
algorithm decreased its registration error by as much as
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Table 11 The average μ and standard deviation σ of average match-
ing errors eμ and standard deviations eσ in millimetres, and matching
time in seconds, MSE in squared millimetres, SIM in percentage, and

RMS in millimetres of different algorithms based on range images
captured using different scanners

Scanner Measure Method eμ (mm) eσ (mm) Time (sec.)

Minolta EvolICP 0.46 0.32 142.17

μ SoftICP 0.54 0.39 46.54

GenICP 0.49 0.33 86.62

EvolICP 0.16 0.25 190.99

σ SoftICP 0.20 0.26 27.89

GenICP 0.20 0.26 71.80

Technical Arts EvolICP 0.0176 0.0136 308.25

μ SoftICP 0.0289 0.0255 112.62

GenICP 0.0279 0.0256 239.87

EvolICP 0.0020 0.0142 275.39

σ SoftICP 0.0155 0.0264 87.50

GenICP 0.0161 0.0247 210.70

MSE (mm2) SIM (%)

Minolta EvolICP 0.14 52.79

μ ICP3 0.93 56.90

GA 1.07 75.69

EvolICP 0.06 8.71

σ ICP3 0.82 18.49

GA 1.03 15.26

RMS (mm)

Minolta μ EvolICP 0.4122

LSP 0.4580

σ EvolICP 0.1619

LSP 0.1968

10.00% and registered 15 pairs out of 20 of overlapping
range images more accurately. Note that such improvement
is obtained after the LSP registration results have already
been refined by a classification based ICP variant (Zhang
1992). Thus, it can be concluded that the LSP algorithm
does not always provide good enough coarse initial camera
motion parameters for the ICP variant (Zhang 1992) to re-
fine. This conclusion has been demonstrated by the fact that
the bird300 image is best matched by the LSP method with
a frog2-220 image and both the pat-2img108 and pooh180
images with the duck0 image. These results show that it is
challenging for the LSP method to define expressive features
for the representation of the points of interest and it has in-
herent ambiguity in determining real point matches (Maka-
dia et al. 2006). The pure translational motion is usually a
good choice for the initialization of the camera motion pa-
rameters for the EvolICP algorithm to evolve possible cor-
respondences, leading to accurate registration results, espe-
cially for the registration of overlapping range images sub-

ject to various camera motions with rotation angles smaller
than 40◦, for example.

5 Discussion and Conclusions

5.1 Discussion

Through the experiments based on real range images pre-
sented in this paper, we have made the following observa-
tions:

Range image matching theory will become much more
useful if we can efficiently handle its mathematical mod-
els. For example, assuming that we adopt a dynamic model
for the strategic evolution of one range image towards an-
other, how efficiently (if ever) can we answer the model’s
long term behaviour? Can we predict that an evolution-
ary range image matching process will stabilize, say, to an
evolutionarily stable strategy (ESS): ‖p′

c(i) − Rpi − t‖ ≤
‖p′

c(i) − (R + δR)pi − (t + δt)‖ where δR and δt are small
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perturbations of the camera motion parameters rotation ma-
trix and translation vector respectively? Even more, given
the range images that algorithms match and given the de-
scription of the adaptation and learning forces, can we claim
that such an evolutionary range image matching process will
indeed have an ESS? Can we compute how this ESS will
look like, in the case of an affirmative answer? Can we claim
that the established point matches (pi ,p′

c(i)) between two
overlapping range images correspond to the Nash equilib-
rium: ‖p′

c(i) −Rpi − t‖ ≤ ‖p′′
c(i) −Rpi − t‖ where p′′

c(i) is an
alternative of p′

c(i)? To answer these useful and interesting
questions, the investigation of the dynamics in the iterative
process for automatic overlapping range image matching is
necessary and may be encouraged.

Accurate matching often leads one range image to su-
perimpose perfectly onto the other in 3D space, as demon-
strated by the valve, dinosaur, and adapter images. Inaccu-
rate matching often results in one range image either inter-
secting the other in 3D space, as demonstrated by the frog,
cow, agpart, curvblock, and occl images, or sliding over the
other in 3D space, as demonstrated by the buddha, duck,
tubby, lobster, and cap images. This is because the cow im-
ages were cluttered by the background, the curvblock was
occluded by an adapter, and the tubby images were cap-
tured from side views, while the buddha, duck, frog, lobster,
and cap images include relatively simple geometry that can
hardly uniquely pose the matching problem and deliver the
camera motion information without any ambiguity. In this
case, all the possible correspondences established using the
traditional CPC must be meticulously manipulated, as is the
case for the proposed EvolICP algorithm. Otherwise, the al-
gorithms can easily converge pre-maturely or even diverge,
yielding inaccurate matching results.

The deterministic annealing scheme is excellent for the
global optimisation of the state variables even though it can-
not guarantee (Puzicha et al. 1997) that the global minimum
of the objective function is always found. In practice, the lo-
cal minimum found by the deterministic annealing scheme
often produces good matching results. For effective deter-
ministic annealing, a sensible objective function must be
constructed. This objective function is often data and context
dependent. The minimum, maximum, and increasing rate of
the inverse temperature must be carefully determined. While
too large a maximum inverse temperature often leads match-
ing algorithms to diverge, too large an inverse temperature
increasing rate often leads matching algorithms to converge
pre-maturely. Both cases usually lead to inaccurate match-
ing results.

While the replicator equation is quite promising for mod-
elling the dynamics in the iterative process of automatic
overlapping range image matching, more experimental and
theoretical studies will be conducted so that a clearer insight
can be obtained into the probability estimation of possible

correspondences established using the traditional CPC. If so,
then the behaviour of overlapping range image matching al-
gorithms can be predicted even before the matching process
actually takes place. In this respect, we can learn from evo-
lutionary biology and game theory.

Our work may promote the research on interactive game
and mathematical biology theory in the sense of how to de-
fine fitness, how to differentiate between different individ-
uals interacting with each other and competing for limited
resources, and how to globally optimize the evolution of the
entire population. The EvolICP algorithm proposed in this
paper thus may provide a useful tool for interactive game
and mathematical biology researchers to examine their the-
oretical analysis results over a finite population.

5.2 Conclusions

As far as we are aware, this is the first time ever that the au-
tomatic iterative overlapping range image matching process
has been treated as an artificial evolutionary system and
the widely used replicator equations in evolutionary biol-
ogy and interactive game theory (Novak and Sigmund 2004;
Stadler and Stadler 2003) have been then adapted for the
modelling of its dynamics for accurate and robust match-
ing results. Each image is represented as a limited num-
ber of discrete points. A point in one range image has
different probabilities as possible replicators of points in
another. The iterative matching process is discrete. After
each iteration, the possible correspondences have to be re-
established. Since the replicator equation assumes infinite
population size, complete mixture of strategies, time con-
tinuous process, and true breeding organisms that violate
the actual conditions of the iterative discrete range image
matching process, the adaptation is compulsory. While it is
often difficult to determine the payoff matrix, resulting in bi-
ological and game evolutions being somewhat aimless and
unpredictable, the range image matching process has a clear
target range image to evolve towards. The adaptation has
been implemented from the following five aspects:

• While the replicator equations use the absolute fitness dif-
ference, the proposed EvolICP algorithm has used the rel-
ative fitness difference instead to describe the probability
change of each individual in the population being a point
in the overlapping area over successive iterations;

• While the replicator equations often define subjectively or
in a subtle way the fitness of individuals in the population
for problem investigation in the evolutionary process of
interactive game and mathematical biology, the proposed
EvolICP algorithm has defined the fitness of the individ-
uals as the negative of a power of the SEDs between their
resulting possible correspondences established using the
traditional CPC;
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• While the replicator equation penalizes those individuals
with low fitness, the proposed EvolICP algorithm has fur-
ther penalised them with an attempt to eventually reduce
the average matching error over the entire population;

• While the replicator equations allow different strategies
in the population to be chosen by an arbitrary number
of players, the proposed EvolICP algorithm has penalised
with an attempt to differentiate real correspondences from
false ones those individuals in one image that select the
same points in another as their possible replicators; and
finally

• After the probabilities of possible correspondences estab-
lished using the traditional CPC have been estimated by
the replicator equation, they have been embedded into the
powerful deterministic annealing scheme for global opti-
mization.

From all the experimental results presented in this paper,
which were all based on real range images, it can be con-
cluded that the replicator equations have been successfully
adapted to characterise the dynamics of the iterative process
for automatic overlapping range image matching, resulting
in accurate and stable results. The proposed EvolICP algo-
rithm on the whole outperforms either the SoftICP, GenICP,
ICP3, GA, or LSP algorithm for the automatic matching of
overlapping range images in the sense of accuracy and ro-
bustness with regard to image complexities, orders, resolu-
tions, noise characteristics, etc. Even though it is challeng-
ing to match images captured from side views, cluttered by
the background, or occluded by other objects, the proposed
EvolICP algorithm could still match them successfully.

Comparing the proposed EvolICP algorithm with the
classification based matching method (Zhang 1992; Pulli
1999; Turk and Levoy 1994; Liu et al. 2000), the former
is advantageous for range image matching. While the lat-
ter is based on ad hoc heuristics, the former provides a
clear insight into the dynamics of the iterative range image
matching process, deepening our understanding of how to
accurately estimate and optimize the state variables. Such
insight is critical for the development of advanced over-
lapping range image matching algorithms. Comparing the
proposed EvolICP algorithm with the existing probabil-
ity based method (Gold et al. 1998; Dewaele et al. 2004;
Granger and Pennec 2002), the latter usually assumes that
the average matching error of the entire population is zero,
treats equally all possible correspondences established and
has to explicitly model outliers, whilst the former explic-
itly takes the average matching error into account and pe-
nalises those individuals with low fitness or competing for
the same points as their possible replicators without the need
of explicit outlier modelling. While explicit outlier mod-
elling may artificially interfere the evolution, the former lets
the evolutionary process itself determine which individual
in the population will expand or shrink. Clearly, the former

describes more realistic scenarios and thus, often produces
more accurate and robust matching results. The replicator
equations are usually more effective than either the Shan-
non or Tsallis entropy for the description of the dynamics
in the automatic iterative overlapping range image matching
process.

Compared with either the GA or LSP algorithm, the pro-
posed EvolICP algorithm represents a different and usually
more effective strategy for overlapping range image match-
ing and has an advantage of easy implementation. It is hard
for the GA to always successfully find the globally opti-
mal camera motion parameters within predictable time and
for the LSP method to directly establish real point matches
between overlapping range images. In contrast, it is usu-
ally straightforward for the proposed EvolICP algorithm to
evolve the probabilities of possible correspondences being
real, usually yielding decent registration results.

Further research includes improving the computational
efficiency and theoretically investigating the behaviour of
the proposed EvolICP algorithm for the automatic match-
ing of various overlapping range images. For the former,
the camera motion interpolation and salient point detection
may be employed. For the latter, the knowledge from evolu-
tionary biology and interactive game theory (Alboszta and
Miekisz 2004; Pykh 2005) about how to construct the Lya-
punov function and how to establish ESS and equilibrium
can be learned. For accuracy and robustness, genetic opera-
tors (crossover, mutation, etc.) may be inserted into the pro-
posed EvolICP algorithm for even better automatic overlap-
ping range image matching results.
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