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Abstract This paper proposes a novel framework for la-
belling problems which is able to combine multiple seg-
mentations in a principled manner. Our method is based on
higher order conditional random fields and uses potentials
defined on sets of pixels (image segments) generated using
unsupervised segmentation algorithms. These potentials en-
force label consistency in image regions and can be seen
as a generalization of the commonly used pairwise contrast
sensitive smoothness potentials. The higher order potential
functions used in our framework take the form of the Robust
P n model and are more general than the P n Potts model
recently proposed by Kohli et al. We prove that the opti-
mal swap and expansion moves for energy functions com-
posed of these potentials can be computed by solving a st-
mincut problem. This enables the use of powerful graph
cut based move making algorithms for performing infer-
ence in the framework. We test our method on the prob-
lem of multi-class object segmentation by augmenting the
conventional CRF used for object segmentation with higher
order potentials defined on image regions. Experiments on
challenging data sets show that integration of higher order
potentials quantitatively and qualitatively improves results
leading to much better definition of object boundaries. We
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believe that this method can be used to yield similar im-
provements for many other labelling problems.

Keywords Discrete energy minimization · Markov and
conditional random fields · Object recognition and
segmentation

1 Introduction

In recent years an increasingly popular way to solve various
image labelling problems like object segmentation, stereo
and single view reconstruction is to formulate them us-
ing image segments (so called superpixels) obtained from
unsupervised1 segmentation algorithms (He et al. 2006;
Hoiem et al. 2005a; Rabinovich et al. 2006). These methods
are inspired from the observation that pixels constituting a
particular segment often have the same label; for instance,
they may belong to the same object or may have the same
surface orientation. This approach has the benefit that higher
order features based on all the pixels constituting the seg-

ment can be computed and used for classification.2 Further,
it is also much faster as inference now only needs to be per-
formed over a small number of superpixels rather than all
the pixels in the image.

Methods based on grouping segments make the assump-
tion that segments are consistent with object boundaries in
the image (He et al. 2006), i.e. segments do not contain mul-
tiple objects. As observed by Hoiem et al. (2005b) and Rus-

1By unsupervised, we mean that the segmentation algorithm does not
use information from object recognition.
2In some sense this causes the problem of scene understanding to be
decoupled from the image resolution given by the hardware; it is con-
ducted using more natural primitives that are independent of resolution.
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Fig. 1 Incorporating higher order potentials for object segmentation.
(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-
vised image segmentation results generated by using different para-
meters values in the mean-shift segmentation algorithm (Comaniciu
and Meer 2002). (e) The object segmentation obtained using the unary
likelihood potentials from TextonBoost. (f) The result of performing
inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order
potentials defined on the segments shown in (b), (c) and (d). (h) The
rough hand labelled segmentations provided in the MSRC data set. It
can be clearly seen that the use of higher order potentials results in a
significant improvement in the segmentation result. For instance, the
branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-
tained using unsupervised segmentation methods are often
wrong. To overcome these problems (Hoiem et al. 2005b)
and (Russell et al. 2006) use multiple segmentations of the
image (instead of only one) in the hope that although most
segmentations are bad, some are correct and thus would
prove useful for their task. They merge these multiple super-
pixels using heuristic algorithms which lack any optimality
guarantees and thus may produce bad results. In this paper
we propose an algorithm that can compute the solution of
the labelling problem (using features based on image seg-
ments) in a principled manner. Our approach couples po-
tential functions defined on sets of pixels with conventional
unary and pairwise cues using higher order CRFs. We test
the performance of this method on the problem of object
segmentation and recognition. Our experiments show that
the results of our approach are significantly better than the
ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of
the most challenging and fundamental problems in com-
puter vision. The last few years have seen the emergence
of object segmentation algorithms which integrate object
specific top-down information with image based low-level
features (Borenstein and Malik 2006; He et al. 2004;
Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and
do not provide a framework for understanding the whole
image. Further, their models become prohibitively large as
the number of classes increases. This prevents their appli-
cation to scenarios where segmentation and recognition of
many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-
tonBoost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a conditional random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpora-
tion of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In partic-
ular, it leads to segmentations with much better definition of
object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.
They have been long used to model image textures (Lan et
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al. 2006; Paget and Longstaff 1998; Roth and Black 2005).
The initial work in this regard has been quite promising and
higher order CRFs have been shown to improve results for
problems such as image denoising and restoration (Roth and
Black 2005), and texture segmentation (Kohli et al. 2007).
However their use has been quite limited due to lack of effi-
cient algorithms for performing inference in these models.

Traditional inference algorithms such as BP are quite
computationally expensive for higher order cliques although
recent work has improved their performance for certain
classes of potential functions. Lan et al. (2006) proposed
approximation methods for BP to make efficient inference
possible in higher order MRFs. This was followed by the re-
cent work of Potetz (2007) in which he showed how belief
propagation can be efficiently performed in graphical mod-
els containing moderately large cliques. However, as these
methods were based on BP, they were quite slow and took
minutes or hours to converge.

Kohli et al. (2007) recently showed how certain higher
order clique potentials can be minimized using move mak-
ing algorithms for approximate energy minimization such
as α-expansion and αβ-swap (Boykov et al. 2001). They
introduced a class of higher order potentials called the P n

Potts model and showed how the optimal expansion and
swap moves for energy functions containing these potentials
can be computed in polynomial time by solving a st-mincut
problem. The complexity of their algorithm increased lin-
early with the size of the clique and thus it was able to han-
dle cliques composed of thousands of latent variables.

The higher order energy functions characterizing the
higher order CRFs arising from our work are more general in
form than the P n Potts model and thus cannot be minimized
efficiently using the algorithm of Kohli et al. (2007). We in-
troduce a new family of higher order potentials which is a
generalization of the P n Potts class. The potential functions
belonging to this family are parameterized with a truncation
parameter Q which controls their robustness. We will show
how energy functions composed of these robust potentials
can be minimized using move making algorithms such as
α-expansion and αβ-swap. Specifically, we show how the
optimal swap and expansion moves for such potentials can
be found using algorithms for computing the st-mincut.

1.3 Organization of the Paper

This paper proposes a general framework for solving la-
belling problems which has the ability to utilize higher order
potentials defined on segments.3 We test this framework on
the problem of object segmentation and recognition by inte-
grating label consistency and shape based terms defined on
segments with conventional unary and pairwise potentials.

3An earlier version of this paper appeared as Kohli et al. (2008).

We show how inference in this framework can be efficiently
performed by extending the recent work on minimizing en-
ergy function with higher order cliques (Kohli et al. 2007).
To summarize, the novelties of our approach include:

(1) The method for efficiently solving a new family of
higher order potentials which we call the robust P n

model, and is a generalization of the P n Potts model.
(2) A novel higher order region consistency potential which

is a strict generalization of the commonly used pairwise
contrast sensitive smoothness potential.

(3) The application of higher order CRFs for object segmen-
tation and recognition which integrate the above men-
tioned higher order potentials with conventional unary
and pairwise potentials based on colour, location, tex-
ture, and smoothness.

An outline of the paper follows. In Sect. 2 we discuss
the basic theory of conditional random fields. We then show
how pairwise CRFs can be used to model labelling problems
like object segmentation. In Sect. 3 we augment the pairwise
CRF model by incorporating novel higher order potentials
based on super-pixel segmentations. In Sect. 4 we review
the work on move making algorithms for solving higher or-
der energy functions. The potential functions which can be
solved using our method are described in Sect. 5. Finally, in
Sect. 6 we show how the optimal expansion and swap moves
for energy functions composed of such potentials can be
computed by solving a st-mincut problem. The experimen-
tal results of our method are given in Sect. 7. These include
qualitative and quantitative results on well known and chal-
lenging data sets for object segmentation and recognition.
The conclusions and directions for future work are listed in
Sect. 8. The proofs of the theorems stated in the paper are
given in Appendix B.

2 Preliminaries

We start by providing the basic notation used in the paper.
Consider a discrete random field X defined over a lattice
V = {1,2, . . . ,N} with a neighbourhood system E . Each
random variable Xi ∈ X is associated with a lattice point
i ∈ V and takes a value from the label set L = {l1, l2, . . . , lk}.
The neighborhood system E is the set of edges connecting
variables in the random field. A clique c is a set of random
variables Xc which are conditionally dependent on each
other. Any possible assignment of labels to the random vari-
ables will be called a labelling (denoted by x) which takes
values from the set L = LN .

The probability Pr(X = x) of any labelling x of the ran-
dom variables will be referred to as Pr(x). From the Ham-
mersley Clifford theorem, the posterior distribution Pr(x|D)
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over the labellings of a Markov Random Field (MRF) is a
Gibbs distribution and can be written as

Pr(x|D) = 1

Z
exp

(
−

∑
c∈C

ψc(xc)

)
, (1)

where ψc(xc) are potential functions defined over the vari-
ables (xc = {xi, i ∈ c}) constituting the clique c, Z is a nor-
malizing constant known as the partition function, and C is
the set of all cliques (Lauristzen 1996). The corresponding
Gibbs energy is defined as

E(x) = − log Pr(x|D) − logZ =
∑
c∈C

ψc(xc). (2)

The maximum a posteriori (MAP) labelling x∗ of the random
field is defined as

x∗ = arg max
x∈L

Pr(x|D) = arg min
x∈L

E(x). (3)

A conditional random field (CRF) may be viewed as an MRF

globally conditioned on the data (Lafferty et al. 2001). In
this case, the potential functions are conditioned by the data
and are thus should be written as ψc(xc|D). To be concise,
we will drop D, and just use ψc(xc) to denote the potential
functions of a CRF.

2.1 Pairwise CRFs for Object Segmentation

The CRF models commonly used for object segmentation
are characterized by energy functions defined on unary and
pairwise cliques as:

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E
ψij (xi, xj ). (4)

Here V corresponds to the set of all image pixels, while E is
the set of all edges connecting the pixels i, j ∈ V . The edge
set is commonly chosen to define a 4 or 8 neighbourhood.
The labels constituting the label set L represent the differ-
ent objects. The random variable xi denotes the labelling
of pixel i of the image. Every possible assignment of the
random variables x (or configuration of the CRF) defines a
segmentation.

The unary potential ψi of the CRF is defined as the nega-
tive log of the likelihood of a label being assigned to pixel i.
It can be computed from the colour of the pixel and the ap-
pearance model for each object. However, colour alone is
not a very discriminative feature and fails to produce accu-
rate segmentations. This problem can be overcome by using
sophisticated potential functions based on colour, texture,
location, and shape priors as shown by Blake et al. (2004),
Bray et al. (2006), Kumar et al. (2005), Rother et al. (2004),

Shotton et al. (2006). The unary potential used by us can be
written as:

ψi(xi) = θT ψT (xi) + θcolψcol(xi) + θlψl(xi) (5)

where θT , θcol , and θl are parameters weighting the poten-
tials obtained from TextonBoost(ψT ) (Shotton et al. 2006),
colour(ψcol) and location(ψl) respectively.

The pairwise terms ψij of the CRF take the form of a
contrast sensitive Potts model:

ψij (xi, xj ) =
{

0 if xi = xj ,

g(i, j) otherwise,
(6)

where the function g(i, j) is an edge feature based on the
difference in colors of neighboring pixels (Boykov and Jolly
2001). It is typically defined as:

g(i, j) = θp + θv exp(−θβ‖Ii − Ij‖2), (7)

where Ii and Ij are the colour vectors of pixel i and j re-
spectively. θp , θv , and θβ are model parameters whose val-
ues are learned using training data. We refer the reader to
Boykov and Jolly (2001), Rother et al. (2004), Shotton et al.
(2006) for more details.

Inferring the Most Probable Segmentation The object seg-
mentation problem can be solved by finding the least en-
ergy configuration of the CRF defined above. As the pair-
wise potentials of the energy function (4) are of the form of
a Potts model it can be minimized approximately using the
well known α-expansion algorithm (Boykov et al. 2001).
The resulting segmentation can be seen in Fig. 1. We also
tried other energy minimization algorithms such as sequen-
tial tree-reweighted message passing (TRW-S) (Kolmogorov
2006; Wainwright et al. 2005). The α-expansion algorithm
was preferred because it was faster and gave a solution with
lower energy compared to TRW-S.

Need for Higher Order CRFs The use of Potts model
(Boykov et al. 2001) potentials in the CRF model makes it
favour smooth object boundaries. Although this improves
results in most cases it also introduces an undesirable side
effect. Smoothness potentials make the model incapable of
extracting the fine contours of certain object classes such
as trees and bushes. As seen in the results, segmentations
obtained using pairwise CRFs tend to be oversmooth and
quite often do not match the actual object contour. In the
next section we show how these results can be significantly
improved by using higher order potentials derived from mul-
tiple segmentations obtained from an unsupervised image
segmentation method.
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3 Incorporating Higher Order Potentials

Methods based on grouping regions for segmentation gener-
ally make the assumption that all pixels constituting a partic-
ular segment (or region) belong to the same object (He et al.
2006). This is not always the case, and image segments quite
often contain pixels belonging to multiple object classes. For
instance, in the segmentations shown in Fig. 2 the bottom
image segment contains some ‘building’ pixels in addition
to all the grass pixels.

Unlike other object segmentation algorithms which use
the label consistency in segments as a hard constraint, our
method uses it as a soft constraint. This is done by using
higher order potentials defined on the image segments gen-
erated using unsupervised segmentation algorithms. Specif-
ically, we augment the pairwise CRF model explained in the
previous section by incorporating higher order potentials de-
fined on sets or regions of pixels. The Gibbs energy of this
higher order CRF can now be written as:

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E
ψij (xi, xj ) +

∑
c∈S

ψc(xc), (8)

where S refers to a set of image segments (or super-pixels),
and ψc are higher order potentials defined on them. In our
experiments, the set S consisted of all segments of multiple
segmentations of an image obtained using an unsupervised

image segmentation algorithm such as mean-shift (Comani-
ciu and Meer 2002) (see Sect. 3.4 for more details). We will
now describe in detail how these higher order potentials are
defined.

3.1 Region Based Consistency Potential

The region consistency potential is similar to the smoothness
prior present in pairwise CRFs (Boykov and Jolly 2001). It
favours all pixels belonging to a segment taking the same
label, and as will be shown later is particularly useful in ob-
taining object segmentations with fine boundaries. It takes
the form of a P n Potts model (see (16)) (Kohli et al. 2007):

ψ
p
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

θh
p |c|θα otherwise

(9)

where |c| denotes the cardinality of the pixel set c which in
our case is the number of pixels constituting superpixel c,
while θh

p and θα are parameters of the potential. The expres-
sion θh

p |c|θα gives the label inconsistency cost, i.e. the cost
added to the energy of a labelling in which different labels
have been assigned to the pixels constituting the segment.
The parameters θh

p and θα are learned from the training data
by cross validation as described in Sect. 7. The reader should
note that this potential takes multiple variables as argument

Fig. 2 Quality sensitive region consistency prior. (a) An image from
the MSRC data set. (b) and (c) Two different segmentations of the
image obtained using different parameter values for the mean-shift al-
gorithm. (d) A hand labelled object segmentation of the image. (e) and
(f) The value of the variance based quality function G(c) (see (11))
computed over the segments of the two segmentations. Segments with
high quality values are darker. It can be clearly seen that segments

which contain multiple object classes have been assigned low qual-
ity. For instance, the top segment of the left tree in segmentation (c)
includes a part of the building and thus is brighter in the image (f)
indicating low quality. Potentials defined on such segments will have
a lower labelling inconsistency cost and will have less influence in the
CRF
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Fig. 3 Behaviour of the rigid
P n Potts potential and the
Robust P n model potential. The
figure shows how the cost
enforced by the two higher
order potentials changes with
the number of variables in the
clique not taking the dominant
label i.e.
Ni(xc) = mink(|c| − nk(xc))

and thus cannot be expressed in the conventional pairwise
CRF model.

3.2 Quality Sensitive Consistency Potential

Not all segments obtained using unsupervised segmentation
are equally good, for instance, some segments may contain
multiple object classes. A region consistency potential de-
fined over such a segment will encourage an incorrect la-
belling of the image. This is because the potential (9) does
not take the quality or goodness of the segment into account.
It assigns the same penalty for breaking ‘good’ segment as
it assigns to ‘bad’ ones. This problem of the consistency
potential can be overcome by defining a quality sensitive
higher order potential (see Fig. 2). This new potential works
by modulating the label inconsistency cost with a function
of the quality of the segment (which is denoted by G(c)).
Any method for estimating the segment quality can be used
in our framework. A good example would be the method
of Ren and Malik (2003) which uses inter and intra region
similarity to measure the quality or goodness of a segment.
Formally, the potential function is written as:

ψv
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

|c|θα (θh
p + θh

v G(c)) otherwise.
(10)

For our experiments, we use the variance of the response
of a unary feature evaluated on all constituent pixels of a
segment to measure the quality of a segment, i.e.

G(c) = exp

(
−θh

β

‖∑
i∈c(f (i) − μ)2‖

|c|

)
, (11)

where μ =
∑

i∈c f (i)

|c| and f ( ) is a function evaluated on all
constituent pixels of the superpixel c. If we restrict our at-
tention to only pairwise cliques i.e. |c| = 2, the variance sen-
sitive potential becomes

ψv
c (xi, xj ) =

⎧⎪⎨
⎪⎩

0 if xi = xj ,

|c|θα
(
θh
p + θh

v exp
(−θh

β
‖f (i)−f (j)‖2

4

))
otherwise.

(12)

This is the same as the pairwise potential (6) commonly
used in pairwise CRFs for different image labelling prob-
lems (Boykov and Jolly 2001; Rother et al. 2004). Thus, the
variance sensitive potential can be seen as a higher order
generalization of the contrast preserving potential. The vari-
ance function response over two segmentations of an image
is shown in Fig. 2.

3.3 Making the Potentials Robust

The P n Potts model enforces label consistency rigidly. For
instance, if all but one of the pixels in a super-pixel take the
same label then the same penalty is incurred as if they were
all to take different labels. Due to this strict penalty, the po-
tential might not be able to deal with inaccurate super-pixels
or resolve conflicts between overlapping regions of pixels.
This phenomenon is illustrated in Fig. 4 wherein a part of
the bird is merged with the ‘sky’ super-pixel and results in
an inaccurate segmentation. Intuitively, this problem can be
resolved using the Robust higher order potentials defined as:

ψv
c (xc) =

{
Ni(xc)

1
Q

γmax if Ni(xc) ≤ Q,

γmax otherwise,
(13)

where Ni(xc) denotes the number of variables in the clique
c not taking the dominant label i.e. Ni(xc) = mink(|c| −
nk(xc)), γmax = |c|θα (θh

p + θh
v G(c)), and Q is the trunca-

tion parameter which controls the rigidity of the higher order
clique potential. We will show in Sect. 4 how energy func-
tions composed of such potentials can be minimized using
move making algorithms such as α-expansion and αβ-swap.

Unlike the standard P n Potts model, this potential func-
tion gives rise to a cost that is a linear truncated function
of the number of inconsistent variables (see Fig. 3). This
enables the robust potential to allow some variables in the
clique to take different labels. In the image shown in Fig. 4,
the robust P n potentials allows some pixels of the ‘sky’ seg-
ment to take the label ‘bird’ thus producing a much better
segmentation. Experimental results are shown for multiple
values of the truncation parameter Q. More qualitative re-
sults can be seen in Fig. 13.
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Fig. 4 Object segmentation and recognition using the Robust P n

higher order potentials (13). (a) Original image. (b) Labelling from
unary likelihood potentials from TextonBoost (Shotton et al. 2006).
(c) and (d) Segmentations obtained by varying the parameters of the
Mean shift algorithm for unsupervised image segmentation (Comani-
ciu and Meer 2002). (e) Result obtained using pairwise potential func-
tions as described in Shotton et al. (2006). (f) Result obtained using P n

Potts model potentials defined on the segments (or superpixels) shown
in (c) and (d). These higher order potentials encourage all pixels in a
superpixel to take the same label. The P n Potts model rigidly enforces

label consistency in regions thus causing certain pixels belonging to the
‘bird’ to erroneously take the label ‘sky’ as they were included in the
‘sky’ superpixel. This problem can be overcome by using the Robust
P n model potentials defined in (13) which are robust and allow some
variables in the clique to take different labels. (g) and (h) Show results
obtained by using the robust potentials with truncation parameter Q

equal to 0.1|c| and 0.2|c| respectively. Here |c| is equal to the size of
the superpixel over which the Robust P n model potential is defined.
(i) Hand labelled segmentation from the MSRC dataset

3.4 Generating Multiple Segmentations

We now explain how the set S of segments used for defin-
ing the higher order energy function (8) was generated. Our
framework is quite flexible and can handle multiple over-
lapping or non-overlapping segments. The computer vision
literature contains algorithms for sampling the likely seg-
mentations of an image (Tu and Zhu 2002) or for generat-
ing multi-scale segmentations (Sharon et al. 2001). How-
ever, following in the footsteps of Russell et al. (2006)
we choose to generate multiple segmentations by vary-

ing the parameters of the mean shift segmentation algo-
rithm (Comaniciu and Meer 2002). This method belongs
to the class of unsupervised segmentation algorithms which
work by clustering pixels on the basis of low level im-
age features (Shi and Malik 2000; Comaniciu and Meer
2002; Felzenszwalb and Huttenlocher 2004). They have
been shown to give decent results which have proved to be
useful for many applications (Hoiem et al. 2005a, 2005b;
Wang et al. 2005).

The kernel used in the mean shift algorithm is defined
as the product of spatial and range kernels. The spatial do-
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Fig. 5 (Color online) Generating multiple segmentations. The figure
shows the segmentations obtained by using different parameters in the
mean-shift algorithm. The parameters used for generating the segmen-

tation are written below it in the format (hs, hr ), where hs and hr are
the bandwidth parameters for the spatial and range (colour) domains

main contains the (x, y) coordinates, while the range do-
main contains pixel colour information in LUV space. An
assumption of Euclidian metric in both of them allows the
use of a single bandwidth parameter for each domain, hs for
spatial and hr for range. The segmentation results obtained
using 2 different spatial {7,18} and 3 different range pa-
rameter values {6.5,9.5,15} are shown in Fig. 5. It can be
seen that the results do not change dramatically on small
images by modifying hs . The only difference occurs on
very noisy parts of the image like trees and bushes. By
increasing the range parameter hr we can get a range of
segmentations which vary from over-segmented to under-
segmented. We decided to use three segmentations with pa-
rameters (hs, hr) = {(7,6.5), (7,9.5), (7,15)}.

4 Inference in Higher Order CRFs

The problem of inferring the most probable solution of a
higher order CRF is equivalent to minimizing an energy
function. In general, the energy minimization problem is
NP-hard (Kolmogorov and Zabih 2004). However, there ex-
ist classes of functions which can be solved exactly in poly-
nomial time. Two well known classes of tractable func-
tions are: submodular functions, and functions defined over
graphs with bounded tree width. However, most energies en-
countered in practical problems do not belong to these fam-
ilies. They are instead solved using algorithms for approxi-
mate energy minimization. These algorithms can be divided
into two broad categories: message passing algorithms such
as belief propagation and its variants (Kolmogorov 2006;
Wainwright et al. 2005; Yedidia et al. 2000), and move mak-
ing algorithms such as the graph cut based α-expansion and

αβ-swap (Boykov et al. 2001). Message passing algorithms
have been shown to produce excellent results for many en-
ergy functions. However, their runtime complexity increases
exponentially with the size of the largest clique in the ran-
dom field, making them inapplicable to functions defined
over large cliques. Efficient graph cut based α-expansion
and αβ-swap move algorithms have been successfully used
to minimize energy functions composed of pairwise poten-
tial functions. In this paper, we show how they can be ap-
plied to a large and useful class of higher order energy func-
tions.

4.1 Expansion and Swap Move Algorithms

Move making algorithms start from an initial solution and
proceed by making a series of changes which lead to so-
lutions having lower energy. At each step, the algorithms
search a move space and choose the move which leads to
the solution having the lowest energy. This move is referred
to as the optimal move. The algorithm is said to converge
when no lower energy solution can be found.

The size of the move space is a key characteristic of these
algorithm. A large move space means that bigger changes to
the current solution can be made. This makes the algorithm
less prone to getting stuck in local minima and also results in
a faster rate of convergence. This paper deals with two par-
ticular large move making algorithms, namely α-expansion
and αβ-swap (Boykov et al. 2001) whose move space size
increases exponentially with the number of variables in-
volved in the energy function. We will use the notation of
Kohli et al. (2007) to describe how these algorithms work.
The moves of the expansion and swap algorithms can be en-
coded as a vector of binary variables t = {ti ,∀i ∈ V }. The
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transformation function T (xp, t) of a move algorithm takes
the current labelling xp and a move t and returns the new
labelling xn which has been induced by the move.

An α-expansion move allows any random variable to ei-
ther retain its current label or take label ‘α’. One iteration of
the algorithm involves making moves for all α in L in some
order successively. The transformation function Tα() for an
α-expansion move transforms the label of a random variable
Xi as

Tα(xi, ti) =
{

α if ti = 0,

x
p
i if ti = 1.

(14)

An αβ-swap move allows a variable whose current label is
α or β to either take label α or β . One iteration of the al-
gorithm involves performing swap moves for all α and β in
L in some order successively. The transformation function
Tαβ() for an αβ-swap transforms the label of a random vari-
able xi as

Tαβ(xi, ti) =
{

α if xi = α or β and ti = 0,

β if xi = α or β and ti = 1.
(15)

The energy of a move t is the energy of the labelling x
the move t induces i.e. Em(t) = E(T (x, t)). The move en-
ergy is a pseudo-boolean function (Em : {0,1}n → R) and
will be denoted by Em(t). At each step of the expansion and
swap move algorithms, the optimal move t∗, i.e. the move
decreasing the energy of the labelling by the most amount
is computed. This is done by minimizing the move energy
i.e. t∗ = arg mint E(T (x, t)). The optimal move t∗ can be
computed in polynomial time if the move function Em(t) is
submodular.

4.2 Recent Developments

The last few years have seen a lot of interest in graph
cut based move algorithms for energy minimization. Ko-
modakis et al. (2005, 2007) recently gave an alternative in-
terpretation of the α-expansion algorithm. They showed that
α-expansion works by solving the dual of a linear program-
ming relaxation of the energy minimization problem. Us-
ing this theory, they developed a new algorithm (FAST-PD)
which was faster than vanilla α-expansions and produced
the exact same solution. Alahari et al. (2008) have recently
proposed a similar but simpler method which achieves the
same performance.

Researchers have also proposed a number of novel move
encoding strategies for solving particular forms of energy
functions. Veksler (2007) proposed a move algorithm in
which variables can choose any label from a range of labels.
They showed that this move space allowed them to obtain
better minima of energy functions with truncated convex
pairwise terms. Kumar and Torr (2008) have since shown

that the range move algorithm achieves the same guarantees
as the ones obtained by methods based on the standard lin-
ear programming relaxation. More recently, Lempitsky et al.
(2007) proposed an algorithm which encoded labels by a bi-
nary string. During each move, the variables were allowed to
change a particular bit of the binary string. They showed that
this particular move encoding strategy results in a substan-
tial speedup when minimizing energy functions with large
label sets.

4.3 Computing Moves Using Graph Cuts

We had discussed in Sect. 4.1 that the optimal expansion
and swap moves can be computed by minimizing a (move)
function of binary variables. Functions of binary variables
(F : {0,1} → R) are usually referred to as Pseudo-boolean
functions. It is known that a move function can be mini-
mized in polynomial time if it is submodular (Orlin 2007)
(see Appendix A). Submodular set functions are encoun-
tered in many areas of research and are particularly useful in
combinatorial optimization, probability and geometry (Fu-
jishige 1991; Lovasz 1983). Many optimization problems
relating to submodular functions can be solved efficiently.
In this respect they are similar to convex/concave functions
encountered in continuous optimization.

Algorithms for submodular function minimization have
high runtime complexity. Although recent work has been
successful in reducing the runtime complexity of these al-
gorithms, they are still quite computationally expensive and
cannot be used to minimize large functions. For instance,
the complexity of the current best algorithm for general sub-
modular function minimization is O(n5 T + n6) where T is
the time taken to evaluate the function (Orlin 2007). This
algorithm improved upon the previous best algorithm by a
factor of n logn.

Some submodular functions can be minimized much
more efficiently by solving an st-mincut problem (Boros
and Hammer 2002). Specifically, all submodular functions
of binary variables of order at most 3 can be minimized
in this manner (Boros and Hammer 2002; Kolmogorov and
Zabih 2004). Researchers have shown that certain higher or-
der functions can be transformed into submodular functions
of order 2, and thus can also be minimized (Boros and Ham-
mer 2002; Freedman and Drineas 2005). The same trans-
formation technique can be used to minimize some func-
tions of multi-valued variables (Flach 2002; Ishikawa 2003;
Schlesinger and Flach 2006).

Solving pairwise CRFs using move making algorithms
involves computing optimal moves by minimizing quadratic
pseudo-boolean move functions. Boykov et al. (2001)
showed that all expansion move functions encountered
while minimizing an energy function composed of metric
potential functions are submodular. As these functions are
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quadratic, they can be efficiently minimized by solving an
equivalent st-mincut problem. They also showed that all αβ-
swap move functions can be exactly minimized if the pair-
wise potentials of the CRF are semi-metric.

5 Robust Higher Order Potentials

Kohli et al. (2007) recently characterized a class of higher
order clique potentials for which the optimal expansion and
swap moves can be computed by minimizing a submodular
function. However, as discussed earlier, minimizing a gen-
eral submodular function is quite computationally expensive
and it is infeasible to apply this procedure to minimize en-
ergy functions encountered in computer vision problems,
which generally involve millions of random variables. In
the same work, they also introduced a class of higher order
clique potentials called the P n Potts model and showed that
the optimal expansion and swap moves for energy functions
containing these potentials can be computed in polynomial
time by solving a st-mincut problem. The P n Potts model
was defined as:

ψc(xc) =
{

γk if xi = lk, ∀i ∈ c,

γmax otherwise,
(16)

where γmax ≥ γk , ∀lk ∈ L. This potential is a higher or-
der generalization of the widely used Potts model potential
which is defined over cliques of size two as ψij (a, b) = γk

if a = b = lk and γmax otherwise.
In this paper we introduce a novel family of higher order

potentials which we call the Robust P n model. This fam-
ily contains the P n Potts model as well as its robust vari-
ants, and can be used for modelling many computer vision
problems. We show that the optimal swap and expansion
move energy functions for any Robust P n model potential
can be transformed into a second order submodular function
by the addition of at most two binary auxiliary variables.
This transformation enables us to find the optimal swap and
expansion moves in polynomial time.4

The Robust P n model potentials take the form:

ψc(xc) = min
{

min
k∈L

((|c| − nk(xc))θk + γk), γmax

}
(17)

where |c| is the number of variables in clique c, nk(xc) de-
notes the number of variables in clique c which take the la-
bel k in labelling xc, and γk, θk, γmax are potential function
parameters which satisfy the constraints:

θk = γmax − γk

Q
and γk ≤ γmax, ∀k ∈ L. (18)

4All second order submodular functions of binary variables can be
minimized exactly in polynomial time by solving an st-mincut prob-
lem (Boros and Hammer 2002; Kolmogorov and Zabih 2004).

Q is called the truncation parameter of the potential and sat-
isfies the constraint 2Q < |c|. It can be seen that the Robust
P n model (17) becomes a P n Potts model (16) when the
truncation parameter is set to 1.

Example 1 Consider the set of clique variables X = {X1,

X2, . . . ,X7} where each Xi, i ∈ {1,2, . . . ,7} takes a value
from the label set L = {a, b, c}. If the clique potential takes
the form a P n Potts model, it assigns a cost γmax to all la-
bellings of the random variables except those where all vari-
ables Xi take the same label. Thus, the configuration x =
(a, a, b, a, c, a, a) will be assigned cost γmax even though
there are only 2 variables (specifically, X3 and X5) which
are assigned labels (b and c) different from the dominant la-
bel a. In contrast, if the clique potential takes the form of the
Robust P n model with truncation 3 i.e., Q = 3, it assigns the
cost: γa + (γmax−γa)

3 × 2 to the same configuration.

The region based consistency potentials (13) used in our
higher order CRF takes the form of a Robust P n model
where the constants γk have the same value for all labels
k ∈ L. In this case, the higher order potential can be seen as
encouraging all the variables in the clique c to take the same
label. In other words, the potential tries to reduce the num-
ber of variables in the clique not taking the dominant label
i.e., Ni(xc) = mink(|c| − nk(xc)). In what follows we will
refer to these variables as inconsistent.

Unlike the P n Potts model that rigidly enforces label con-
sistency, the Robust P n Potts model gives rise to a cost that
is a linear truncated function of the number of inconsistent
variables (see Fig. 3). This enables the robust potential to
allow some variables in the clique to take different labels.

5.1 Approximating Concave Consistency Potentials

Multiple Robust P n model potentials can be combined to
approximate any non-decreasing concave consistency po-
tential up to an arbitrary accuracy. This potential takes the
form:

ψc(xc) = min
{

min
k∈L

Fc((|c| − nk(xc))), γmax

}
(19)

where Fc is a non-decreasing concave function.5 This is il-
lustrated in Fig. 6.

5.2 Generalized form of Robust Higher Order Potentials

We now provide a characterization of a larger class of func-
tions for which at most two auxiliary variables are sufficient

5A function f (x) is concave if for any two points (a, b) and λ where
0 ≤ λ ≤ 1: λf (a) + (1 − λ)f (b) ≤ f (λa + (1 − λ)b).
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Fig. 6 Approximating Concave Consistency Potentials. The figure
shows the result of combining two robust higher order potentials (a)
and (b). The resulting potential function is shown in (c)

to transform the higher order swap and expansion move en-
ergy functions to second order functions. The potentials be-
longing to this new family have the form:

ψc(xc) = min
{

min
k∈L

((P − fk(xc))θk + γk), γmax

}
(20)

where the parameter P and functions fk(xc) are defined as:

P =
∑
i∈c

wk
i , ∀k ∈ L, (21)

fk(xc) =
∑
i∈c

wk
i δk(xi) (22)

where δk(xi) =
{

1 if xi = k,

0 otherwise,
(23)

and weights wk
i ≥ 0, i ∈ c, k ∈ L encode the relative impor-

tance of different variables in preserving consistency of the
labelling of the clique. The parameters γk, θk, γmax of the
potential function satisfy the constraints:

θk = γmax − γk

Qk

and γk ≤ γmax, ∀k ∈ L. (24)

Qk,k ∈ L are the truncation parameters of the potential
functions and satisfy the constraints Qa + Qb < P , ∀a 	=
b ∈ L.

If we assume that wk
i = wi ≥ 0 and Qk = Q for all k ∈ L,

the potential family (20) can be seen as weighted version of
the Robust P n model. The weights can be used to specify the
relative importance of different variables. For instance, this
can be used to change the robust region consistency potential
(13) to reduce the inconsistency cost for pixels on the seg-
ment boundary by reducing their weights. We will show that
for the case of symmetric weights i.e. wk

i = wi , the higher
order swap and expansion and move energy functions for the
potentials (20) can be transformed to a submodular second
order binary energy.6

6 Minimizing Higher Order Move Functions Using
Graph Cuts

We will now explain how the optimal swap and expansion
moves for energy functions containing potential functions of
the form (20) can be computed using graph cuts. The com-
putation of the optimal moves requires the minimization of
higher order move functions. This is done by first transform-
ing the higher order move functions to quadratic submodu-
lar functions by adding auxiliary binary variables, and then
minizing them using graph cuts.

6.1 Transforming Higher Order Move Energies

The problem of transforming a general submodular higher
order function to a second order one has been well stud-
ied (Boros and Hammer 2002). It is known that in the worst
case this may require the addition of exponential number of
auxiliary binary variables. Due to the special form of the Ro-
bust P n model (10), the method described in the paper only
needs to add two binary variables per higher order poten-
tial to transform the move energy to a submodular quadratic
function. This allows for the efficient computation of the op-
timal swap and expansion moves. The complexity of our al-
gorithm for computing the optimal move increases linearly
with the size of the clique. This enables us to handle poten-
tial functions defined over very large cliques.

The important observation that inspired our method is the
fact that higher order pseudo-boolean functions of the form:

f (tc) = min

(
θ0 +

∑
i∈c

w0
i (1 − ti ), θ1 +

∑
i∈c

w1
i ti , θmax

)

(25)

can be transformed to submodular quadratic pseudo-boolean
functions, and hence can be minimized using graph cuts.

6Higher order potentials with asymmetric weights can also be trans-
formed to quadratic functions in a similar manner. We restrict our at-
tention to potentials with symmetric weights for a cleaner exposition.
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(a)

(b)

Fig. 7 (a) Graph construction for minimizing higher order quadratic
functions of the form (25) using the transformation given in The-
orem 1. For every binary variable ti in the energy function there
is a corresponding graph node vi . The minimum cost source sink
cut (st-mincut) divides the graph into two sets: the source set (S )
and the sink set (T ). vi ∈ (S) implies ti = 1 while vi ∈ (T )

implies ti = 0. (b) Graph illustrating how two higher order po-
tentials of the form (25) can be summed together to attain any
function of the generalized concave form (29). Function f and
g are defined over 10 binary variables (c = {1,2, . . . ,10}). They
are defined as: f (t) = min(1 + ∑

i∈c 2(1 − ti ),2 + ∑
i∈c ti ,5) and

g(t) = min(2 + ∑
i∈c(1 − ti ),1 + ∑

i∈c ti ,6)

Here, tc = {ti ∈ {0,1}, i ∈ c} is the set of binary random
variables included in the clique c, and w0

i ≥ 0, w1
i ≥ 0, θ0,

θ1, θmax are parameters of the potential satisfying the con-
straints θmax ≥ θ0, θmax ≥ θ1, and

((
θ0 +

∑
i∈c

w0
i (1 − ti ) ≥ θmax

)

∨
(

θ1 +
∑
i∈c

w1
i ti ≥ θmax

))
= 1, ∀tc ∈ {0,1}|c| (26)

where ∨ is a boolean OR operator. The transformation to a
quadratic pseudo-boolean function requires the addition of
only two binary auxiliary variables making it computation-
ally efficient.

Theorem 1 The higher order pseudo-boolean function:

f (tc) = min

(
θ0 +

∑
i∈c

w0
i (1 − ti ), θ1 +

∑
i∈c

w1
i ti , θmax

)

(27)

can be transformed to the submodular quadratic pseudo-
boolean function:

f (tc) = min
m0,m1

(
r0(1 − m0) + m0

∑
i∈c

w0
i (1 − ti )

+ r1m1 + (1 − m1)
∑
i∈c

w1
i ti − K

)
(28)

by the addition of binary auxiliary variables m0 and m1.
Here, r0 = θmax −θ0, r1 = θmax −θ1 and K = θmax −θ0 −θ1.

Proof in Appendix B.
The graph construction for minimizing the quadratic

pseudo-boolean function (28) is shown in Fig. 7(a).
Multiple higher order potentials of the form (25) can be

summed together to obtain higher order potentials of the
more general form

f (tc) = Fc

(∑
i∈c

ti

)
(29)

where Fc : R → R is any concave function. See Fig. 7(b) for
an illustration.

In what follows we show that any swap or expansion
move energy for higher order potentials of the form (20) can
be converted to a submodular pairwise function if wk

i = wi

for all k ∈ L. Our transformation requires the addition of
only two binary auxiliary variables. To proceed further, we
will need to define the function W(s), s ⊆ c:

W(s) =
∑
i∈s

wi. (30)

It can be seen from constraint (21) that W(c) = P .

6.2 Swap Moves

Recall from the definition of the swap move transformation
function that only variables which are currently assigned la-
bels α or β can take part in a αβ-swap move. We call these
variables active and denote the vector of their indices by ca .
tca will be used to denote the corresponding vector of move
variables. Similarly, variables in the clique which do not take
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part in the swap move are called passive, and the set of their
indices is denoted by cp . Let functions f m

k (tca ), k ∈ {0,1}
be defined as:

f m
k (tca ) =

∑
i∈ca

wiδk(ti). (31)

The move energy of a αβ-swap move from the current
labelling xp

c is equal to the energy of the new labelling xn
c

induced by the move and is given as

ψm
c (tca ) = ψc(xn

c ). (32)

The new labelling xn
c is obtained by combining the old la-

belling of the passive variables Xcp with the new labelling
of the active variables Xca as:

xn
c = xp

cp
∪ Tαβ(xp

ca
, tca ). (33)

On substituting the value of xn
c from (33) in (32), and using

the definition of the higher order potential functions (20) we
get:

ψm
c (tca ) = ψc(x

p
cp

∪ Tαβ(xp
ca

, tca )) (34)

= min
{

min
k∈L

(zkθk + γk), γmax

}
(35)

where zk = P − fk(x
p
cp

∪ Tαβ(xp
ca

, tca )).
It can be easily observed that if conditions:

W(ca) < P − Qα and W(ca) < P − Qβ, (36)

are satisfied, then the expression:

(P − fk(x
p
cp

∪ Tαβ(xp
ca

, tca )))θk + γk (37)

is greater than γmax for both k = α and k = β . Thus, in this
case the move energy ψm

c (tca ) is independent of tca and is
equal to the constant:

η = min
{

min
k∈L\{α,β}

((P − fk(x
p
c ))θk + γk), γmax

}
(38)

which can be ignored while computing the swap moves.
However, if constraints (36) are not satisfied, the move en-
ergy becomes:

ψm
c (xp

ca
, tca ) = min

{
(W(ca) − f m

0 (tca ))θα + λα,

(W(ca) − f m
1 (tca ))θβ + λβ,λmax

}
(39)

where λα = γα + Rαβθα , λβ = γβ + Rαβθβ , λmax = γmax

and Rαβ = W(c − ca).
The higher order move energy (39) has the same form

as the function defined in (27), and can be transformed to a

pairwise function by introducing binary auxiliary variables
m0 and m1 as:

ψm
c (tc) = min

m0,m1

(
r0(1 − m0) + θβm0

∑
i∈ca

wi(1 − ti )

+ r1m1 + θα(1 − m1)
∑
i∈ca

witi − δ

)
, (40)

where r0 = λα + δ, r1 = λβ + δ, and δ = λmax − λα − λβ .
The properties γmax ≥ γk,∀k ∈ L and wi ≥ 0 of the

clique potential (20) imply that all coefficients of the en-
ergy function (40) are non-negative. The function is thus
submodular and can be minimized by solving a st-mincut
problem (Kolmogorov and Zabih 2004). The graph con-
struction for minimizing the energy function (40) is shown
in Fig. 8(a). The constant δ in (40) does not affect the min-
imization problem i.e. it does not change the move having
the least energy and thus is ignored.

6.3 Expansion Moves

We now describe how the optimal expansion moves can be
computed for the higher order potentials (20). Let ck de-
note the set of indices of variables in clique c that have
been assigned label k in the current solution xp

c . We find
the dominant label d ∈ L in xp

c such that W(cd) > P − Qd

where d 	= α. The constraints Qa + Qb < P , ∀a 	= b ∈ L of
the higher order potentials (20) make sure that there is at
most one such label. If we find such a label in the current
labelling, then the expansion move energy can be written as:

ψm
c (tc) = ψc(Tα(xp

c , tc)) or,

ψm
c (tc) = min

{
λα + θα

∑
i∈c

witi ,

λd + θd

∑
i∈cd

wi(1 − ti ), λmax

}
,

(41)

where λα = γα , λd = γd + Rdθd , λmax = γmax and Rd =
W(c − cd). Without the minimization operator the function
(41) becomes:

ψm
c (tc, tcd

) =

⎧⎪⎨
⎪⎩

Kα if f m
0 (tc) > P − Qα,

Kd if f m
0 (tcd

) ≤ Qd − Rd,

λmax otherwise

(42)

where Kα = λα +(P −f m
0 (tc))θα , and Kd = λd +f m

0 (tcd
)θd .

Next we will show that this higher order move energy can
be written as a second order submodular function with the
addition of the auxiliary binary variables m0 and m1.
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(a) Swap move

(b) Expansion move

Fig. 8 (a) Graph construction for minimizing the swap energy func-
tion (40). (b) Graph construction for minimizing the expansion move
energy function (43). For every binary move variable ti in the energy
function there is a corresponding graph node vi . The minimum cost
source sink cut (st-mincut) divides the graph into two sets: the source
set (S ) and the sink set (T ). vi ∈ (S) implies ti = 1 while vi ∈ (T )

implies ti = 0

Theorem 2 The expansion move energy (42) can be trans-
formed into the pairwise function:

ψm
c (tc) = min

m0,m1

(
r0(1 − m0) + θdm0

∑
i∈cd

wi(1 − ti )

+ r1m1 + θα(1 − m1)
∑
i∈c

witi − δ

)
, (43)

where r0 = λα + δ, r1 = λd + δ, and δ = λmax − λα − λd .

Proof in Appendix B.
The energy function (43) is submodular and can be min-

imized by finding the st-mincut in the graph shown in
Fig. 8(b).

If a dominant label cannot be found then the move energy
can be written as:

ψm
c (tc) = min

{
λα + θα

∑
i∈c

witi , λmax

}
, (44)

where λα = γα , and λmax = γmax. This can be transformed
to the binary pairwise energy:

ψm
c (tc) = r1m1 + θα(1 − m1)

∑
i∈c

witi + λα, (45)

where r1 = λmax − λα . The proof for this transformation is
similar to the one shown for Theorem 2.

7 Experiments

In this section we provide the details of our experiments
which are divided in two parts. The first set of experiments
analyze the performance of our algorithm for minimizing
higher order energy functions, while those in the second set
deal with evaluating the performance of using our higher or-
der potentials for the problem of object segmentation.

7.1 Computational Performance

We have tested our methods on randomly generated higher
order energy functions. We compare the performance of our
methods with the Iterated Conditional Modes (ICM) algo-
rithm. Comparison with the conventional factor graph for-
mulation (Lan et al. 2006) of message passing algorithms
like BP and TRW-S was infeasible due to the large size of
cliques defining the energy functions used in our tests.7 Our
experiments show that the graph cut based expansion and
swap move algorithms for the Robust P n model potentials
produce solutions with lower energy compared to the ICM

algorithm. Further, they required much less time to converge
to the final solution compared to ICM. The graph in Fig. 10
show how the energy of the solutions obtained from differ-
ent minimization algorithms changes with time. The graphs
in Fig. 9 show how the convergence time for the different
algorithm is influenced by parameters of the energy func-
tion.

7It should be noted that the Robust P n model potentials can be trans-
formed into pairwise potentials by the addition of multi-label auxiliary
variables. This enables the use of message passing algorithms for min-
imizing energy functions composed of them. However, the analysis of
these transformations, and the subsequent study of the performance of
message passing algorithms on the transformed functions lies outside
the scope of this paper.
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Fig. 9 Convergence times of
the swap and expansion move
algorithms. The graphs show
how the convergence times of
the move algorithms is affected
by changes in the higher order
energy function. The
experiments were performed on
grids corresponding to 10
randomly selected images from
the Sowerby dataset for Object
Segmentation. The size of the
grid was 96 × 64. The unary and
pairwise potentials were
generated using the method
proposed in Shotton et al.
(2006). Higher order potentials
of the form of the Robust P n

were generated randomly and
incorporated in the conditional
random field. A detailed
description of the graphs can be
found in the text. The average
convergence time (in seconds)
of the expansion, swap and ICM
algorithms (in this order) for the
different experiments were:
(a) 3.3, 6.4, 312.3, (b) 3.5, 5.6,
384.6, (c) 3.3, 5.8, 318.4,
(d) 9.6, 35.9, 298.1

The graph in Fig. 9(a) shows how the convergence time
is affected by the number of higher order potentials. In the
energy functions used for this experiment, each random vari-
able is included in the same number of higher order cliques.
The x-axes of the graph shows the number of higher or-
der potentials each variable is involved in. As expected the
convergence time increases with the number of higher or-
der potentials in the energy function. The graph in Fig. 9(b)
shows the effect of parameter γmax of the Robust P n model
potentials on the convergence time. The graph in Fig. 9(c)
shows the effect of the truncation parameter Q of the Ro-
bust P n model. Q is specified as the percentage of the
size of the higher order clique. The change in convergence
time of the move making algorithms with the increase in
size of the label set of the random variables can be seen in
Fig. 9(d).

7.2 Object Segmentation Results

For comparative evaluation of our method we implemented
the state of the art TextonBoost (Shotton et al. 2006) algo-
rithm which uses a pairwise CRF. We then augmented the
CRF model by adding higher order potentials defined on
segments obtained from mean-shift (Comaniciu and Meer
2002).

Datasets We tested both the pairwise CRF and higher or-
der CRF models on the MSRC-21 (Shotton et al. 2006) and

Sowerby-7 (He et al. 2006) datasets. The MSRC dataset
contains 23 object classes and comprises of 591 colour im-
ages of 320 × 213 resolution. The Sowerby dataset con-
tains 7 object classes and comprises of 104 colour images
of 96 × 64 resolution. In our experiments, 50% of the im-
ages in the dataset were used for training and the remaining
were used for testing.

7.3 Setting CRF parameters

The optimal values for different parameters of the higher or-
der CRF were found in a manner similar to the one used for
the pairwise CRF in Shotton et al. (2006). The model pa-
rameters were learned by minimizing the overall pixelwise
classification error rate on a set of validation images—a sub-
set of training images which were not used for training unary
potentials.

A simple method for selecting parameter values is to
perform cross-validation for every combination of unary,
pairwise and higher order parameters within a certain dis-
cretized range. Unfortunately, the space of possible para-
meter values is high dimensional and doing an exhaustive
search is infeasible even with very few discretization lev-
els for each parameter. We used a heuristic to overcome
this problem. First we learned the weighting between unary
potentials from colour, location and TextonBoost. Then we
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Fig. 10 Comparison of solution energy with respect to runtime. For
the experiment, we used a CRF defined over a rectangular grid of 6000
random variables with a label set of size 7. The pairwise terms of the
random field enforced 8 connectivity. The energy function used in the
experiment had higher order potentials defined over a random num-
ber of cliques. These cliques were generated so that each variable of
the random field is included in exactly one higher order clique. The
graph shows how the energy of the solution obtained from different
minimization algorithms changes with time when we use a Robust P n

model with the truncation parameter Q equal to one tenth of the clique
size i.e. Q = 0.1|c|. It can be seen that expansion and swap algorithms
are much faster and produce better solutions than ICM

kept these weights constant and learned the optimal parame-
ters for pairwise potentials. Pairwise and higher order poten-
tials have similar functionality in the framework, thus learn-
ing of higher order parameters from the model with opti-
mal unary and pairwise parameters would lead to very low
weights of higher order potentials. Instead we learned op-
timal higher order parameters in CRF with only unary and
higher order potentials and in the last step the ratio between
pairwise and higher order potentials. The final trained coef-
ficients for the MSRC dataset were θT = 0.52, θcol = 0.21,
θl = 0.27, θp = 1.0, θv = 4.5, θβ = 16.0, θα = 0.8, θh

p =
0.2, θh

v = 0.5, θh
β = 12.0.8 Parameter learning for higher or-

der CRFs is an ongoing topic of research.

7.4 Quantitative Segmentation Results

The results of our experiments show that integration of
higher order P n Potts model potentials quantitatively and
qualitatively improves segmentation results. The use of the

8The magnitude of the learned parameter values does not correctly re-
flect the relative strength (importance) of higher order potentials vis a
vis pairwise potentials. Higher order potential costs (see (9) and (10))
are multiplied by a term dependent on the size of the clique (segment).
This is typically a large number and makes the cost of higher order
potentials high compared to that of the pairwise potentials.

robust potentials lead to further improvements (see Figs. 4,
11, 13 and 15). Inference on both the pairwise and higher
order CRF model was performed using the graph cut based
expansion move algorithm. The optimal expansion moves
for the energy functions containing the Robust P n poten-
tial (13) were computed using the method described in the
previous section.

Effect of Multiple Segmentations The use of multiple seg-
mentations allows us to obtain accurate segmentations of ob-
jects with thin structures. For instance, consider the image
shown in Fig. 12(a). Our method produces an accurate seg-
mentation (Fig. 12(g)) of the bird which, unlike the solution
of the pairwise CRF (Fig. 12(f)), also contains the bird’s leg.
This result does not require that many super-pixels contain
both: a part of the bird’s leg, and a part of the bird’s body. In
fact, as shown in Figs. 12(b) and (c), many super-pixels con-
tain only the leg and many other super-pixels contain only
(a part of) the bird without the leg. As we explain below, our
method can work even if only one super-pixel contains both
the bird body and leg together.

The reader should observe that solution of the higher or-
der CRF (Fig. 12(g)) is roughly consistent9 with all super-
pixels present in the multiple segmentations (Figs. 12(b),
(c) and (d)). The solution is thus assigned a low cost by
the higher order label consistency potentials. Now con-
sider the solution of the pairwise CRF (Fig. 12(f)). This
labelling is consistent with super-pixels in two segmenta-
tions (Figs. 12(b) and (c)), but is inconsistent with regards to
the segmentation shown in Fig. 12(d). It assigns ‘bird’ and
‘water’ labels to pixels constituting the super-pixel which
contained the bird, and is thus assigned a high cost by
the higher order label consistency potential defined on that
super-pixel.

Use of Image Specific Appearance Models Shotton et
al. (Shotton et al. 2006) used the segmentation result ob-
tained from the pairwise CRF to build an image specific
colour appearance model for the different object classes.
They added unary potentials derived from these models in
their pairwise CRF model. The appearance models were also
iteratively refined (as proposed by Rother et al. 2004) to
obtain the final segmentation result. In our experiments,
we observed that although the use of image specific mod-
els leads to better segmentations for some of the images,
it led to worse solutions for some others. Therefore, while
comparing results of pairwise and higher order random field
models, we decided against using this technique to avoid
obfuscation of the results.

9The solution does not assign different labels to many pixels belonging
to the same super-pixel.
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Fig. 11 Qualitative object segmentation and recognition results. The
first column shows the original image from the Sowerby-7 dataset.
Column 2 shows the result of performing inference in the pairwise
CRF model described in Sect. 2. The result obtained using the P n Potts

potential (10) is shown in column 3. The results of using the Robust P n

potential (13) is shown in column 4. The hand labelled segmentation
used as ground truth is shown in column 5

Fig. 12 Segmenting objects with thin structures using multiple seg-
mentations. (a) An images from the MSRC-21 dataset. (b), (c)
and (d) Multiple segmentations of the image obtained by varying the
parameters of the mean shift algorithm (Comaniciu and Meer 2002).

(e) Labelling from TextonBoost unary potentials (see Sect. 2). (f) Re-
sult of the pairwise CRF (see Sect. 2). (g) Results obtained by incor-
porating the Robust P n higher order potential (13) defined on the seg-
ments. (h) Hand labelled result used as ground truth

Ground Truth The hand labelled ‘ground truth’ images
that come with the MSRC-23 data set are quite rough. In fact
qualitatively they always looked worse than the results ob-
tained from our method. The hand labelled images suffer
from another drawback. A significant numbers of pixels in
these images have not been assigned any label. These un-
labelled pixels generally occur at object boundaries and are
critical in evaluating the accuracy of a segmentation algo-
rithm. It should be noted that obtaining an accurate and fine
segmentation of the object is important for many tasks in
computer vision.

In order to get a good estimate of our algorithm’s accu-
racy, we generated accurate segmentations which preserved
the fine object boundaries present in the image. Generating
these segmentations is quite time consuming. It takes be-

tween 15–60 minutes to hand label one image. We hand la-
belled 27 images from the MSRC data set. Figure 14 shows
the original hand labelled images of the MSRC data set and
the new segmentations manually labelled by us which were
used as ground truth.

Evaluating Accuracy Typically the performance of a seg-
mentation algorithm is measured by counting the total num-
ber of mislabelled pixels in the image. We believe this mea-
sure is not appropriate for measuring the segmentation accu-
racy if the user is interested in obtaining accurate segmen-
tations as alpha mattes with fine object boundaries. As only
a small fraction of image pixels lie on the boundary of an
object, a large qualitative improvement in the quality of the
segmentation will result in only a small increase in the per-
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Fig. 13 Some qualitative results. Please view in colour. First row:
Original image. Second row: Unary likelihood labelling from Texton-
Boost (Shotton et al. 2006). Third row: Result obtained using a pair-
wise contrast preserving smoothness potential as described in Shotton
et al. (2006). Fourth row: Result obtained using the P n Potts model
potential (Kohli et al. 2007). Fifth row: Results using the Robust P n

model potential (13) with truncation parameter Q = 0.1|c|, where |c|

is equal to the size of the superpixel over which the Robust P n higher
order potential is defined. Sixth row: Hand labelled segmentations. Ob-
serve that the results obtained using the Robust P n model are signif-
icantly better than those obtained using other methods. For instance,
the leg of the sheep and bird have been accurately labelled which was
missing in other results. Same can be said about the tail and leg of the
dog, and the wings of the aeroplane

centage pixel-wise accuracy. This phenomenon is illustrated
in Fig. 16.

With this fact in mind, we evaluate the quality of a seg-
mentation by counting the number of pixels misclassified in
the region surrounding the actual object boundary and not
over the entire image. The error was computed for different
widths of the evaluation region. The evaluation regions for
some images from the MSRC dataset are shown in Fig. 17.
The accuracy of different segmentation methods is plotted
in the graph shown in Fig. 18.

8 Conclusions and Future Work

In this paper we proposed a novel framework for labelling
problems which is capable of utilizing features based on sets
of pixels in a principled manner. We also introduced a novel
family of higher order potentials which we call the robust P n

model. We showed that energy functions composed of such
potentials can be minimized using the graph cut based ex-
pansion and swap move algorithms. Our methods for com-
puting the optimal expansion and swap moves are extremely
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Fig. 14 Accurate hand labelled segmentations which were used as
ground truth. The figure shows some images from the MSRC data set
(column 1), the hand labelled segmentations that came with the data

set (column 2), and the new segmentations hand labelled by us which
were used as ground truth (column 3)

Fig. 15 Qualitative results of our method. (a) Original images. (b) Segmentation result obtained using the pairwise CRF (explained in Sect. 2).
(c) Results obtained by incorporating the robust P n higher order potential (13) defined on segments. (d) Hand labelled result used as ground truth

efficient. They can handle potentials defined over cliques of
thousands of random variables.

We tested this approach on the problem of multi-class ob-
ject segmentation and recognition. Our experiments showed

that incorporation of P n Potts and robust P n model type
potential functions (defined on segments) in the conditional
random field model for object segmentation improved re-
sults. We believe this method is generic and can be used to
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Fig. 16 The relationship between qualitative and quantitative results.
(a) Original image. (b) Segmentation result obtained using the pairwise
CRF (explained in Sect. 2). Overall pixelwise accuracy for the result
is 95.8%. (c) Results obtained by incorporating the Robust P n higher

order potential (13) defined on segments. Overall pixelwise accuracy
for this result is 98.7%. (d) Hand labelled result used as ground truth.
It can be seen that even a small difference in the pixelwise accuracy
can produce a massive difference in the quality of the segmentation

Fig. 17 Boundary accuracy evaluation using trimap segmentations.
The first column shows some images from the MSRC dataset (Shot-
ton et al. 2006). The ground truth segmentations of these image are
shown in column 2. Column 3 shows the trimaps used for measuring

the pixel labelling accuracy. The evaluation region is coloured gray and
was generated by taking an 8 pixel band surrounding the boundaries of
the objects. The corresponding trimaps for an evaluation band width of
16 pixels is shown in column 4

Fig. 18 Pixelwise classification error in our results. The graph shows
how the overall pixelwise classification error varies as we increase the
width of the evaluation region

solve many other labelling problems. In the future we would
like to investigate the use of more sophisticated higher or-

der potentials based on the shape and appearance of im-
age segments. We believe that such potentials would be
more discriminative and will result in even better perfor-
mance.

Up until now, the work on solving higher order poten-
tials using move making algorithms has targeted particu-
lar classes of potential functions. Developing efficient large
move making for exact and approximate minimization of
general higher order energy functions is an interesting and
challenging problem for future research. Another interest-
ing direction would be study and use of primal-dual schema
(such as Fast-PD Komodakis et al. 2007) for efficiently min-
imizing the class of higher order potentials proposed in this
paper.
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Appendix A: Submodular Functions

To provide a formal definition of a submodular function, we
will first need to define the concept of a projection of a func-
tion. A projection of a function f : Ln → R on s variables
is a function f p : Ls → R which is obtained by fixing the
values of n − s arguments of f (·). A function of one bi-
nary variable is always submodular. A function f (x1, x2) of
two binary variables x1, x2 ∈ B = {0,1} is submodular if and
only if: f (0,0) + f (1,1) ≤ f (0,1) + f (1,0). A function
f : B

n → R is submodular if and only if all its projections
on 2 variables are submodular (Boros and Hammer 2002;
Kolmogorov and Zabih 2004).

Appendix B: Proofs

Theorem 1 The higher order pseudo-boolean function:

f (tc) = min
(
θ0 +

∑
i∈c

w0
i (1 − ti ), θ1 +

∑
i∈c

w1
i ti , θmax

)

(46)

can be transformed to the submodular quadratic pseudo-
boolean function:

f (tc) = min
m0,m1

(
r0(1 − m0) + m0

∑
i∈c

w0
i (1 − ti )

+ r1m1 + (1 − m1)
∑
i∈c

w1
i ti − K

)
(47)

by the addition of binary auxiliary variables m0 and m1.
Here, r0 = θmax − θ0, r1 = θmax − θ1, K = θmax − θ0 − θ1,
tc = {ti ∈ {0,1}, i ∈ c} is the set of binary random variables
included in the clique c, and w0

i ≥ 0, w1
i ≥ 0, θ0, θ1, θmax

are function parameters that take values in R.

Proof We decompose the function (47) as:

f (tc) = F 0(tc) + F 1(tc) − K where (48)

F 0(tc) = min
m0

r0(1 − m0) + m0

∑
i∈c

w0
i (1 − ti ). (49)

It can be seen that the above function can be written without
the minimization operator as:

F 0(tc) =
{∑

i∈c w0
i (1 − ti ) if

∑
i∈c w0

i (1 − ti ) ≤ r0,

r0 otherwise.

(50)

Similarly, the function F 1(tca ) can be written as:

F 1(tc) =
{∑

i∈c w1
i ti if

∑
i∈c w1

i ti ≤ r1,

r1 otherwise.
(51)

Adding equations (50) and (51) and using the constraint
26, we get

F 0(tca ) + F 1(tca )

=

⎧⎪⎨
⎪⎩

r0 + ∑
i∈c w1

i ti if
∑

i∈c w1
i ti ≤ r1,

r1 + ∑
i∈c w0

i (1 − ti ) if
∑

i∈c w0
i (1 − ti ) ≤ r0,

r0 + r1 otherwise.

(52)

Substituting this in (48), we get

f (tc) =

⎧⎪⎨
⎪⎩

θ1 + ∑
i∈c w1

i ti if
∑

i∈c w1
i ti ≤ r1,

θ0 + ∑
i∈c w0

i (1 − ti ) if
∑

i∈c w0
i (1 − ti ) ≤ r0,

θmax otherwise.

(53)

This equation can alternatively be written as:

f (tc)

= min

(
θ0 +

∑
i∈c

w0
i (1 − ti ), θ1 +

∑
i∈c

w1
i ti , θmax

)
. (54)

�

Theorem 2 The expansion move energy (42) can be trans-
formed into the pairwise function:

ψm
c (tc) = min

m0,m1

(
r0(1 − m0) + θdm0

∑
i∈cd

wi(1 − ti )

+ r1m1 + θα(1 − m1)
∑
i∈c

witi − δ

)
(55)

where

r0 = λα + δ, r1 = λd + δ, and δ = λmax − λα − λd.

Proof We decompose the move energy (55) as:

ψm
c (tc) = F 0(tcd

) + F 1(tc) − δ where (56)

F 0(tcd
) = min

m0
r0(1 − m0) + f m

0 (tcd
)θdm0 (57)

= min
m0

(λα + δ)(1 − m0) + θdm0f
m
0 (tcd

) (58)

= min
m0

(γmax − γd − Rdθd)(1 − m0)

+ γmax − γd

Qd

m0f
m
0 (tcd

)

(Recall Rd = W(c − cd))

= min
m0

(γmax − γd)(1 − m0)

+ γmax − γd

Qd

m0(f
m
0 (tcd

) + Rd) − Rdθd
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=
{

λmax − λd if f m
0 (tcd

) > Qd − Rd,

f m
0 (tcd

)θd if f m
0 (tcd

) ≤ Qd − Rd.
(59)

Similarly,

F 1(tc) = min
m1

r1m1 + f m
1 (tc)θα(1 − m1) (60)

= min
m1

(λd + δ)m1 + θα(1 − m1)f
m
1 (tc) (61)

= min
m1

(γmax − γα)m1

+ γmax − γα

Qα

(1 − m1)f
m
1 (tc) (62)

=
{

λmax − λα if f m
1 (tc) ≥ Qα,

f m
1 (tc)θα if f m

1 (tc) < Qα

(63)

=
{

λmax − λα if f m
0 (tc) ≤ P − Qα,

f m
1 (tc)θα if f m

0 (tc) > P − Qα.
(64)

Adding (59) and (64) and using the relations10

f m
0 (tcd

) ≤ Qd − Rd ⇒ f m
0 (tc) ≤ P − Qd, (65)

f m
0 (tc) > P − Qd ⇒ f m

0 (tcd
) > Qd − Rd (66)

we get:

F 0(tca ) + F 1(tca )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmax − λd + (P − f m
0 (tc))θα

if f m
0 (tc) > P − Qα,

f m
0 (tcd

)θd + λmax − λα

if f m
0 (tcd

) ≤ Qd − Rd,

λmax − λα + λmax − λd

otherwise.

(67)

Substituting in (56) and simplifying we get

ψm
c (tc, tcd

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λα + (P − f m
0 (tc))θα

if f m
0 (tc) > P − Qα,

λd + f m
0 (tcd

)θd

if f m
0 (tcd

) ≤ Qd − Rd,

λmax

otherwise

(68)

which is the same as (42). �

10These relations are derived from the constraints
Qi + Qj < P,∀i 	= j ∈ L and W(s) ≤ P,∀s ⊆ c.
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