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Abstract We propose a novel framework for regularization
of symmetric positive-definite (SPD) tensors (e.g., diffusion
tensors). This framework is based on a local differential
geometric approach. The manifold of symmetric positive-
definite (SPD) matrices, Pn, is parameterized via the Iwa-
sawa coordinate system. In this framework distances on Pn

are measured in terms of a natural GL(n)-invariant metric.
Via the mathematical concept of fiber bundles, we describe
the tensor-valued image as a section where the metric over
the section is induced by the metric over Pn. Then, a func-
tional over the sections accompanied by a suitable data fit-
ting term is defined. The variation of this functional with re-
spect to the Iwasawa coordinates leads to a set of 1

2n(n + 1)

coupled equations of motion. By means of the gradient de-
scent method, these equations of motion define a Beltrami
flow over Pn. It turns out that the local coordinate approach
via the Iwasawa coordinate system results in very simple nu-
merics that leads to fast convergence of the algorithm. Regu-
larization results as well as results of fibers tractography for
DTI are presented.
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1 Introduction

Tensors are nowadays an important tool for image analysis
as well as a source for physical information. Tensor-valued
images are obtained from applications such as Structure
Tensor (ST) analysis (Weickert 1998) and Diffusion Tensor
Imaging (DTI) (Pierpaoli et al. 1996).

In this paper we focus on symmetric positive-definite
tensors. We suggest a general solution for the regulariza-
tion problem of tensor-valued images of this type, and we
demonstrate the proposed framework on DTI datasets. This
framework is based on Riemannian geometry which is the
mathematical basis for various works on manipulating of
diffusion tensors (Batchelor et al. 2005; Fletcher and Joshi
2007; Moakher 2005).

Acquisition of high-resolution DT images generally leads
to noisy images. In order to extract important features such
as axon fiber bundles and to obtain smooth fiber tracts, the
noise has to be removed. Therefore, regularization of Dif-
fusion Tensor MRI data has been attracting much atten-
tion over the last few years (e.g., Chefd’hotel et al. 2004;
Coulon et al. 2001; Feddern et al. 2006; Moakher and
Zerai 2007; Pasternak et al. 2008; Pennec et al. 2006;
Tschumperlé and Deriche 2002; Wang et al. 2004 and the
book Weickert and Hagen 2005). In DTI each image voxel
is described in terms of a 3 × 3 symmetric positive-definite
(SPD) matrix. Regularization of DTI data brings new chal-
lenges which have not been confronted before in the context
of scalar image regularization. The main challenge is to per-
form a fast and efficient regularization process that preserves
the properties of these matrices (i.e., symmetry and positive-
definiteness) and respects the structure of the image.

Structure-preserving flows for SPD matrices may be de-
fined via the polar decomposition (Tschumperlé and De-
riche 2002). In this method the SPD matrix is decomposed
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into its eigenvalues and eigenvectors. Then, regularization is
achieved by working on the eigenvalues (diffusivities) and
eigenvectors (directions) separately. However, the polar de-
composition is not unique. There are two possible different
decompositions for a SPD matrix. In these two decomposi-
tions the directions of the eigenvectors are opposite. There-
fore, due to its non-uniqueness, artificial discontinuities may
be created. As a result, one has to apply a heuristic realign-
ment step in every iteration of the numerical solution. Also,
determining the order of the eigenvalues is subject to a sort-
ing bias, especially in oblate or prolate tensors (Basser and
Pierpaoli 1996). A different approach is the Riemannian
framework which was proposed by Pennec et al. (2006).
In this framework a global affine-invariant Riemannian dis-
tance on Pn, the manifold of n×n SPD matrices, is defined.
Then, by using this distance measure, a structure-preserving
flow on Pn is constructed. However, the main deficiency of
this framework is its running time. This framework makes
intensive use of matrix operations such as inverse, log and
exponent in every iteration, where these matrix operations
are time consuming. In order to reduce running times, a dif-
ferent framework which is based on the Log-Euclidean dis-
tance was presented in Fillard et al. (2007). In that frame-
work the flow was defined on the vector space of symmetric
matrices. The log and exp matrix operations are then used
to map the SPD matrices to symmetric matrices and back,
respectively. Compared to the Riemannian framework, the
use of the log and exp matrix operations was reduced signif-
icantly. However, the Log-Euclidean distance is no longer
affine-invariant.

In this paper we present fast GL(n)-invariant Riemannian
framework for regularization of tensors in Pn. In order to
overcome the deficiencies of the former methods a local
coordinate approach is adopted. In this framework the Pn

manifold is described via local coordinates. Then, Pn is
turned into a Riemannian manifold by the definition of nat-
ural GL(n)-invariant metric in terms of these coordinates.
The local coordinate approach has two main advantages:

1. The numerics is fast and simple since it is free from ma-
trix operations. In this method there are only operations
between scalars to calculate (e.g., finite difference).

2. It is GL(n)-invariant (i.e., invariant under the action of
any real invertible matrix of order n).

A proper choice of coordinate system to parameterize Pn

is important both analytically and numerically. In this paper
we show that the Iwasawa decomposition of SPD matrices
yields a natural coordinate system. The choice of this coor-
dinate system simplifies the analytical as well as the numer-
ical calculations.

The basis of our framework is the definition of a prod-
uct space via the mathematical notion of fiber bundles. The
product space is composed of two spaces: the image domain

(the base manifold), �, and the feature space of n × n sym-
metric positive-definite (SPD) matrices, Pn (the fiber). Us-
ing this concept a DT image may be described by the fiber
bundle � × P3 where � is in principal a two- or three-
dimensional Euclidean space (DT slice or volume, respec-
tively). A unique assignment of a feature space element
(e.g., tensor) to each point of the base manifold (the im-
age domain) is a section in the fiber bundle. By means of
the Beltrami framework we define a functional over sections
which is composed of a regularizer term and a data fitting
term (fidelity term). The variation of this functional with re-
spect to each one of the Iwasawa coordinates yields a set
of 1

2n(n + 1) coupled equations of motion (i.e., n = 3 for
DTI). These equations of motion lead to a Beltrami flow on
Pn via the gradient-descent method. Regularization of DTI
datasets is performed by extracting the Iwasawa coordinates
from the data and then solving this set of equations for these
coordinates.

The paper is organized as follows: In Sect. 2 we give a
short introduction to fiber bundles and explain how a tensor-
valued image is described via this concept. In Sect. 3 we
discuss the basics of the Riemannian geometry of Pn. In this
section we define a GL(n)-invariant metric that turns Pn into
a Riemannian symmetric space. The metric over the sections
in the fiber bundle is then defined in terms of this metric. In
Sect. 4 we introduce a functional over sections by means of
the Beltrami framework. Using calculus of variations we de-
rive the equations of motion with respect to the coordinates
on the section. The parameterization of Pn via the Iwasawa
coordinates is discussed in Sect. 5. We show that for P3 in
particular we get six coupled Beltrami equations for the six
Iwasawa coordinates. Finally, in Sect. 6 we present regular-
ization results on real volumetric DTI datasets. We show that
using this framework we are able to denoise these datasets
efficiently. Concluding remarks are drawn in Sect. 7.

2 Images as Fibered Space

Generally, an image may be described locally as the prod-
uct of two spaces: The image domain (two- or three-
dimensional usually) and the feature space which is com-
posed of objects such as intensity, RGB values, orientation
fields, etc. A product of two-spaces may be described math-
ematically via the concept of a fiber bundle. A fiber bundle
is characterized by the total space E, the base manifold B ,
a structural group G (a group of homeomorphisms of the
fiber F onto itself) together with a continuous surjective
map π : E �→ B which is called a projection. Since the di-
mension of E is higher than the dimension of B , the pro-
jection sends many points in E to one point in B . Locally,
the total space E is described as product of the base mani-
fold and the fiber: E = B ×F . Globally, this may not be the
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Fig. 1 Description of an image as a section of a fiber bundle. The base
manifold B is the image domain �, the fiber is the feature space F

(e.g., intensity values, color, DT). Here the image domain is Euclidean.
Locally the bundle is described as a direct product E = B ×F where E

is the total space. In DTI the fiber is taken to be the space of 3 × 3 SPD
matrices, P3. A DT image is composed of a particular selection of an
SPD matrix to each point of the base manifold. Thus, it is a section in
the fiber bundle. The section is referred to here as the image manifold

case since global features of the total space are not observed
locally (e.g., the Möbius strip where the twist cannot be ob-
served locally). When the identification of the total space
with the direct product of the base space and the fiber is
possible, this is known as a trivial bundle.

In computer vision the image domain is identified with
the base manifold, and the feature space is identified with the
fiber. The total space in this language is the spatial-feature
manifold. For example, using this concept, a graylevel image
is described locally by the product R

2 × R
+. In this case

the graylevels are the fiber. Since an image selects just one
graylevel for each pixel, we need the mathematical notion of
a section.

A section of the bundle is a mapping f : B → E such that
π(f (p)) = p for any p ∈ B . In our language, a given image
is a section in a fiber bundle. For every pixel in the image do-
main we have a unique assignment of a feature space object.
In this paper we refer the section as the image manifold.

If we go back to DTI then we have a tensor-valued image
where for each pixel there is unique assignment of a three-
dimensional SPD matrix. Thus, a DT image is a section in
the fiber bundle with the map f : R

m → R
m × P3, where

R
m is in practice the two- or three-dimensional Euclidean

image domain (DTI slice or volume, respectively) and P3,
which is the fiber, denotes the space of 3 × 3 SPD matri-
ces. Thus, the spatial-feature manifold is described by the
product R

m × P3. The structural group in this case is sim-
ply GL(3,R) which is the group of real invertible matri-
ces of order 3. The action of GL(3,R) on P3 is given by
Y [g] = gT Yg for Y ∈ P3 and g ∈ GL(3,R). This descrip-
tion is extendable for any n with the fiber-bundle R

m × Pn.
In this case the structural group is GL(n,R).

3 The Riemannian Geometry of Pn

For regularization of volumetric DTI datasets we take the
image domain to be a three-dimensional Euclidean space. In
order to write the metric over the spatial-feature manifold,
the metric over the feature space Pn has to be defined. In this
section we briefly review the important facts about the Rie-
mannian geometry of Pn. Detailed discussions on this topic
can be found in Jorgenson and Lang (2005), Lang (1999).

The space of SPD matrices is a symmetric space of non-
compact type (Terras 1988). Also, it was given in Lang
(1999) as an example of a Riemannian manifold of nonposi-
tive curvature. It may be identified with an open cone in Rm

where m = n(n + 1)/2, i.e., for any V,W ∈ Pn and for any
positive scalar c > 0 we have V +W ∈ Pn and cV, cW ∈ Pn.
Since Pn is a connected manifold, according to the Hopf-
Rinow theorem any geodesic segment can be extended in-
definitely. Consequently, any two points in this space may
be joined by a minimizing geodesic where its length is the
geodesic distance between the two points. Moreover, it has
been shown in Jost (2001) that there is precisely one geo-
desic connecting any two points on Pn. The geodesic dis-
tance between any two points A,B ∈ Pn is given by Lang
(1999)

d(A,B) =
(

n∑
i=1

log2 λi

)1/2

, (1)

where λi are the eigenvalues of the matrix A−1B . This geo-
desic distance is the so-called Riemannian distance which
was used in Pennec et al. (2006) as a distance measure be-
tween two SPD tensors. With respect to this distance func-
tion, Pn is a geodesically complete Riemannian space.

Without getting into details, the tangent space at every
point Y ∈ Pn may be identified with the vector space of n×n

symmetric matrices, SYMn. Thus, the Riemannian metric at
the point Y is defined in terms of the scalar product on SYMn

as in Lang (1999)

ds2
Pn

= tr((Y−1dY )2), (2)

where Y−1 = (yij )
−1
1≤i,j≤n and dY = (dyij )1≤i,j≤n. This

metric is by definition positive-definite (Lang 1999; Terras
1988). Also, by defining the action of g ∈ GL(n) on Y ∈ Pn

as Y [g] = gT Yg, it can be easily shown that this metric is in-
variant under the action of GL(n): Let W = Y [g] where the
differential is given by dW = dY [g], then, upon plugging
everything in ds2

Pn
it follows that

ds2
Pn

= tr((Y−1dY )2) = tr((gW−1gT g−T dWg−1)2)

= tr((W−1dW)2). (3)

It can be easily verified that this metric is also invariant with
respect to the inversion map Y �→ Y−1. Thus, this map is
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an involutive isometry on Pn with respect to this metric.
Therefore, this metric turns Pn into a Riemannian symmet-
ric space. Another type of Riemannian symmetric spaces,
namely compact Lie groups has been discussed by two of
the authors in Gur and Sochen (2007). A bi-invariant met-
ric of the same form as (2) has been used to formulate a
coordinate-free regularization framework for Lie groups.

After the metric over Pn is introduced, the metric over
the spatial-feature manifold M = R

3 × Pn is simply given
by ds2

M = ∑3
i=1 dx2

i + tr((Y−1dY )2). Later we choose the
coordinates to parameterize Pn.

4 Calculus of Variations in Fiber Bundles

Using functional analysis on sections in the fiber bundle we
are able to derive a flow on the section. This will be done via
the Beltrami framework (see Kimmel et al. 1997; Shafrir et
al. 2005 and references therein). We now briefly review this
framework’s main ideas.

4.1 The Beltrami Framework

Denote by (�,γ ) the image manifold and its metric and
by (M,h) the embedding spatial-feature manifold (the fiber
bundle) and its metric, then, the section of interest is ex-
pressed locally by the map X : � → M . A functional over
the space of sections is given in local coordinates by the fol-
lowing expression

S(X) =
∫

�

dnx
√

γ γ μν ∂Xi

∂xμ

∂Xj

∂xν
hij (X). (4)

The case where n = 2 is known in the literature as the
Polyakov action (Polyakov 1981). In this paper we treat vol-
umetric images (e.g., DTI volume) and hence n = 3. The
integration is taken over the two- or three-dimensional im-
age manifold where γ is the determinant of the image met-
ric, (γ μν) denotes the inverse of the image manifold’s met-
ric tensor and (hij ) is the embedding space metric tensor
(the spatial-feature fiber-bundle manifold). The coordinates
in the spatial-feature space are denoted by Xi . The values of
μ and ν range from 1 to dim� and the values of the i and j

indices range from 1 to dimM .
Using calculus of variations with respect to the embed-

ding coordinates Xi , we obtain the Euler-Lagrange equa-
tions for this action:

1√
γ

∂μ

(√
γ γ μν∂νX

i
)

+ 	i
jkγ

μν∂μXj∂νX
k

= �γ + 	k
ij 〈∇Xj ,∇Xk〉γ = 0, (5)

where �γ is the Laplace-Beltrami operator that is the gen-
eralization of the Laplacian to manifolds with metric γ . The

solutions to these Euler-Lagrange equations are known as
harmonic maps. By the gradient descent method we obtain
a set of PDEs (i.e., Beltrami equations) with respect to the
embedding coordinates. However, since the coordinates of
the image domain are fixed, the interesting equations are for
the coordinates of the fiber (Pn in our case). Hence,

Xi
t = 1√

γ
∂μ

(√
γ γ μν∂νX

i
)

+ 	i
jkγ

μν∂μXj∂νX
k, (6)

where i = 1, . . . , (dim(M)−dim(�)) and where 	i
jk are the

Christoffel symbols. When the embedding space is Euclid-
ean all the Christoffel symbols vanish. The Christoffel sym-
bols are calculated with respect to (hij ) as follows:

	i
jk = 1

2
hil

(
∂jhlk + ∂khjl − ∂lhjk

)
. (7)

The Beltrami equations are solved together at each iter-
ation using standard finite-differences schemes. The com-
ponents of the induced metric and the Christoffel symbols
are evaluated at each iteration. An important result of this
framework is that no constraint on the positive definite-
ness of the matrices is needed. Indeed the elipticity of the
Laplace-Beltrami operator that generates the flow implies
the validity of the extremum principle. This in turns mean
that the positive definiteness of the initial condition is a nec-
essary and sufficient condition for the flow to stay on Pn.

The Induced Metric

The metric over the image manifold (or section) is induced
from the fiber bundle’s metric. In this way the flow depends
on the geometry of the data and not only on the geometry
of the image domain. Moreover, the induced metric is a dy-
namical variable which changes along the flow.

We assume an isometric embedding, e.g., infinitesimal
distances on the spatial-feature manifold, M , are equal infin-
itesimal distances on the image manifold, �. This assump-
tion yields the pull-back metric induced by X: γ = X∗h. Its
components are given by

γμν(x) = ∂Xi

∂xμ

∂Xj

∂xν

hij (X). (8)

Thus, the induced metric is actually calculated via the chain
rule. Consequently, for a DTI volume where M = R

3 × P3

we may write dY = ∑3
i=1

∂Y
∂xi

dxi where Y ∈ P3. Then, we
plug this expression into the metric on M to get the compo-
nents of the induced metric:

γμν = δμν + βtr(Y−1∂μYY−1∂νY ), (9)

where μ,ν = 1, . . . ,3 are the indices of the local coordi-
nates on the image manifold. The β parameter is introduced
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here in order to determine the ratio between the feature space
and the image domain distances. It also determines the na-
ture of the flow. In the limit β → 0 the Laplace-Beltrami
operator reduces to the usual Laplacian and hence we obtain

a linear flow. Small β values lead to a multi-channel total
variation (TV) norm (Blomgren and Chan 1998) while large
β values lead to potential surfaces (Sochen et al. 1998).

In matrix form the induced metric is given by

(γμν) =
⎛
⎝ 1 + βtr((Y−1Yx1)

2) βtr((Y−1Yx1)(Y
−1Yx2)) βtr((Y−1Yx1)(Y

−1Yx3))

βtr((Y−1Yx1)(Y
−1Yx2)) 1 + βtr((Y−1Yx2)

2) βtr((Y−1Yx2)(Y
−1Yx3))

βtr((Y−1Yx1)(Y
−1Yx3)) βtr((Y−1Yx2)(Y

−1Yx3)) 1 + βtr((Y−1Yx3)
2)

⎞
⎠ . (10)

5 Iwasawa Coordinate-Based Formalism

In Sect. 4.1 we have defined the induced metric. Now we
would like to express this metric in terms of the coordinates
on P3, explicitly.

The P3 space is identified with an open cone in R6.
The 6 different entries of the symmetric matrix may be
identified with the Cartesian coordinates for R6. There-
fore, it is straightforward to parameterize P3 using these
coordinates. However, taking the trace of (Y−1dY )2 where
Y = (yij )1≤i,j≤3 and dY = (dyij )1≤i,j≤3, one gets long and
cumbersome expressions with complicated terms involving
the yi ’s in the denominator. Hence, the metric tensor is cum-
bersome and there are 78 Christoffel symbols associated
with it. As a result, the numerical implementation is prob-
lematic.

An important issue in analysis on manifolds is the right
choice of coordinate system for the problem. We may try to
choose a different coordinate system in order to simplify the
analytical calculations as well as the numerics.

Another candidate is the coordinate system associated
with the polar decomposition. However, as we have
mentioned in the introduction this coordinate system is
problematic because of the non-uniqueness of the polar de-
composition. Luckily, there is a another set of coordinates
called Iwasawa coordinates which corresponds to the Iwa-
sawa decomposition of symmetric matrices. There are par-
tial, as well as, full Iwasawa decompositions (Jorgenson and
Lang 2005; Terras 1988). The full Iwasawa decomposition is
unique and obtained by applying repeatedly the partial Iwa-
sawa decomposition to the matrices Y ∈ Pn. Surprisingly,
the Iwasawa coordinates turn out to be the natural parame-
terization on Pn from analytical as well as from numerical
considerations. In this paper we use the term “Iwasawa de-
composition” to describe the full Iwasawa decomposition.

5.1 The Iwasawa Decomposition

Iwasawa has proved that every connected semisimple Lie
group G admits a unique representation as a product G =
KAN of an orthogonal subgroup K , an Abelian subgroup A

and a nilpotent subgroup N (Rosenfeld 1997). In particular,

for every invertible real matrix of order n, G = GL(n,R),
K is the orthogonal group K = O(n), A is a positive diag-
onal matrix and N is a strictly upper-triangular matrix with
ones on its diagonal.

However, the space of SPD matrices, Pn, is not a Lie-
group but it is identified with the quotient space GL(n,R)/

O(n). Therefore, any Y ∈ Pn may be identified with an Iwa-
sawa decomposition of the form Y = AN . In this case the
operation between A and N is not an ordinary matrix mul-
tiplication. The homeomorphism GL(n,R)/O(n) → Pn is
given by the operation gT g, ∀g ∈ GL(n,R). Hence, any Y ∈
Pn may be decomposed uniquely as follows: Y = NT AN

(Jorgenson and Lang 2005; Terras 1988).
Calculating the metric over Pn with respect to the Iwa-

sawa coordinates is done by a substitution of the Iwasawa
decomposition into ds2

Pn
. This yields

ds2
Pn

= tr((Y−1dY )2)

= tr((A−1dA)2) + 2tr(A−1A[dNN−1]), (11)

where the second term plays an important role here. It is the
source for the coupling between the Iwasawa coordinates.

Let us now derive the metric tensor for the spatial-feature
manifold R

3 × P3.

5.2 Diffusion Tensors

The diffusion process of water molecules in the brain may
be modeled by a diffusion tensor. The diffusion tensor is a
3 × 3 SPD matrix. Let us write the Iwasawa decomposition
for an SPD matrix:

Y = A[N ] = NT AN

=
⎛
⎝ 1 0 0

w4 1 0
w5 w6 1

⎞
⎠

⎛
⎝w1 0 0

0 w2 0
0 0 w3

⎞
⎠

⎛
⎝1 w4 w5

0 1 w6

0 0 1

⎞
⎠ ,

(12)

where in this case we identify w1, . . . ,w6 with the Iwasawa
coordinates.

The metric tensor for the Iwasawa decomposition is ob-
tained by using (11)
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(hij ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1

w2
1

0 0 0 0 0

0 0 0 0 1
w2

2
0 0 0 0

0 0 0 0 0 1
w2

3
0 0 0

0 0 0 0 0 0
2w1(w3+w2w

2
6)

w2w3
− 2w1w6

w3
0

0 0 0 0 0 0 − 2w1w6
w3

2w1
w3

0

0 0 0 0 0 0 0 0 2w2
w3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The positive-definiteness of Y implies the constraint w1, w2,
w3 > 0. Hence, the components of the metric tensor cannot
be singular.

There are only 26 non-trivial Christoffel symbols asso-
ciated with this metric tensor. With respect to this metric
tensor, the induced metric is calculated easily using (8) and
the following set of six coupled Beltrami equations for the
Iwasawa coordinates is constructed:

Xi
t = �γ Xi + 	i

jk〈∇Xj ,∇Xk〉γ = 0,

Xi
t=0 = wi(t = 0), i = 1, . . . ,6.

(14)

5.3 DTI Data Fitting Term

The coupled equations in (6) correspond to the smoothing
term. However, to keep the regularized data best fit the orig-
inal one we add a physical data fitting term to the functional
in (4). This results in the following cost functional:

L(X) = α

2

∫
�

d3x

N∑
k=1

(
e−bqT

k Dqk − Ê(qk)
)2

+ 1

2

∫
�

d3x
√

γ γ μν∂μXi∂νX
jhij (X), (15)

where i = 1, . . . ,6. The term e−bqT
k Dqk is the signal atten-

uation model (Basser et al. 1994) where D is the diffusion
tensor , qk is the k’th applied magnetic field gradient direc-
tion and b is a parameter of the measurement. The measured
(noisy) signal is denoted by Ê(qk).

The variation of this functional with respect to the Iwa-
sawa coordinates yields the following equations of motion

−αb
1√
γ

N∑
k=1

(
e−bqT

k Dqk − Ê(qk)
)

e−bqT
k Dqk

(
qT
k

∂D

∂Xi
qk

)

+ 1√
γ

∂μ

(√
γ γ μν∂νX

i
)

+ 	i
jkγ

μν∂μXj∂νX
k = 0.

(16)

Then, the gradient descent equations are given by

Xi
t = −αb

1√
γ

N∑
k=1

(
e−bqT

k Dqk − Ê(qk)
)

× e−bqT
k Dqk

(
qT
k

∂D

∂Xi
qk

)

+ 1√
γ

∂μ

(√
γ γ μν∂νX

i
)

+ 	i
jkγ

μν∂μXj∂νX
k. (17)

The derivatives of D with respect to the Iwasawa coordi-
nates are calculated as follows:

D =
⎛
⎝ 1 0 0

w4 1 0
w5 w6 1

⎞
⎠

⎛
⎝w1 0 0

0 w2 0
0 0 w3

⎞
⎠

⎛
⎝1 w4 w5

0 1 w6

0 0 1

⎞
⎠

=
⎛
⎝ w1 w1w4 w1w5

w1w4 w2 + w1w
2
4 w1w4w5 + w2w6
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Thus, for example

∂D

∂x1
=

⎛
⎝ 1 x4 x5

x4 x2
4 x4x5

x5 x4x5 x2
5

⎞
⎠ . (19)

6 Experimental Results

The regularization framework was tested on in vivo, human
noisy data that was acquired on a GE Signa 3T. A DW-EPI
sequence was used with the following parameters: 
/δ =
31/25 ms, a 22 cm FOV, matrix size of 128 × 128 and
1.7 mm slice thickness with 72 slices covering the entire
brain. The TE was 88 ms and the gradient strength was
4 G/cm, resulting in a b value of 1000 s/mm2 measured
in 33 non-collinear gradient directions. In addition, a sin-
gle non weighted b0 image was acquired. The sequence was
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repeated 4 times. In order to avoid intrinsic pulsative brain
motion artifacts, the sequence was gated to the cardiac cy-
cle with effective TR of 30 R–R intervals. The MRI proto-
col was approved by the local IRB committee, and informed
consent was obtained from a healthy volunteer.

6.1 Data Analysis

The collected volumes were first corrected for patient mo-
tion by rigid-body spatial transformation (using SPM2) ac-
companied with gradient-orientation compensation. A noisy
tensor field was then generated by applying DTI on a single
repetition of the DW-EPI sequence. Then, it was regular-
ized by the proposed framework (50 iterations with fidelity
weight α = 1 and β = 1). Finally, the regularized tensors
dataset was compared with the initial noisy dataset. Also, it
was compared with the mean of the four repetitions dataset.
In order to use the noisy tensor field as an initial guess for

the Beltrami framework minimization, the attenuation sig-
nal of any negative eigenvalued voxel was replaced with the
mean signal of its positive neighbors (if there were any, oth-
erwise it was omitted). Visualization of the tensor fields was
generated by spectral decomposition of the three different
tensor fields for the rendering of fractional anisotropy (FA)
maps (Basser and Pierpaoli 1996), RGB color schemes (Pa-
jevic and Pierpaoli 1999), and three-dimensional tractogra-
phy objects. The latter were acquired by brute-force stream-
line tractography (Mori et al. 2005) overlayed on SPGR
anatomical images, co-registered with a b0 diffusion image.
A FA threshold of 0.2 was used for fiber initialization and
termination.

6.2 Comparison between the Three Cases

The high voxel resolution yielded low-grade tensor images
for the single repetition dataset (Fig. 2, left column): The
noise is easily visible in all parts of the image, including

Fig. 2 FA images. Presented are mid-Axial (top row), mid-Sagittal
(middle row) and mid-Coronal (bottom row) slices. The Beltrami reg-
ularized maps (middle column) show significantly lower noise level

compared to the original noisy images (left column). The regularized
images resemble the high SNR images obtained by 4-repetitions (right
column)
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in deep white matter structures such as the genu of the cor-
pus callosum, and especially in lateral brain areas where it is
difficult to recognize small fiber bundles. This noise effect is
less noticable in the 4-repetitions dataset (Fig. 2, right col-
umn). In this case, finer fibers at the intersection with gray
matter become visible. Therefore, we may expect that the
outcome of the regularization process are images that are
more similar to the 4-repetitions images. This is indeed the
case (Fig. 2, middle column): The noise level of the regu-
larized images have been improved significantly comparing
to the original, single repetition images. Anatomically ex-
pected homogeneous fiber areas appear smoother with much
less gray level value changes, and the images become similar
to the 4-repetitions images. While the FA maps demonstrate
that the eigenvalues have been regularized, we can further
see in the color-coded schemes (Fig. 3) that the Beltrami
regularization has also regularized the principal orientations
of the tensors. The colors better represent different fiber bun-
dles, and demonstrate again that the regularized images are

not only smoother but also preserve the edges between these
bundles.

Very similar structures appear in the 4-repetitions color
schemes, reassuring the assumption of piece-wise smooth
organization of fibers, and supporting the regularized results.
The difference between the regularized and the 4-repetitions
images is the noise level where the regularized image seems
to have a better one. However, the image edges of the
4-repetitions images are sharper.

The anisotropic regularization of the eigenvalues and the
orientations can be presented in one image via ellipsoid rep-
resentation. In Fig. 4 this is demonstrated for the corpus cal-
losum fiber.

In order to quantify the regularization results we mea-
sure the similarity between the images. This is done via a
global distance measure between tensors. There are some
candidates for this measure. We have chosen the natural one
which is the Riemannian distance in (1). Using this distance
measure, we can compare the distance of the regularized im-
age from the 4-repetitions image with the distance of the one

Fig. 3 Colorcode images. The same slices as in Fig. 2 coded by the tensor’s principal orientation. Orientations were regularized as well, while
important edges between different fiber bundles were preserved
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repetition image from the 4-repetitions image. In Table 1 the
mean distance and the standard deviation for the tensors at
different ROIs are presented (see Fig. 5 for the ROI map).
These differences were found statistically significant for all
ROIs, with the exception of the corpus callosum ROI. In
order to explain this exception, we should notice that the
mean distance for this ROI had much larger values than for
other ROIs. This distance, however, cannot be seen in the vi-
sual quality of this ROI compared with the other ROIs. This
effect may be explained by the fact that the corpus callo-
sum is a very dense fiber that is best fitted with extremely
anisotropic tensors, where the smallest eigenvalues tend to
zero. The Riemannian distance is less stable for this kind of

Fig. 4 First row from left to right: The original DTI axial slice, reg-
ularized slice using the full Iwasawa coordinates. The ellipsoids are
color coded according to the directions of the principal components in
the RGB plane. Second row: Enlargement of the marked area before
the regularization (left) and after the regularization (right)

tensors, pulling the distance measures towards infinity, and
therefore the variance is increased.

Further visualization and validation of the regularized re-
sults is obtained from tractography images. Identical ROIs
were chosen for the three datasets to acquire streamline
tractography of the cingulum. The ROIs were placed on
two coronal slices, posterior and anterior to the mid-coronal
slice, on anatomical landmarks identified with the cingulum.
The streamlines generated had to pass through both ROIs.
The cingulum is a fiber bundle passing between parts of the
limbic system and is wrapped around the corpus callosum.
It connects the anterior part of the cingulate gyrus (aCG),
which is in proximity to the genu of the corpus callosum
(gcc), passing superior to the body of the corpus callosum
(bcc) and ends at the posterior part of the cingulate gyrus
(pCG) next to the splenium of the corpus callosum (scc).
From the posterior part of the cingulate gyrus it projects to
the amygdala and hippocampus complex.

In Fig. 6 we can see the trajectories obtained for the
three datasets. The three images were able to delineate the
complete tract from the anterior to the posterior cingulate
gyrus. Interestingly, the noisy dataset had also delineated the
projection to the amygdala and hippocampus, whereas the
4-repetitions delineation was terminated at the posterior cin-
gulate gyrus. As for the regularized dataset, it had also ob-
tained the complete expected trajectory. Further comparing
the three images reveals that the regularized dataset provided
a smooth and robust shape of fibers, where the noisy dataset
presents many spurious fibers that seem as noise. Observing

Fig. 5 ROIs map. The 5 ROIs
selected for distance
measurements, labeled by their
ROI id number

Table 1 Similarity measures for the 4-repetitions image, the noisy im-
age and the regularized image. All ROIs show that the distance of the
regularized image from the 4-repetitions image is significantly lower

than the distance of the noisy image from the 4-repetitions image with
exception of ROI no. 2

ROI id ROI name N Noisy image Regularized image Significance

1 Internal capsule 37 0.3229 ± 0.2843 0.1557 ± 0.1286 yes

2 Corpus callosum 109 2.4306 ± 3.8796 2.2169 ± 3.7279 no

3 Lateral fibers 560 0.2004 ± 0.3161 0.1629 ± 0.3014 yes

4 Frontal fibers 1139 0.4591 ± 1.1183 0.3855 ± 1.0952 yes

5 Entire slice 5256 0.3892 ± 1.2077 0.3309 ± 1.0780 yes
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Fig. 6 The cingulum. In the three images (the noisy, regularized and
the 4-repetitions) the cingulum between the aCG to the pCG has been
delineated. In the regularized image the projection to the amygdala and

hippocampus was also obtained (marked by 2). The regularized tract
has much less spurious fibers and is smoother than the noisy tract

Fig. 7 Cingulum zoomed. Area 1 in Fig. 6b is zoomed. This reveals that the regularized fiber orientations change smoothly along neighboring
voxels, unlike sharp edges and discontinuities in the noisy dataset

a zoomed perspective of the same images (Fig. 7), reveals
much finer differences between the images. Here it is easy
to notice that the regularized dataset provided much more
continuous and smooth trajectories than in the noisy dataset.
In the noisy dataset the effect of noise is seen as sharp turns
along the fiber as well as discontinuities along the tract.
Comparing the regularized result with the 4-repetitions re-
sult shows that the regularized trajectories seems smoother
than the 4-repetitions ones.

Since in most of its trajectory the cingulum is very close
to the corpus callosum, small orientational noise is expected
to cause deviations that might cross to the neighboring bun-
dle and follow it to the other hemisphere. The two-ROIs
method used here is supposed to eliminate most of these
fibers. However, it is limited to the area that is between these
ROIs. In areas posterior and anterior to the chosen ROIs
there is still the possibility of noise to causing deviation on
the corpus callosum. Observing the trajectory from a differ-
ent viewing angle (Fig. 8) demonstrates clearly some of the
false positives fibers that cross to the other hemisphere. This
visualization shows us that indeed in the noisy dataset there
are many fibers that deviate to the corpus callosum tract,
where both in the regularized and the 4-repetitions datasets
the number of such fibers is dramatically decreased.

As a conclusion from the tractography of the cingulum
fiber bundle, the regularization process provides smoother,
more robust, and less false positive fibers than in the original
noisy dataset. Also, it preserves the anatomical shape of the
fiber and increases its separation from other fiber bundles.

7 Summary

In this paper we have presented a novel geometric frame-
work for regularization of data in Pn, the space of SPD ma-
trices of order n. The basis of this framework is the descrip-
tion of Pn as a Riemannian manifold in terms of local coor-
dinates on the manifold. We have shown that a suitable co-
ordinate system to parameterize Pn are the Iwasawa coordi-
nates. This coordinate system has advantages over other co-
ordinate systems used by others (in the context of DTI data
processing). Describing the Pn manifold via the Iwasawa
coordinates simplifies the analytical as well as the numerical
calculations. As a result, the proposed algorithm converges
very fast and the results are satisfactory. We have shown that,
using calculus of variations on Pn via a functional over sec-
tions, a set of coupled Beltrami equations for the local co-
ordinates on Pn is derived. Regularization of DTI data is
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Fig. 8 Deviation to the corpus callosum. Since the cingulum is very
close to the corpus callosum, small deviations caused by noise may
switch the trajectory to the corpus callosum trajectory. Any fiber that
crosses to the opposite hemisphere is false positive. The regularized

image reduced dramatically the number of false positive fibers obtained
in the original data. Similar results were obtained in the 4-repetitions
data

performed by extracting the Iwasawa coordinates from the
SPD matrices and then solving numerically a set of six cou-
pled Beltrami equations with respect to these coordinates.
We have demonstrated the efficiency of this framework on
real DTI volume.

We believe that the local coordinate approach we pre-
sented here incorporated with the Iwasawa coordinates may
be extended to yield fast and accurate algorithms for other
applications of DTI processing (e.g., segmentation, registra-
tion, etc.). These research directions are under current study.
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