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Abstract The accuracy of non-rigid 3D face recognition
approaches is highly influenced by their capacity to differ-
entiate between the deformations caused by facial expres-
sions from the distinctive geometric attributes that uniquely
characterize a 3D face, interpersonal disparities. We present
an automatic 3D face recognition approach which can ac-
curately differentiate between expression deformations and
interpersonal disparities and hence recognize faces under
any facial expression. The patterns of expression deforma-
tions are first learnt from training data in PCA eigenvectors.
These patterns are then used to morph out the expression
deformations. Similarity measures are extracted by match-
ing the morphed 3D faces. PCA is performed in such a
way it models only the facial expressions leaving out the
interpersonal disparities. The approach was applied on the
FRGC v2.0 dataset and superior recognition performance
was achieved. The verification rates at 0.001 FAR were
98.35% and 97.73% for scans under neutral and non-neutral
expressions, respectively.
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1 Introduction

Face recognition is highly desirable (due to its non-intrusive
nature) in a wide range of applications including surveil-
lance, access control and machine-human interaction. High
recognition accuracy is crucial for the applicability of face
recognition in most of its application areas, for example se-
curity related applications such as fraud prevention. One
of the main objectives of research in face recognition is to
increase its accuracy as the accuracies of the current face
recognition technologies fall short before the requirements
of many applications.

2D face recognition has been extensively researched in
the last two decades. However, unlike 3D face recognition
its accuracy is adversely affected by many factors such as
illumination and scale variations. In addition, 2D images
undergoes affine transformations during acquisition. More-
over, handling pose variations in 3D scans is more feasi-
ble than 2D images. It is believed that 3D face recognition
has the potential for more accuracy than 2D face recogni-
tion (Bowyer et al. 2006). On the other hand, the acquisition
of 2D images is less intrusive than 3D acquisition. How-
ever, 3D acquisition technologies are continuously becom-
ing cheaper and less intrusive (The International Conference
on 3D Digital Imaging and Modeling, 1997–2007).

Facial expression is one of the greatest challenges to face
recognition. The geometry of the human face can drastically
deform under facial expressions in a complex way (as they
are driven by highly complex muscle mechanism), lead-
ing to deterioration in recognition accuracy. This challenge
arises from the difficulty in differentiating between expres-
sion deformations and interpersonal disparities. Since ex-
pression deformations and the 3D shape of a face are more
accurately captured by its 3D scans, this challenge can be
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better addressed in the 3D domain compared to the 2D do-
main.

Approaches to 3D face recognition that address the ex-
pression challenge can be classified into two broad cat-
egories; rigid (Chang et al. 2006; Faltemier et al. 2007;
Mian et al. 2007) and non-rigid (Bronstein et al. 2005;
Lu and Jain 2008; Kakadiaris et al. 2007). The rigid ap-
proaches treat the human face as a rigid object while the
non-rigid approaches apply deformations to the 3D facial
scans to counteract expression deformations or to reduce
their influence on the recognition performance. Most of the
approaches in the literature are rigid. Despite the fact that
currently high performance approaches can be found in both
categories, the non-rigid approaches are more promising in
handling the expression challenge because it is possible to
robustly model facial expression deformations (Lu and Jain
2008) and consequently extract more information from the
face. Robust modeling of facial expressions is possible be-
cause these deformations follow patterns governed by the
underling anatomy of the human face.

The main contribution of this paper is a non-rigid 3D
face recognition approach. This approach robustly models
the expression patterns of the human face and applies the
model to morph out facial expressions from a 3D scan of
a probe face before matching. Robust expression modeling
and subsequent morphing gives our approach a better abil-
ity in differentiating between expression deformations and
interpersonal disparities. Consequently, more interpersonal
disparities are preserved for the matching stage leading to
better recognition performance.

The paper is organized as follows. Related literature is
reviewed in Sect. 1.1. Then an overview of the approach is
presented in Sect. 1.2. Section 2 describes the Expression
Deformation Model and the non-rigid matching approach.
Section 3 describes several experiments and presents their
results. Conclusions are drawn in Sect. 4.

1.1 Related Work

Many approaches to 3D face recognition have been pro-
posed e.g (Lu et al. 2006; Samir et al. 2006; Gokberk et
al. 2005; Hesher et al. 2003; Pan et al. 2005). Recent and
comprehensive reviews of 3D face recognition literature
can be found in the surveys by Bowyer et al. (2006) and
Zhao et al. (2003). This section reviews prominent rigid
and non-rigid approaches that address the expression chal-
lenge.

Rigid matching of sub-facial regions with least expres-
sion deformations has shown higher recognition perfor-
mance under expressions than when the whole face is con-
sidered. In the work by Mian et al. (2007), the nose and
the forehead regions (semi-rigid regions) were separately
matched in a rigid fashion then their scores were fused.

Matching multiple overlapping regions around the nose was
investigated by Chang et al. (2006). In fact, expression de-
formations remain a source of error as all the regions of
the human face deform with expressions. Another rigid ap-
proach is to enroll multiple gallery scans under different fa-
cial expressions (Faltemier et al. 2007). Since there is an un-
limited number of facial expressions, that approach is still
prone to errors when the expression of a probe matches that
of a gallery scan belonging to a different subject, adding
to that the increased computational complexity of a larger
gallery. In the work by Chua et al. (2000) point signatures
are used to recognize 3D facial scans under expressions.
To avoid adverse effects of expressions, only point signa-
tures from the upper part of the face are matched. Li et al.
(2007) extract multiple geometric attributes (features) like
the geodesic distances and curvatures and adapt them to ex-
pression variations by combining the geometric attributes
using different weights. Chang et al. (2005a) devised an
approach for selection of multiple rigid regions. They be-
lieve that there are some regions that remain relatively rigid
between any two 3D facial scans under different expres-
sions.

Non-rigid approaches have been applied to both 2D and
3D face recognition. Examples of 2D non-rigid approaches
are as follow. Waters’ face animation model (Parke and Wa-
ters 1996) which is based on muscle-models is used by
Lu et al. (2004) to synthesize 2D images with various ex-
pression variations. The use of the animation model pro-
vided large training data. Then an affine subspace is con-
structed for each gallery face and probe image. The sub-
spaces are then matched for recognition. The CANDIDE
animation approach (Rydfalk 1987) is used to convert non-
neutral 2D facial images to neutral ones in a preprocessing
stage then recognition is performed on the processed images
(Ramachandran et al. 2005). The well-known 3D Morphable
Model (Blanz and Vetter 2003) uses statistical modeling to
estimate the 3D shape and texture from a single 2D image.
The 3D Morphable Model is used to reanimate a 2D face by
varying the texture and shape parameters (Blanz et al. 2003;
Blanz and Vetter 1999). The 3D morphable model recog-
nizes a 2D face across different poses and illumination vari-
ations given that the images have similar expressions (Blanz
and Vetter 2003). A common feature of the non-rigid ap-
proaches that adopt animation models is that they tend to
handle expression deformations in a preprocessing stage
and/or by modeling their variations followed by matching.
Such approaches have the inherent drawback that while re-
moving expression deformations, they may introduce arti-
facts leading to lower recognition accuracy. On the other
hand, other approaches usually formulate face recognition
as a fitting problem between a probe and gallery faces. Since
the starting and final 3D scans (which might be under dif-
ferent expressions) are always known (given) for the probe
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and gallery, these approaches are more immune to drift er-
rors.

Among the non-rigid approaches in 3D is the approach
by Bronstein et al. (2005) who demonstrate that facial ex-
pressions can be modeled as isometries of the facial sur-
face. The surface of a 3D face under various facial ex-
pressions is deformed (to a Canonical Form) by embed-
ding the surface into a multi-dimensional space using Multi-
dimensional Scaling (MDS) while largely preserving the
geodesic distances among the points of the 3D facial sur-
face (isometric embedding). This preserves the intrinsic
geometries of the face and gets rid of the extrinsic geome-
tries. Thus an expression invariant representation of the
face is achieved as the facial expressions are mainly ex-
trinsic geometries. Finally, the Canonical Forms are rigidly
matched against each other. In an extension of that work,
Bronstein et al. (2006a, 2006b) isometrically embed two 3D
face surfaces into one another (called Generalized Multi-
dimensional Scaling, GDMS). The embedding error is used
as a similarity measure between the two surfaces as it is
zero for isomertic surfaces (and low for matching surfaces),
avoiding the need for computation of Canonical Forms.
The GMDS has better flexibility in handling partial sur-
face matching than the MDS approach. In addition, the
GMDS makes use of some metric distortion that serves
as a dissimilarity measure resulting in a small number of
surface samples for accurate matching. Thin Plate Spline
(TPS) is used to learn expression deformations from a con-
trol group of neutral and non-neutral scans (Lu and Jain
2008). Then, the learned deformations along with ICP (Chen
and Medioni 1991; Besl and McKay 1992) are used it-
eratively to fit probes to gallery scans. Improved perfor-
mance over rigid ICP was reported. The deformations are
learned actually from sparse landmarks on the face which
do not cover the whole face. In the work by Kakadiaris
et al. (2007) and Passalis et al. (2007), the 3D face is
parametrized using the Annotated Face Model (AFM) fol-
lowed by elastic deformations. Significant recognition accu-
racy was reported for that approach. In the work by Wang
et al. (2007), fields are applied to deform the non-neutral 3D
scans to neutral ones. Constraints are applied to avoid over-
fitting. Although a performance improvements was also
reported for that approach, some interpersonal disparities
may be morphed as well since the 3D face scans are not
deformed according to expression patterns. Our approach
also falls into this category i.e. non-rigid 3D face recogni-
tion.

1.2 Overview

In our approach, expression deformations are learned in
a PCA subspace, called Expression Deformation Model
(EDM). The PCA subspace is built from shape residues
between non-neutral and neutral scan pairs (training data),
each pair belongs to the same subject. Initially, the scan pairs
are cropped and pose-corrected. Then the scans of each pair
are finely registered according to the semi-rigid region of
the face (the forehead and nose) to get more consistent reg-
istration over the various facial expressions. As PCA is ap-
plied only on expression deformations, it models the facial
expression deformations (the shapes of the top eigenvectors
encode the patterns of the expression deformations) while
it lacks the capacity to model the human face itself. In the
recognition stage, the shape residues between the probe and
gallery scans are found in the same way. One of these shape
residues is mainly expression deformations, the one from the
matching probe and gallery scans (same subject).

The residues are minimized using the PCA subspace (ex-
pressions are morphed out). The projection of the residues
on the PCA subspace retains expression deformations and
lose interpersonal disparities. A non-orthonormal projec-
tion that accounts for the artifacts in the learnt expres-
sion patterns and outliers in the residues was devised (see
Sects. 2.4.1 and 2.4.2). The non-orthonormal projection also
limits excessive morphing by applying a cost proportional
to the extent an eigenvector is used. The minimized residues
are then reconstructed. Finally, the similarity measures are
extracted from the errors between the original and the mini-
mized residues (see Fig. 1).

PCA is a well-known dimensionality reduction tool. It
has been used by Kirby and Sirovich (1987, 1990) then by
Turk and Pentland (1991) for compact 2D face representa-
tion and similarly applied to 3D face recognition (Chang et
al. 2005b). In the work by Russ et al. (2006), a 3D face is
registered to a generic 3D face using ICP. PCA was then ap-
plied to the registered faces. It is known that PCA based
approaches are sensitive to expression variations as they
merely represent the higher dimensional face data by a com-
pact eigen-coefficient representation which is still adversely
affected by expressions. Note that our approach does not use
PCA merely as a means of dimensionality reduction but also
for splitting the higher dimensional data (3D face residues)
into an expression part (preserved during projection) and
a non-expression part (lost during projection). In our ap-
proach, the emphasis is on the eigenvectors rather than the
eigen-coefficients.

Fig. 1 Block diagram showing how the expression deformation model is built
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2 Details of Non-rigid 3D Face Recognition

As PCA is used for modeling the expression deformations,
the 3D facial scans need to be converted into a suitable
range image representation. In addition, PCA requires that
the 3D scans are pose-corrected and cropped. In contrast,
the pointcloud representation suits the ICP. At different
stages, the approach switches between the two representa-
tions. This section details the two main modules of the ap-
proach, the Expression Deformation Model and the non-
rigid face matching. It also describes the preprocessing of
the data and the automatic pose-correction and cropping of
the 3D facial scans.

2.1 Data Preprocessessing

The approach was applied on the frontal facial scans of the
FRGC v.20 dataset (Phillips et al. 2005) which were ac-
quired using Minolta vivid 3D scanner. The 3D scans are
dense pointclouds and also contain spikes and holes. The 3D
scans are decimated to reduce the computational complexity
of the approach. The spikes are removed and the holes are
filled.

The dense pointclouds of the FRGC dataset (Phillips et
al. 2005) are in the form of three matrices x, y and z,
the three coordinates of the pointclouds are in mm. The
spikes are removed by dropping the outlier points from the
three matrices based on local statistics. The matrices are
then smoothed using a mean filter which averages the non-
missing points in the local neighborhood (neglects the miss-
ing points). The three matrices are bi-cubically interpolated
at the holes. The bi-cubic interpolation is used here because
it can accurately fill in the holes which are to some extent
large such as the eye-brows which are occasionally missing
in the pointclouds.

The range image is then computed from the three matri-
ces by interpolating at the integral x and y coordinates and
storing the corresponding z coordinates in the range image
matrix using x as a horizontal index and y as a vertical in-
dex. This step also decimates the range image as the points
become equally spaced at a 1 mm distance along x and y

axes as opposed to the irregular sub-millimeter accuracy of
the raw data. Finally, the range image is smoothed using a
Gaussian filter.

2.2 Automatic Cropping and Pose Correction

The facial scans are cropped and their poses are corrected to
frontal view using the approach by Mian et al. (2006). That
approach gives sufficient cropping and pose correction accu-
racy such that it can be used for modeling expression defor-
mations using PCA and initial coarse registration for the ICP

algorithm. The cropping and pose-correction are also impor-
tant for the coarse localization of facial regions by means of
fixed binary mask images.

The tip of the nose is initially detected by slicing the
3D facial scan horizontally and searching the slices for the
point which has maximum distance to the line segment de-
fined by the intersection of the slice and a sphere centered at
that point. Once the tip of the nose is detected the 3D facial
scan is cropped around the nose tip by dropping the points
which are at a distance more than 80 mm from the tip of the
nose. The cropped points are then pose corrected according
to their principal directions. The holes which might appear
due to self-occlusion are filled using bi-cubic interpolation.
The last two steps are iterated until the pose stabilizes. The
facial scan is shifted so that nose tip is at the center of the
range image and its depth (z coordinate) is zero.

2.3 Expression Deformation Model

The expression deformations of the human face is modeled
by PCA subspace. PCA is chosen for modeling expression
deformations of the human face for two reasons. The ex-
pression deformations have similar patterns, consequently
they are expected to reside in a lower dimensional PCA sub-
space. Deforming a 3D face using PCA is computationally
efficient as it can be achieved using a closed form solution
(see Sect. 2.4). The Expression Deformation Model is cho-
sen to be generic to the human face so the approach can
perform non-rigid face recognition based on only a single
gallery enrollment per subject.

The generic Expression Deformation Model is trained us-
ing non-neutral scans of different people. Each non-neutral
scan is paired with a neutral scan of the same subject. The
training data contains multiple non-neutral scans per sub-
ject but one neutral scan per subject is sufficient. Ideally, it
should contain a wide range of facial expressions and suf-
ficient number of subjects with balanced gender and race
ratios.

The training scan pairs are used to generate the Expres-
sion Deformation Model according to the following steps.
The training scan pairs are cropped and pose-corrected as
described in Sect. 2.2. Then the scan pairs are finely regis-
tered using the ICP algorithm according to the forehead and
nose region. Next, the shape residues of the finely registered
scan pairs are computed, each scan pair produces a shape
residue. Finally, PCA is applied on the shape residues.

The fine registration step is needed here mainly for the
computation of accurate shape residues. As the scan pairs
are pose-corrected with respect to the principal directions
of the whole cropped face, the scan pairs can have pose er-
rors due to the fact that the principal directions can slightly
vary with expression variations. Pose-correction errors in the
range of ±2◦, ±6◦ and ±1.66◦ respectively around x, y and
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z axes of the principal direction method are reported in Mian
et al. (2006). Such error ranges can affect the accuracy of the
shape residues. However, their projections on the x–y plane
are not largely affected in such error ranges. Fine registration
according to the forehead and nose region produces accurate
shape residues as this region is the least affected by facial
expressions. For example, the global shape of the forehead
is largely defined by the forehead bone more than the mus-
cle movements. When the eyebrows are raised, the skin of
the forehead slides over the skull bone but the global shape
of the forehead largely remains unchanged except locally
near the eyebrows. Small local variations of the 3D surfaces
do not tangibly affect the registration accuracy of the ICP.
Some previous papers performed 3D face recognition rely-
ing solely on the semi rigid regions of the face, e.g. Mian
et al. (2007). Furthermore, the shape of that region is also
appropriate for correct ICP convergence. The forehead and
nose regions from two 3D scans of the same subject grove
into each other leading to a 6DOF accurate registration.

The shape residues are computed from the finely regis-
tered scan pairs simply by taking the difference between
the non-neutral and the neutral scans. Because each train-
ing scan pair belongs to the same subject, the shape residues
are expected to be rich in information that is relevant to ex-
pression deformations while they are low in person-specific
facial shape information. Although the shape residues of a
given facial expression are generally similar for different
people, variations can take place. For that reason the training
data has scan pairs belonging to a sufficiently large num-
ber of people with diversity in gender and race. Based on
these properties of the training data, the application of PCA
on the shape residues models generic expression deforma-
tions of the human face while it lacks the capacity to model
the shape of the human face itself. Consequently, when the
model is used in face matching (Sect. 2.4), the expression
deformations can be removed (morphed out) without over-
fitting the 3D facial scans of different people.

2.3.1 Fine Scan Pair Registration

The region of the forehead and nose in one scan of the pair
is determined using the binary mask shown in Fig. 2 (top
left). Given that the scan pair is cropped, pose-corrected and
the nose tip is brought to the center of the range image (as
described in Sect. 2.2), the shape of that mask covers sub-
stantial parts of the forehead and the whole nose of every
face. As the two facial scans are registered according to sub-
region, the points which are far away from the reference re-
gion are considered to be redundant. The redundancy is re-
moved by applying a dilated version of the first mask to the
other scan.

Then the two masked regions are converted from the
range image to pointcloud representation (list of 3D tuples).

Fig. 2 3D facial scan pairs registered according to the forehead and
nose region of the face (semi-rigid region). The 1st row shows the bi-
nary masks which were used to detect the region in the pose corrected
range images and an example range image. The solid regions in the
scan pairs are registered using ICP and the same rigid transformations
are applied to the other regions of the face

Each range pixel produces an (x, y, z) tuple, where x and
y are the horizontal and vertical indices of the pixel respec-
tively and z is its value (depth). The pointclouds from the
first and second facial scans are called P and Q (the one
with the extended region), respectively. The ICP algorithm
is used next to register the two pointclouds. In the ICP al-
gorithm the closest point search is performed for the points
in P (i.e. the searched pointcloud is Q). Because Q covers
larger region, it is more likely to find proper closest-points
for the points near the mask edges in P . Consequently, the
accuracy of the registration is not affected by the edges. In
the ICP algorithm, P is iteratively transformed until it is reg-
istered to Q, denoted as R. The total rigid transformations



Int J Comput Vis (2009) 81: 302–316 307

which are equivalent to the rigid transformations in all itera-
tions are computed. The total rotation matrix and translation
vector are called respectively Rt and tt.

The remaining points of the first facial scan (which are in
the unmasked region) are also converted to pointcloud rep-
resentation (P ′) and then the total rigid transformations are
applied to them according to (1).

R′
i = Rt P ′

i + tt (1)

The registered pointclouds of the masked and unmasked re-
gions (R and R′) are combined in one pointcloud represent-
ing the whole first face, F = R ∪ R′, and converted to range
image representation.

The pointcloud (F ) is converted to range a image repre-
sentation as follows. The x and y coordinates of the point-
cloud tuples are rounded to the nearest integers. Then their
z coordinates are stored in the pixels of the range image in-
dexed by the rounded x and y coordinates. If a pixel is in-
dexed by more than one tuple the one with the maximum
z is stored in the pixel (deemed self-occluded). Since the
scan pairs are initially pose-corrected, the fine registration is
not expected to cause significant holes or self-occluded pix-
els. A line of missing data in the range image (crack) might
appear. The range at the crack is linearly interpolated. This
conversion approach is computationally cheap. The round-
ing errors are intangible if the approach is not used itera-
tively (which is the case).

Figure 2 shows examples of scan pairs finely registered
according to the forehead and nose region. It is noticed from
the figure that the registration is consistent despite expres-
sion variations.

2.3.2 PCA on Shape Residues

Let Iei
and Ini

denote respectively the finely registered non-
neutral and neutral range images of the i-th training scan
pair. The i-th shape residue is the difference between the
two range images as in (2).

Ri = Iei
− Ini

(2)

PCA (Jollife 1986) is applied to the shape residues and
a lower dimensional PCA subspace is found. The shape
residues Ri are vectorized into m × 1 vectors ri. The eigen-
vectors e1, . . . , ek with the top k eigenvalues of the covari-
ance matrix Ω (3) are found, where k � m.

Ω =
n∑

i=1

(ri − r̄)(ri − r̄)� (3)

Where r̄ is the average shape residue and n is their number.
The subspace spanned by the k eigenvectors is represented
by a matrix E in which the columns are the eigenvectors.

Fig. 3 Some eigenvectors which span the shape residue PCA subspace
(our expression deformation model).The images in the top row are the
1st, 2nd and 3rd eigenvectors, respectively from the left. The 9th, 10th
and 11th are in the middle row and the 25th, 26th and 27th are in the
bottom row. Notice that the top eigenvectors are more relevant to the
largely deformable regions (e.g. the mouth) and the deformations in
the other regions gradually appear in the lower eigenvectors

Some of the eigenvectors of the matrix Ω are shown in
Fig. 3. From their shapes, the relevance to facial expres-
sions can be perceived to some extent. The eigenvectors with
higher eigenvalues are largely related to the large expres-
sion deformations. For example, it can be seen in the figure
that the first eigenvectors are largely relevant to the open
mouth expression and those which involve large cheek de-
formations. As the eigenvalue decreases, smaller expression
deformations appears in the eigenvector. For example, the
deformations at the eyebrows, eyes, nose and forehead ap-
pear clearly in the eigenvectors with the 9th eigenvalue and
beyond.

Another aspect of the eigenvectors is that the deforma-
tions appearing in one facial region are generally in accord
with the other deformations in the other facial regions. For
example, the first eigenvectors shows that opening the mouth
is concurring with lowered cheeks as they are stretched due
to the lowering of the jaw. In the second eigenvector the
mouth is stretched to the sides and at the same time, the
outer sides of the cheeks pop up (due to displacement) and
also the sides of the nose are stretched.
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To test how the expression model can model unseen facial
expressions, novel shape residues (rn1,...,n

) are projected on
the subspace E according to the following equation

rpi
= E(E�E)−1E�rni

(4)

The projection of unseen shape residues on the subspace re-
tains most of the shape residues if they are computed from
the same subject. When projecting shape residues computed
from facial scans that belong to different people (i.e. the dif-
ference between two different faces), the residues in this
case are not merely expression deformations. These shape
residues are expression deformations plus other shape dis-
parities between the subjects. The projection of such shape
residues on the subspace lose much more shape than the
residues of the same subjects. The average ratio of retained
shape (computed as the squared sum of rp) in the two cases
is about 4 : 1. The projections of facial scans on the subspace
are severely distorted, indicating that the subspace models
the expression deformations but not the human face. We
conclude that simply the projection of shape residues on the
subspace can be used for non-rigid face matching (model fit-
ting), see Sect. 2.4. The projection is computationally cheap
in comparison to the iterative numerical minimization tech-
niques used in model fitting.

In (4), the term (E�E)−1 equals to the identity matrix
for projection on an orthonormal subspace. However, dur-
ing the matching phase (Sect. 2.4), the matrix of the eign-
evectors E is modified to account for the artifacts at the bor-
ders of the eigenvectors (see Fig. 3). The matrix is further
modified to cater for the outliers in the expression residues
(Sect. 2.4.1) and to restrict the projections of the residues
to appropriate regions of the subspace (Sect. 2.4.2). Conse-
quently, after modification, (E�E)−1 does not equal to the
identity matrix and the lower subspace no longer remains or-
thonormal. Empirical tests show that the average expression
residue is insignificant and on that basis it was not included
in (4). Tests also confirmed that the omission of the average
residue from (4) did not affect the recognition accuracy.

2.4 Face Matching

Non-rigid 3D face matching of a probe P to a number of
gallery 3D facial scans G1,...,n is performed as follows.
The probe p and the gallery scans are pose-corrected and
cropped as described in Sect. 2.2. Then P is finely registered
to each gallery scan Gi , in a similar way to the registration
of the training scan pairs (Sect. 2.3.1). From each registered
probe and gallery, a shape residue Ri is computed. One of
these shape residues represent purely expression deforma-
tions, the one in which the probe and the gallery scans be-
long to the same subject. The shape residues are then vec-
torized ri and they are projected on the expression defor-
mation subspace rpi

according (4), except that the projec-
tion is modified to avoid the effects of the borders and the

Fig. 4 The images in the first row are the shape residues of the reg-
istered scan pairs shown in Fig. 2 followed by their projections on the
PCA subspace (second row). Their projection on the PCA subspace re-
tains most of the shape residue. The shape residues in the third row are
not found from scan pairs belonging to the same subject. Instead, the
non-neutral scans are registered to the neutral scans of different sub-
jects which are respectively the 1st with the 2nd, the 2nd with the 3rd
and the 3rd with the 1st. The shape residues in this case are not merely
shape deformations. In this case, their projections on the PCA subspace
lost more of the shape residue (4th row). The last row shows that the
projections of the facial scans are not modeled by the PCA subspace as
their projections are severely distorted

outliers in the data and also the projection is restricted to
the portions of the subspace E in which realistic expression
residues can exist (see Sects. 2.4.1 and 2.4.2). Negative sim-
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ilarity measures are extracted from the error vector ei be-
tween the shape residues and their projections on the ex-
pression deformation subspace si according to (5) and (6).
The gallery scan with the minimum value of si is considered
to be the probe’s match. The elements of the error vector are
checked against a threshold et and those which exceed et

are truncated. This truncation helps in mitigating the effects
of outliers (which might be caused by hair or any other er-
ror source) in ei as the si will not be over-penalized when
the identity of the probe is matching the gallery. A value of
3 mm is chosen for the threshold et . Let e

j
i denote the j -th

element of the vector ei .

e
j
i =

{
r
j
i − r

j
pi

for r
j
i − r

j
pi

≤ et

et for r
j
i − r

j
pi

> et

(5)

si = e�
i ei (6)

In theory neither the probe scan nor the gallery ones need
be neutral. In fact, the projection of the shape residue on the
expression deformation subspace can morph out expression
deformations between any two non-neutral expressions. The
projection (4) is split into the following two equations.

ci = (E�E)−1E�ri (7)

rpi
= Eci (8)

Where ci is a vector of eigen-coefficients. Equation (7) is
the solution to the over-determined system, ri = Eci . Then
the projected shape is reconstructed according to (8). Let
rab denote the shape residue between two scans under non-
neutral expressions a and b. Suppose that there is a hypo-
thetical neutral scan. Then morphing the facial expression
from expression a to b is equivalent to morphing the facial
expression from the neutral face to expression b, Ecb , minus
the morph from the neutral expression to expression a, Eca .
See Fig. 5.

E(E�E)−1E�rab = E(cb − ca) (9)

Figure 6 shows examples of 3D facial scans with ex-
pression morphing between non-neutral probes and gallery
scans, g + rab.

2.4.1 Outlier Tolerant Projection

The solution of (7) is the least square minimization which
can be sensitive to the outliers in ri . To avoid introducing
outliers at non-overlapping regions at the borders, those el-
ements are removed from ri and their corresponding ele-
ments in all the columns of E are also removed (or sim-
ply they can be set to a value of zero). Also the artifacts
at the borders of the eigenvectors which are caused by the

Fig. 5 Although the expression deformation model is trained using
3D facial scan pairs under non-neutral and neutral expressions, it can
be used in morphing expressions in 3D facial scans that are both
non-neutral. Thus the approach can match a non-neutral probe to a
non-neutral gallery. In our model, morphing the expression in the
non-neutral scans a to b is equivalent to expression morphing from
a hypothetical neutral face (which is not in physically required) to b

minus expression morphing from the neutral face to a

same reason (borders) are similarly removed and their cor-
responding elements in ri , producing a residue rbi

and ma-
trix Eb . The borders are cropped out by means of a fixed
binary mask. Any other elements which can be deemed as
outliers such as those which unrealistically have high shape
residue values are also removed, producing rboi

and Ebo.
Then the projection is computed using (10) and the similar-
ity measure is extracted from rbpi

and rbi
according to (5)

and (6).

rbpi
= Eb(E�

boEbo)
−1E�

borboi
(10)

2.4.2 Restrictive Projection

The projection described in (10) has shown a high recog-
nition performance. However, by imposing restrictions on
the eigen-coefficients of the projection to their natural
ranges, it was shown that the performance can be fur-
ther improved. This is because not all the combinations
of the eigenvectors represent realistic expression defor-
mations. Consequently, the restriction reduces the chance
of over-fitting the 3D faces belonging to different peo-
ple.

To learn what are the natural ranges of each eigen-
coefficient ci , the training residues are projected onto E.
Then, the mean and the standard deviations of the eigen-
coefficients are computed, μi and σi , respectively. An ad-
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Fig. 6 These are examples of morphing expressions from non-neutral
3D facial scans (left column) to different non-neutral expressions in
other scans (middle column). The 3D scans on the left are deformed
according to the expression deformation model so that they better fit
the middle scans (shown in the right column)

ditional cost proportional to the deviations from μi and in-
versely proportional to σi is added to the implied objective
function of the projection (sum of least squares). It turned
out that the mean values are close to zero, considering their
corresponding standard deviations. For simplicity, we as-
sumed they are zeros.

The k × k matrix (M) shown in (11) is concatenated to
the end of the matrix Ebo in (10), giving a new matrix Er =
[E�

bo M ]�. The vector rboi
is padded with k zeros at the end,

giving rr (k is the lower subspace dimension).

M =

⎡

⎢⎢⎢⎢⎢⎣

S
σ1

0 . . . 0

0 S
σ2

...

...
. . . 0

0 . . . 0 S
σk

⎤

⎥⎥⎥⎥⎥⎦
(11)

S in the matrix is called the stiffness factor. The residue is
then projected as in (12)

rrpi
= Eb(E�

r Er )
−1E�

r rri (12)

The total cost incurred by the restriction C is expressed
by (13).

C =
k∑

i=1

(
S

σi

ci

)2

(13)

Where ci is the i-th eigen-coefficient (see (7) and (8)).
The eigenvalues equivalently can be used instead of the

standard deviations σi . However, using the standard devia-
tions gives us some intuition about the determination of an
appropriate value of the stiffness factor. Knowing that an av-
erage fitting cost (least square sum) of matched (same sub-
ject) probes and galleries is roughly about 15000. The stiff-
ness factor S which makes the restriction cost C for eigen-
coefficients ci=1,...,k that are deviated from their means (ze-
ros in our case) by one standard deviation (k is assumed
about 50) sums up to one third of the non-restricted aver-
age cost is about 10. By performing recognition using S =
{2.5, 5, 10, 20 and 40}, it was shown empirically that S = 20
achieves the best performance. Note that the proposed ap-
proach has a limited number of free parameters which en-
sures that it does not suffer from over-fitting. Moreover, it
has been tested on the FRGC validation set as well as an ad-
ditional dataset acquired in our laboratory. Our results in the
next section indicate that the proposed approach generalizes.

3 Experiments

A number of experiments were conducted on the pro-
posed approach. This section describes the experiments,
the dataset on which the experiments were conducted and
presents their results.

3.1 Dataset Description

The FRGC v2.0 is currently the largest publicly available
3D face dataset. It contains about 5000 3D facial scans un-
der neutral and non-neutral expressions. The dataset is com-
posed of two partitions: the training partition (943 scans)
and the evaluation partition (4007 scans). The evaluation
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partition scans belong to 466 subjects and contains about
2410 neutral scans and about 1597 that have various facial
expressions.

The FRGC dataset was augmented by 3006 scans that
were acquired using a Minolta vivid scanner in our labo-
ratory.1 The 3006 scans belong only to three subjects (1000
non-neutral scans and 2 neutral per subject). The non-neutral
scans were acquired while the subject was talking or read-
ing loudly and with the intention to produce as diverse fa-
cial expressions as possible. The FRGC dataset have scans
for a large number of subjects but we also need a large num-
ber of non-neutral scans per subject for experiment no. 3
(Sect. 3.5). In addition, some of them are used in model
training (Sect. 3.2) as it turned out that the expression de-
formation model requires large training data.

3.2 Model Training Data

The training partition of the FRGC was not sufficient for
training our Deformation Expression Model. Insufficient
training data can result in noisy eigenvectors (of the model,
Sect. 2.3), especially those with lower eigenvalues. Also, a
smaller training data may lack enough instances of facial ex-
pressions of different people. Consequently, the model may
not perform optimally during face recognition.

To test how the size of the training data affects the per-
formance of the deformation model, three Expression De-
formation Models were trained using training data of 400,
800 and 1700 scan pairs. Then, they were used in non-rigid
face recognition of 400 unseen probes under non-neutral ex-
pressions with an appropriate subspace dimension of the de-
formation model (the dimension is 55, see Sect. 3.3). The
identification rates in the three cases were 89%, 93%, and
95%, respectively. The rates have increased for larger train-
ing data sizes.

In the following experiments, the Expression Deforma-
tion Model which gave best results (the one which is trained
by 1700 pairs) was used as the generic deformation model.
The 1700 pairs were formed among the training partition of
the FRGC dataset (943 scans), 597 non-neutral scans from
the evaluation partition (leaving about 1000 non-neutral
scans for testing) and 500 scans from our acquired data. Al-
though we had 2500 more non-neutral scans in our dataset,
we used only 500 of them so that the deformation model
is not biased toward the expressions of the 3 people in our
dataset.

3.3 Experiment 1: Optimal Subspace Dimension

This experiment aims at finding empirically the most appro-
priate dimension of the subspace of the Expression Defor-

1The code and dataset acquired in our laboratory is available upon re-
quest from the corresponding author.

Fig. 7 Identification rate versus the dimension of the subspace in the
deformation model

mation Model. The dimension of the deformation model in-
fluences the recognition performance positively in one way
and negatively in another way. On one hand the higher the
dimension of the subspace is, the more it is expected to
model fine deformations (as it appears from the eigenvec-
tors shown in Fig. 3 in Sect. 2.3.2). This factor pushes for
a higher recognition performance. On the other hand, at
higher dimensions there are more chances for over-fitting
probe and gallery scans which belong to different subjects.

Non-Rigid 3D face matching was applied on 500 un-
seen probes under non-neutral expressions using deforma-
tion models that have subspace dimensions ranging from 15
to 85. Their first rank recognition rate (as shown in Fig. 7)
has noticeably increased at the very low dimensions. Then
it is almost leveled at its best performance at the range of
dimensions from 35 to 65. For dimensions more than that,
minor performance degradations are noticed when the di-
mension increases. In the following experiments, we use the
deformation model with a dimension of 55.

3.4 Experiment 2: Performance on FRGC Dataset

One neutral scan per subject is enrolled in the gallery dataset
(466 subjects). Then the remaining FRGC validation scans
are used as probes. Non-rigid recognition is performed using
both restricted (S = 20) and non-restricted projections (the
model dimension is 55). The recognition performance for
the unseen non-neutral probes and those which were used to
augment the training data are found separately. The results
in both cases are compared to those when non-rigid recogni-
tion is used (plain ICP, faces are registered according to the
semi-rigid region of the face).

The scores in the similarity matrices are normalized row-
wise to range from zero to one according to the following
formula (14).

s′
i = si − smin

smax − smin
(14)

where smin and smax are the minimum and maximum scores
in the row of the similarity matrix and si and s′

i are the
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Fig. 8 The ROC and CMC curves of the non-rigid recognition ap-
proach on the FRGC dataset when restricted projection is used (a) and
when it is not used (b). Our approach gave significantly higher recog-

nition performance in comparison to the rigid ICP approach (c), in par-
ticular for facial scans under non-neutral expression

i-th non-normalized and normalized scores in the matrix
row, respectively.

Figure 8 shows the ROC and Cumulative Matching Char-
acteristic (CMC) curves for the three cases. The two non-
rigid approaches gave a significantly higher recognition per-
formance in comparison to the rigid approach in both iden-
tification and verification. Also, the performance of the non-
rigid approach with restricted projection is noticeably better
than that with non-restricted projection. Another aspect of
the results is that the performance of the two non-rigid ap-
proaches does not deteriorate with facial expressions as it is
the case with the rigid approach.

The verification rates at 0.001 FAR in the case of the
non-rigid approach with restricted projection are 97.8%
and 98.35% for the unseen non-neutral probes and neutral
probes, respectively. For the probes which are used to aug-
ment the training data, the verification rate was 97.68%.
At that FAR, the training probes seem to have no advan-
tage over the unseen ones. The verification rate for all
the non-neutral probes is 97.73%. A verification rate of
98.14% was achieved for all the probes (neutral and non-
neutral). Its first rank identifications are 94.8%, 95.95% and
95.2% respectively for the unseen, training and combined
non-neutral probes. The neutral versus neutral identification
rate is 97.58%. The identification rate for all the probes is
96.52%.

In comparison to that, the non-restricted projection
achieved verification rate at 0.001 FAR of 96.8% for the
case of non-neutral probes and 97.94% for the neutral ones.
As shown in Fig. 8 at lower FAR the restricted approach
maintains high verification rates even better than the non-
restricted approach. Its first rank recognition rate is 94.07%
for the non-neutral probes and 95.63% for the neutral ones.
The CMC curves of the restricted approach rise and settle
more quickly than the non-restricted approach. The rigid
ICP approach achieved reasonable performance on the neu-
tral scans (93.3% first rank identification) but low perfor-
mance for the non-neutral scans (about 54%).

In addition, the FRGC ROC I, II and III curves were
computed (see Fig. 9). A 4007 × 4007 similarity matrix
was computed by matching all the 3D scans in the evalu-
ation data and normalized according to a target set as il-
lustrated in (14). The sub-matrices for ROC I, II and III
were then extracted from the 4007 × 4007 matrix using
the masks provided by the FRGC protocol. At 0.001 FAR,
we obtained the verification rates of 94.55%, 94.12% and
94.05%, respectively for ROC I, II and III. Since these
three ROCs involve non-neutral to non-neutral matching,
their verification rates are to some extent lower than the
non-neutral versus neutral rate (Fig. 8). This is an indi-
cation that our approach has better performance when it
matches non-neutral 3D scans against neutral gallery scans.
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Fig. 9 FRGC ROC I, II and III curves, respectively. The solid line is for all the scans defined by the FRGC protocol for ROC I, II and III whereas
the dashed line is for the same scans excluding the training data

Fig. 10 Examples of challenging probes which were recognized (top
row) and misrecognized (bottom row). One can notice that misrecog-
nition occurs due to data distortion and failure in 3D face detection,
cropping and/or pose correction. Misrecognition also occurs due to in-

correct convergence of ICP and when some interpersonal disparities
are removed during the removal of expression deformations. However,
as indicated by the recognition performance, the effects of these rea-
sons appear to be insignificant

This effect is possibly influenced by the nature of our train-
ing data which measures the difference between non-neutral
and neutral scans. See Table 1 for the comparative re-
sults.

The failures in recognition occur due to four reasons. The
first reason is due to an incorrect automatic 3D face de-
tection and pose correction. This reason affects about 2%
of the probe scans. The reported results throughout the pa-
per include these probes and no intervention was attempted
to correct their pose manually. The performance of the ap-
proach can be further improved by performing iterative nose
tip detection while pose-correcting the 3D face as nose
tip detection is more accurate for pose-corrected 3D faces
and/or considering more fiducial points. The second reason
is due to the non-convergence of the ICP algorithm which
is usually caused by an inaccurate coarse registration. The
third reason is due to distortions in the input 3D scans (see
Fig. 10). The fourth reason occurs when some interpersonal
disparities are also removed during the removal of expres-
sion deformations. This however appears to be insignificant.

These four reasons usually occur concurrently. Figure 10
shows examples of challenging probes which were mis-
recognized and other challenging probes which were cor-
rectly recognized.

A comparison of the verification rates at 0.001 FAR of
our proposed approach to other high performing approaches
in the literature and the PCA baseline performance is pre-
sented in Table 1. The proposed approach achieves superior
performance compared to other approaches that use only the
3D modality in the case of non-neutral versus neutral 3D
face matching. The verification rate for the neutral 3D scans
is slightly less than the approach proposed in Mian et al.
(2007) but the verification rate of the non-neutral ones is the
highest compared to all other considered approaches. The
over all verification performance (neutral + non-neutral)
of the proposed approach is very close to the Mian et al.
(2007). However, our approach has a higher overall (all
versus neutral) identification performance than the 3D uni-
modal performance of Mian et al. (2007) (96.52% compared
to 96.2%).
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Table 1 Comparison of verification rates are at 0.001 FAR on the FRGC dataset. The results quoted in the table are for the 3D modality alone

Modality Neutral Non-neutral All ROC I ROC II ROC III

vs. vs. vs.

neutral neutral neutral

Maurer et al. (2005) 3D/2D 99.2% NA 95.8% NA NA NA

Husken et al. (2005) 3D NA NA 89.5% NA NA NA

Kakadiaris et al. (2007) 3D NA NA NA 97.3% 97.2% 97%

Passalis et al. (2005) 3D NA NA NA 89% 88% 87%

Mian et al. (2007) 3D/2D 99.4% 97% 98.5% NA NA NA

Mian et al. (2008) 3D/2D 97.4% 92.1% 99.9% NA NA NA

FRGC Baseline 3D 45% NA 40% NA NA NA

This paper 3D 98.35% 97.8% 98.14% 94.55% 94.12% 94.05%

To compare our approach to the GMDS approach by
Bronstein et al. (2006a, 2006b), we measure the recogni-
tion performance of our approach in a similar experimen-
tal set up to theirs and compare the two recognition perfor-
mances. In Bronstein et al. (2006b), a gallery of 30 subjects
was constructed by enrolling a neutral 3D scan per sub-
ject. 3D face recognition was performed on 5 non-neutral
scans per subject (a total of 180 probes). The 3D scans were
taken from the FRGC dataset. They applied mild occlusions
(cropping) to the probes by means of a mask which they de-
scribed as narrow and covers most of the relevant part of the
face. In our case we closely simulated their mild occlusions
as shown in their example image on p. 11 Bronstein et al.
(2006b). As we do not know which probes they used, we
repeated the experiment five times. Compared to their veri-
fication rate of about 77% at 0.001 FAR (as shown on their
ROC curve), our approach achieved a minimum in the five
experiments of 91.6%, a maximum of 95.28% and a mean
of 93.38% verification rate at the same FAR.

Our approach stores a single cropped and pose-corrected
3D facial range image (161×161 pixels) per gallery face as
a signature. This signature extraction time on an Intel Core
2 Quad machine is performed in 4 seconds using a Matlab
implementation. Most of the computational complexity of
our approach comes from the application of the ICP dur-
ing the matching stage. The matching part was implemented
in C. We used an optimized variant of the ICP algorithm.
The used ICP algorithm uses a k-d tree structure to speed up
the process of the closest point search as used in Greenspan
et al. (2003). The matching time is about 100 ms per gallery
face.

3.5 Experiment 3: Person-specific Deformation Model

This experiment aims at measuring the performance of
the non-rigid approach when a person-specific deformation
model is used instead of the generic one. In this case the

gallery contains a neutral image per subject and a deforma-
tion model per subject as well. The person-specific defor-
mation models are generated from training data belonging
to the same subject.

This approach requires model training data for every
person-specific model. However, there are practical appli-
cation scenarios for this approach. For example, the recog-
nition system can start with a generic model then as it per-
forms recognition during the deployment stage of the system
it builds the person-specific models for the repeatedly recog-
nized subjects. The computational complexity of the person
specific deformation is the same as when the generic model
is used. This gives the approach an advantage over the sys-
tems which use multiple enrollment per subjects to increase
their recognition performance as verification or identifica-
tion for a small number of subjects can be achieved in real-
time which is needed for applications like robot-human in-
teraction for instance.

The acquired non-neutral data of each of the three sub-
jects are divided into two parts, one part is for the person-
specific model training and the other one is for recogni-
tion performance evaluation. The part which is used for
model training is about 650 non-neutral scans (leaving about
350 probes per subject for recognition performance eval-
uation). The person-specific models are computed in the
same way as the generic ones (see Sect. 2.3). Then a
neutral image per each one of the three subjects were
added to the gallery which was used for FRGC perfor-
mance evaluation (Sect. 3.4), making a gallery of 469 sub-
jects.

The ROC and CMC curves of the performance of this ap-
proach on only the evaluation probes of the three subjects
are shown in Fig. 11. A very high verification and identi-
fication rates were achieved even at very low FAR (0.0001)
reaching 99.3%, especially when considering that the probes
are under facial expressions.
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Fig. 11 Person-specific
deformation models gave very
high recognition performance
(all the probes are under facial
expressions)

4 Conclusion

By morphing expressions from 3D facial scans using the
proposed Expression Deformation Model, significant recog-
nition performance was achieved especially for scans under
facial expressions. To the best of our knowledge, the per-
formance of our generic restrictive projection approach on
the FRGC dataset is the best 3D (unimodal) face recogni-
tion performance in the literature. In addition, the system
can further improve the recognition performance by adapt-
ing person-specific deformation models during the deploy-
ment stage of the system as shown in one of our experi-
ments.
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