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Abstract A framework for the regularized and robust es-
timation of non-uniform dimensionality and density in high
dimensional noisy data is introduced in this work. This leads
to learning stratifications, that is, mixture of manifolds rep-
resenting different characteristics and complexities in the
data set. The basic idea relies on modeling the high di-
mensional sample points as a process of translated Poisson
mixtures, with regularizing restrictions, leading to a model
which includes the presence of noise. The translated Pois-
son distribution is useful to model a noisy counting process,
and it is derived from the noise-induced translation of a reg-
ular Poisson distribution. By maximizing the log-likelihood
of the process counting the points falling into a local ball,
we estimate the local dimension and density. We show that
the sequence of all possible local countings in a point cloud
formed by samples of a stratification can be modeled by a
mixture of different translated Poisson distributions, thus al-
lowing the presence of mixed dimensionality and densities
in the same data set. With this statistical model, the para-
meters which best describe the data, estimated via expec-
tation maximization, divide the points in different classes
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according to both dimensionality and density, together with
an estimation of these quantities for each class. Theoretical
asymptotic results for the model are presented as well. The
presentation of the theoretical framework is complemented
with artificial and real examples showing the importance of
regularized stratification learning in high dimensional data
analysis in general and computer vision and image analysis
in particular.
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1 Introduction

Recently, there has been significant interest in analyzing
the intrinsic structure of high dimensional data. This is
commonly known as manifold learning, e.g., (Belkin and
Niyogi 2002; Brand 2002; Costa and Hero 2004; Kegl 2002;
Levina and Bickel 2005; Roweis and Saul 2000; Tenenbaum
et al. 2000). Often, points that live in a high dimensional
space can be parametrized by a number of parameters much
smaller than the ambient dimension. A representation (em-
bedding) of the data in a lower dimensional space is very
helpful both for analysis and computation on the dataset.

Most works on manifold learning rely on the hypothesis
that all the points under analysis are samples of the same
manifold, and thus there is a unique intrinsic dimension.
However, this is often not a correct assumption. It is likely
that, for example, a collection of image portraits of the same
person under varying pose and illumination, lies on a mani-
fold defined by a set of parameters related to the variations in
pose and illumination. In contrast to this, let us consider a set
of images representing scanned digits. It might happen that
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the images representing the digit ‘1’ can be described with
a different number of parameters than the images for the
digit ‘2.’ Videos of diverse human motions contain the same
complexity variability. In these cases, it is important to de-
tect that there are different complexities present in the same
(noisy) point cloud data. This is the subject of this work.

This problem, clustering-by-dimensionality and stratifi-
cation learning, has recently been explored in a handful of
works. Barbara and Chen (2000), propose a hard clustering
technique based on the fractal dimension (box-counting).
Starting from an initial clustering, they incrementally add
points into the cluster for which the change in the fractal
dimension, after adding the point, is the lowest. They also
find the number of clusters and the intrinsic dimension of
the underlying manifolds. Gionis et al. (2005), propose a
two-step algorithm: First, they estimate the local correlation
dimension and density for each point; then, standard clus-
tering techniques are used to cluster the two-dimensional
representation (dimension + density) of the data. Souvenir
and Pless (2005), use an Expectation Maximization (EM)
type of technique, combined with weighted geodesic multi-
dimensional scaling (weighted ISOMAP (Tenenbaum et al.
2000)). The weights measure how well each point fits the
underlying manifold defined by the current set of points in
the cluster. After clustering, each cluster dimensionality is
estimated following (Levina and Bickel 2005). Huang et al.
(2004), Vidal et al. (2004), cluster linear subspaces with an
algebraic geometric method based on polynomial differen-
tiation, called Generalized PCA (GPCA), which also finds
the number of linear subspaces and their intrinsic dimen-
sions. An algorithm for clustering linear manifolds based on
lossy coding has been proposed by Ma et al. (2007). Goh
and Vidal (2007), extend (Polito and Perona 2002) to cluster
a union of J non-intersecting k-connected nonlinear man-
ifolds. It is done with the vectors spanning the null space
of the LLE matrix (Roweis and Saul 2000), which are a
linear combination of the membership vectors and the em-
bedding vectors of the J connected components. The work
of Mordohai and Medioni (2005), estimates the local di-
mension using tensor voting. Cao and Haralick (2006), pro-
pose a hard clustering by dimensionality: First, local dimen-
sionality is computed via local PCA; and then, neighboring
points are clustered together if they have the same dimension
and if the error of representing the new cluster as a com-
bination of basis functions in a kernel-based feature space
is small. Among these clustering-by-dimensionality tech-
niques, only the one by Cao and Haralick includes spatial
information in order to obtain a regularized classification.
Recently, Lu and Vidal (2006), combine GPCA with an ad-
ditional spatial constraint in a k-means fashion. They show
that, by adding this constraint, the classification is improved
in the intersection of the linear subspaces. From the com-
putational geometry perspective, a Voronoi-based technique

to compute local dimensionality has been introduced in Dey
et al. (2003), and demonstrated for 3D point cloud data. The
diffusion distance framework (Coifman and Lafon 2006;
Lafon et al. 2006), can work with stratifications, though no
explicit estimation of the clusters is obtained, and single
maps into Euclidean space are performed for the whole data
set. Recently, and following in part the theory of persistent
topology (Edelsbrunner et al. 2002), a framework for study-
ing stratas based on local homology has been introduced in
Bendich et al. (2007).

These recent works have clearly shown the necessity to
go beyond manifold learning, into “stratification learning.”
In our work, we do not assume subspaces are linear, and we
simultaneously estimate the soft clustering and the intrinsic
dimension and density of the clusters while being robust to
noise and outliers. This collection of attributes is not shared
by any of the pioneering works just described. Our approach
is an extension of the Levina and Bickel’s local dimension
estimator (Levina and Bickel 2005). They proposed to com-
pute the intrinsic dimension at each point using a Maximum
Likelihood (ML) estimator based on a Poisson distribution.
We propose to compute an ML on the whole point cloud data
at the same time (and not one for each point independently),
based on a translated Poisson mixture model, which models
the presence of noise and permits to have different classes
(each one with their own dimension and sampling density).
This technique automatically gives a soft clustering accord-
ing to dimensionality and density, with an estimation of both
quantities for each class. A preliminary version of this work
was presented in Haro et al. (2006) and a regularized ver-
sion together with asymptotic results in Haro et al. (2007).
These techniques are particular cases of the more general
translated Poisson model introduced in this paper in order to
handle noise.1

The remainder of this paper is organized as follows: In
Sect. 2 we review the method proposed by Levina and Bickel
(2005), which gives a local estimation of the intrinsic di-
mension and has inspired our work. We reformulate and ex-
tend this approach in Sect. 3 in order to include the pres-
ence of noise in the statistical model. Section 4 explains our
approach for robust stratification learning. We show experi-
ments with synthetic and real data in Sect. 5, including com-
parisons with critical literature. Finally, conclusions are pre-
sented in Sect. 6.

1We should mention that in Haro et al. (2006) we compared the orig-
inal framework (with no regularization or noise modelling as here de-
veloped), with a two step approach, where we first estimate the local
dimensionality per point using the original Levina-Bickel approach,
and then cluster following the information bottleneck approach (Tishby
et al. 1999). This has been shown not only to be less elegant and math-
ematically funded than the approach here presented, but mush less ro-
bust, even when compared to the non-regularized and noise-transparent
formulation.
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2 Local Intrinsic Dimension Estimation

Levina and Bickel (2005), proposed a geometric and prob-
abilistic method which estimates the local dimension and
density of a point cloud data. This dimension estimator is
equivalent to the one proposed in Takens (1985) in the con-
text of dynamical systems. Their approach is based on the
idea that if we sample an m-dimensional manifold with T

points, the proportion of points that fall into a ball around a
point xt is k

T
≈ ρ(xt )V (m)Rk(xt )

m. The given point cloud,
embedded in high dimensions D, is X = {xt ∈ R

D; t =
1, . . . , T }, k is the number of points inside the ball, ρ(xt )

is the local sampling density at point xt , V (m) is the vol-
ume of the unit sphere in R

m, and Rk(xt ) is the Euclid-
ean distance from xt to its k-th nearest neighbor (kNN).
Then, they consider the inhomogeneous process N(R,xt ),
which counts the number of points falling into a small D-
dimensional sphere B(R,xt ) of radius R centered at xt . This
is a binomial process, and some assumptions need to be done
to proceed. First, if T → ∞, k → ∞, and k/T → 0, then we
can approximate the binomial process by a Poisson process.
Second, the density ρ(xt ) is considered constant inside the
sphere, a valid assumption for small R. Note that the latter
assumption is only local, the global density does not need
to be constant, only inside the local sphere. With these as-
sumptions, the rate λ of the counting process N(R,xt ) can
be written as

λ(R,xt ) = ρ(xt )V (m)mRm−1. (1)

The log-likelihood of the process N(R,xt ) is then given by

L(m(xt ), θ(xt )) =
∫ R

0
logλ(r, xt )dN(r, xt )

−
∫ R

0
λ(r, xt )dr,

where θ(xt ) := log ρ(xt ) is the density parameter and the
first integral is a Riemann-Stieltjes integral (Snyder 1975).
The maximum likelihood estimators lead to a computation
for the local dimension at point xt , m(xt ), depending on
all the neighbors within a distance R from xt (Levina and
Bickel 2005). In practice, it is more convenient to compute
a fixed amount k of nearest neighbors. Thus, the local esti-
mators at point xt are

m(xt ) =
⎡
⎣ 1

k − 1

k−1∑
j=1

log
Rk(xt )

Rj (xt )

⎤
⎦

−1

, (2)

θ(xt ) = log
(
(k − 1)/

(
V (m(xt ))Rk(xt )

m(xt )
))

, (3)

where V (m(xt )) = (2πm(xt )/2)/(m(xt )�(
m(xt )

2 )), and

�(
m(xt )

2 ) = ∫ ∞
0 tm(xt )/2−1e−t dt . If the data points belong

to the same manifold, the authors propose to average over
all local estimators m(xt ) in order to obtain a more robust
estimator. However, if there are two or more manifolds with
different dimensions, the average does not make sense, un-
less we first cluster according to dimensionality and then
estimate the dimensionality for each cluster. Another possi-
bility is to include this in the process via the simultaneous
soft clustering and estimation technique described in Sect. 4.
Before this, let us present the proposed framework to natu-
rally handle noise as part of the model.

3 Translated Poisson Model

Usually, point samples are contaminated with noise, thus the
point process that we observe is not a simple sampling of a
low dimensional manifold but a perturbation of this sam-
ple process. This can be modeled with a translated Pois-
son process (Snyder and Miller 1991), where an underly-
ing (unobservable) point process is translated to an output
(observable) point process. The input and output spaces of
the points are not necessarily the same or even of the same
dimension (clearly, noise brings points outside of the under-
lying manifold and into the higher dimensional embedding
space). More concretely, an input point at location x in the
input space X is randomly translated to a location z in the
output space Z, according to a conditional probability den-
sity f (z|x), called the transition density.

For our purposes, we are going to consider the particu-
lar case where each point is translated independently of the
others and there are no deletions or insertions in the trans-
lation process (these more general cases are also studied in
Snyder and Miller 1991). We have the following critical the-
orem which states that a translated Poisson process is also a
Poisson process:

Theorem (Snyder and Miller 1991) Let {N(A) : A ⊆ X}
be a Poisson process with an integrable intensity function
{λ(x) : x ∈ X}. Points of this input point process are trans-
lated to the output space Z to form the output point process
{M(B) : B ⊆ Z}, where each point is independently trans-
lated according to the transition density f (z|x). Then, if
there are no insertions and deletions, {M(B) : B ⊆ Z} is
a Poisson process with intensity

μ(z) =
∫

X

f (z|x)λ(x)dx.

Since the intensity of the Poisson process in our model is
parametrized by the Euclidean distances of the points (and
not by the points themselves, see previous section), we are
going to consider a random translation in the distances.
This means that we do not observe the original distances
but noisy distances. Let f (s|r) be the transition density
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which defines the random process which translates a dis-
tance r in the input space to a distance s in the observable
space. If λ(r, xt ), defined in (1), is the local rate of the Pois-
son process which defines the counting process in the input
space, then μ(s), the intensity of the Poisson process in the
output space is given by

μ(s, xt ) =
∫ R′

0
f (s|r)eθV (m)mrm−1dr. (4)

R′ is different from the radius R considered in the counting
process N(R,xt ). We consider R′ > R in (4) since points
originally at distance greater than R from xt can be placed
within a distance less than R after the translation process. In
practice, the maximum translation is small (just a perturba-
tion because of the noise), and we consider R′ = R + σ in
the particular case of a Gaussian transition density (11). The
log-likelihood of the translated Poisson process is

L(m(xt ), θ(xt )) =
∫ R

0
log(μ(s, xt ))dN(s, xt )

−
∫ R

0
λ(r, xt )dr.

The parameters of the maximum log-likelihood are ob-
tained by solving the system of equations ∂L/∂m = 0 and
∂L/∂θ = 0. We then obtain the following expression for m,
when we use the k nearest neighbors (k-NN) instead of the
points within distance less to R,

m(xt )

=
[

1

k − 1

k−1∑
i=1

∫ R′
0 f (Ri(xt )|r)rm−1 log Rk(xt )

r
dr∫ R′

0 f (Ri(xt )|r)rm−1dr

]−1

,

(5)

where, by an abuse of notation, we have identified m =
m(xt ) in the right hand side. Note that this expression re-
duces to the Levina and Bickel estimator (Levina and Bickel
2005) in the particular case that f (s|r) = δ(s − r), i.e., there
is no translation of the original points. This corresponds to
the ideal case with no noise.

Equation (5) is a nonlinear recursive expression in m

which is difficult to solve. Thus, we are going to approxi-
mate it by an easier to compute closed expression. Since the
translation density is modeling the effect of noise, the effec-
tive support of f (s|r) is going to be concentrated around s.
Then, we can substitute rm−1 in (5) by its Taylor expansion
around Ri . Let us write (5) in the following way

m(xt ) = I−1 =
[

1

k − 1

k−1∑
i=1

Ii

]−1

, (6)

and expand rm−1 in the integral Ii via its Taylor series

Ii :=
∫ R′

0 f (Ri |r)rm−1 log Rk(xt )
r

dr∫ R′
0 f (Ri |r)rm−1dr

=
∫ R′

0 f (Ri |r) log Rk(xt )
r

dr + 
INi
+ . . .∫ R′

0 f (Ri |r)dr + 
IDi
+ . . .

= INi

IDi

,

where


INi
:= (m − 1)R−1

i

∫ R′

0
f (Ri |r)(r − Ri) log

Rk(xt )

r
dr,

(7)

and


IDi
:= (m − 1)R−1

i

∫ R′

0
f (Ri |r)(r − Ri)dr. (8)

These integrals are small since the effective support of
f (Ri |r) has the same order than the level of noise (consid-
ered not very large), and the quantity (r −Ri) is small in the
vicinity of Ri . We can then approximate

Ii ≈
∫ R′

0 f (Ri |r) log Rk(xt )
r

dr∫ R′
0 f (Ri |r)dr

. (9)

Notice that with this approximation of Ii , the estimator (6)
still reduces to the noise-free Levina-Bickel estimator (2),
that is Ii = log Rk

Ri
, when f (Ri |r) = δ(Ri − r). In the more

general case, (9) is the expected value of log Rk

r
according

to the transition density f (Ri |r) and thus reducing the effect
of noise. Using the approximation (9) in (6) we obtain

m(xt ) ≈
[

1

k − 1

k−1∑
i=1

∫ R′
0 f (Ri |r) log Rk

r
dr∫ R′

0 f (Ri |r)dr

]−1

. (10)

We explicitly estimate, in the following section, the error
produced in m(xt ) when we use the approximation (10) in-
stead of (5), for the particular important case of a Gaussian
transition density,

f (s|r) = 1√
2πσ

exp

(
− (s − r)2

2σ 2

)
. (11)

In this particular case that the coordinates are perturbed by
Gaussian noise, the error in the Euclidean distance can be
approximated by a Gaussian as well (see Appendix A for
more details). Thus, the expression for the local dimension
estimator becomes

m(xt ) ≈
[

1

k − 1

k−1∑
i=1

∫ R′
0 exp

(− (Ri−r)2

2σ 2

)
log Rk

r
dr∫ R′

0 exp
(− (Ri−r)2

2σ 2

)
dr

]−1

. (12)
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3.1 Approximation Error for a Gaussian Translation
Density

In order to estimate the error of approximating (5) by (10),
we compute the integrals (7) and (8), which are the largest
order error terms of the numerator and denominator, respec-
tively, in the approximation of m(xt ). For the integral (8),
notice that the Gaussian is even with respect to Ri and that
(r − Ri) is odd. Then, (8) is zero if the effective support of
the Gaussian is within the interval [0,R′], that is essentially
if Ri ∈ [3σ,R′ − 3σ ]. If Ri ∈ [0,3σ ] ∪ [R′ − 3σ,R′], (8) is
bounded by 4.5σ 2(m − 1)/Ri . We will use this bound for

IDi

independently of the value of Ri . Regarding the in-
tegral (7), we use the Taylor expansion of (r − Ri) log Rk

r

around Ri ,

(r − Ri) log
Rk

r
= (r − Ri) log

Rk

Ri

− (r − Ri)
2

Ri

+ · · · .

Again, we consider the worst case scenario, Ri ∈ [0,3σ ] ∪
[R′ − 3σ,R′], and we obtain


INi
≤ 4.5σ 2 m − 1

Ri

log
Rk

Ri

.

We use these bounds and error propagation theory to obtain
the relative error on Ii ,


Ii

Ii

= 
INi

INi

+ 
IDi

IDi

= 4.5σ 2 m − 1

Ri

(
1

INi

log
Rk

Ri

+ 1

IDi

)
,

and the relative error on mk(xt ),


m(xt )

m(xt )
= 
I

I
= 1

I (k − 1)

∑
i


Ii,

which is bounded by


m(xt )

m(xt )
≤ 4.5σ 2(m(xt ) − 1)

mini (RiR̃i
m(xt )−1

)

(
1 + m(xt )

m(xt , σ = 0)

)
, (13)

where m(xt , σ = 0) is (2), or equivalently, (5) with σ = 0,

and R̃i
m−1 = IDi

= ∫ R′
0 f (Ri |r)rm−1dr . This provides a

bound on the error of the approximation for the important
case of Gaussian noise. Similar computations can be per-
formed for other translation density (noise models). In the
case of σ = 0 (no noise), the approximation error 
m(xt ) is
zero, as expected. If we consider R̃i ≈ Ri , the bound (13) is
inversely proportional to the signal to noise ratio and propor-
tional to (m − 1)/Rm−2

i , which is a decreasing function of
the dimension m for Ri > 1. Note that the estimator m(xt ),
defined in (5), is invariant to distance rescalings so we can
always ensure Ri > 1.

4 Dimensionality and Density Estimation with
Simultaneous Soft Clustering

Having introduced the critical translational Poisson model,
we are now ready to introduce the mixture of these mod-
els to address the problem of stratification learning for noisy
point cloud data. We start with the basic model, and then in-
troduce a regularization term. We conclude the presentation
providing asymptotic results.

4.1 Translation Poisson Mixture Model (TPMM)

In Haro et al. (2006), we proposed to study stratifications
by extending the Levina and Bickel’s technique. Instead of
modeling each point and its local ball of radius R as a Pois-
son process and computing the maximum likelihood (ML)
for each ball separately, all the possible balls are considered
at the same time in the ML function. The probability den-
sity function for the whole point cloud becomes a mixture
of Poisson distributions with different parameters (dimen-
sion and density) in each class. This allows for the presence
of different intrinsic dimensions and densities in the dataset.
These are automatically computed while being used for soft
clustering. We extend this approach here to the more general
case when we have mixtures of translated Poisson processes
(thereby handling the noise).

Let us consider J different translated Poisson distribu-
tions in the mixture, each one with a (possibly) different di-
mension m and density parameter θ . Let us denote by ψ

the vector set of parameters, ψ = {ψj = (πj , θj ,mj ); j =
1, . . . , J }, where πj is the mixture coefficient for class j

(the proportion of distribution j in the dataset), θj is its den-
sity parameter (ρj = eθj

), and mj is its dimension. While
in the Levina-Bickel approach the density is assumed lo-
cally constant (inside a ball), here the density is assumed
constant inside a class (a single Poisson distribution defines
each class). However, if there is a class with different densi-
ties the algorithm will cluster also according to density (not
only dimension) and a single manifold will be represented
by clusters of the same dimension but different densities. An
example of that is shown in Fig. 5. If the number of classes
is not sufficient to represent the dimension and density vari-
ability, the algorithm will give one or more classes with a
dimension and/or density which are the (weighted) average
of the actual features within the class. This is the standard
result for under-clustering. On the other hand, we have ex-
perimentally observed that giving extra classes is reasonable
robust, since the extra classes end-up being empty or identi-
cal to other classes in terms of parameters values.

The observable event is, as in the Levina-Bickel ap-
proach, the number of points inside the ball B(R,xt ) of
radius R centered at point xt , denoted by yt = N(R,xt ).
The total number of observations is T ′ and Y = {yt ; t =
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1, . . . , T ′} is the observation sequence. Often, T ′ ≡ T , all
points in the dataset are considered. Let us also denote by
p(·) the probability density function and by P(·) the proba-
bility. The density function of the Poisson mixture model is
given by

p(yt |ψ) =
J∑

j=1

πjp(yt |θj ,mj ).

Since the observations follow a Poisson distribution, and we
use the translated Poisson model introduced in the previous
section, we have

p(yt |θj ,mj ) = e
∫ R

0 logμj (s) dN(s,xt )e− ∫ R
0 λj (r)dr ,

where λj (r) = eθj
V (mj )mj rmj −1 and μj (s) =∫ R′

0 f (s|r)eθj
V (mj )mj rmj −1dr . If Y contains T statisti-

cally independent variables (a standard assumption), then
the probability density function of the observation se-
quence is the product of the individual probability densities,
p(yt |ψ), and the log-likelihood is

L(Y |ψ) = logp(Y |ψ) =
T∑

t=1

logp(yt |ψ). (14)

Let us consider the hidden-state information, that is, which
mixture (or expert) generates each observation. We denote
by Z = {zt ∈ C; t = 1, . . . , T } the set of hidden variables
and by C = {C1,C2, . . . ,CJ } the set of class labels. Then,
zt = Cj means that the j -th mixture generates yt . Using Z

we can write the complete data log-likelihood as

logp(Z,Y |ψ) =
T∑

t=1

J∑
j=1

δ
j
t log

[
p(yt |ψj )πj

]
, (15)

where a set of indicator variables δ
j
t , called membership

functions, is used in order to indicate the status of the hidden
variables:

δ
j
t ≡ δ(zt ,C

j ) =
{

1 if zt = Cj ,

0 otherwise.

The unknown parameters in (15) are: The membership func-
tion of an expert (class), δ

j
t , the mixture probabilities, πj ,

and the parameters of each expert, mj and θj . Usually, prob-
lems involving a mixture of experts are solved by the Expec-
tation Maximization (EM) algorithm (Dempster et al. 1977;
Kung et al. 2004, Chap. 3). The EM is based on the follow-
ing decomposition of the log-likelihood (14):

L(Y |ψ,H) =
T∑

t=1

J∑
j=1

hj (yt ) log
[
p(yt |ψj )πj

]

−
T∑

t=1

J∑
j=1

hj (yt ) log
[
hj (yt )

]
, (16)

where H = {hj (yt ) ≤ 1; t = 1, . . . , T , j = 1, . . . , J } and
hj (yt ) is the probability that observation t belongs to mix-
ture j : hj (yt ) = EZ[δj

t |yt ,ψ] = P(δ
j
t = 1|yt ,ψ), where

EZ(·) is the expectation with respect to Z. Since the mem-
bership functions are indicator variables, the first term in
(16) is the expectation of (15) with respect to Z. Also no-
tice that the second term is the entropy of the membership
functions.

An interesting interpretation of the EM algorithm is in-
troduced in Hathaway (1986), where the EM is seen as an
alternate optimization algorithm of the log-likelihood (16).
Then, the E-step is nothing else than the maximization of
L(Y |ψ,H) with respect to H with the additional constraint
that

∑J
j=1 hj (yt ) = 1 for each observation t = 1, . . . , T .

Thus, the variables hj (yt ) at step n + 1 of the optimization
algorithm are

h
j

n+1(yt ) = p(yt |mj
n, θ

j
n )π

j
n∑J

l=1 p(yt |ml
n, θ

l
n)π

l
n

. (17)

In the same way, variables ψ are obtained by maximizing
L(Y |ψ,H) with respect to ψ with an additional constraint
for the mixture probabilities:

∑J
j=1 πj = 1. This gives (21)–

(23) for the variables at step n+1. In order to compute m
j

n+1
we have used the same approach as in Levina and Bickel
(2005), by means of a k nearest neighbor graph. The TPMM
approach just described is summarized in R-TPMM Algo-
rithm below, for the particular case of α = 0 (no regulariza-
tion, see below).

4.2 Regularized TPMM

The TPMM algorithm seeks a soft clustering according to
dimensionality and density, considering noise in the data,
but does not (explicitly) take into account spatial informa-
tion. Adding regularization is the goal of this section. Regu-
larization further helps to improve the classification in noisy
data and points lying close to manifold boundaries (see re-
sults in Figs. 1 and 2). This regularization is inspired in part
by the work in Ambroise and Govaert (1996) for the neigh-
borhood EM (NEM), where the authors extend the EM algo-
rithm adding spatial constraints. This neighborhood spatial
information is introduced as a penalization term in the log-
likelihood, following Hathaway’s EM interpretation (Hath-
away 1986). In our context, we complete (16) with a spatial
term S(H),

F(ψ,H) = L(Y |ψ,H) + αS(H), (18)
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Fig. 1 Clustering of a spiral and a plane. Results with different algo-
rithms (this is a color figure)

Fig. 2 Clustering of a spiral and a plane with noise. Results with dif-
ferent algorithms (this is a color figure)

where α is a parameter that controls the trade-off between
the spatial term and the likelihood. Its value is also related to
the amount of noise in the data.2 Then, F is maximized with
an alternate optimization technique. Since the new term, S,
only depends on H , the optimization procedure results in an
EM-type algorithm with a modified membership probability
that not only depends on the likelihood but also on the spatial
criteria. The NEM algorithm uses (note the similitude with
MRFs, see below)

SNEM(H) =
T∑

t=1

J∑
j=1

hj (yt )
∑
l∼t

hj (yl),

where l ∼ t indicates that there is a neighborhood relation-
ship between observations l and t . By maximizing this term,

2The study of the possible connection between the regularization factor
α and the level of noise and the translation density in the translated
Poisson model is an interesting subject of future research. Note that
this regularization is important beyond the noise, e.g., at the manifolds
boundaries, see experimental results.

we want, for each observation t , as many neighbors as pos-
sible with high probability of belonging to the same class as
observation t , thus regularizing the classification. However,
we will use a more general expression for S(H) based on
a dissimilarity measure, D, between every observation and
other observations in the sequence,

S(H) = −
T∑

t=1

J∑
j=1

hj (yt )D(t, j,X,H). (19)

The expression (19) provides a generic framework for intro-
ducing constraints in the soft classification, besides the ones
already present in the TPMM model, namely dimensionality
and density. One possibility, as in the NEM algorithm, is to
introduce spatial regularity. Then, as dissimilarity measure
we use D = DR defined as

DR :=
∑
l∼t

(1 − hj (yl)).

Different neighborhoods definitions in DR result in differ-
ent kinds of regularization. A natural choice is the man-
ifold neighborhood, for that, we can define as neighbors
the k nearest neighbors. However, for specific applications
one might be interested in other neighborhoods, e.g., pixel
neighborhoods or contiguous frames in video applications
(see experiment in Fig. 10 and Table 5).

As noted in Ambroise and Govaert (1996), the EM algo-
rithm with additional constraints can be seen as finding the
Gibbs distribution with energy −F(ψ,H). In the particular
case when the additional constraint is neighborhood depen-
dent, SNEM(H) and S(H) with DR , the Gibbs distribution
defines a Markov Random Field.

The maximization of F (18), is obtained as in (Ambroise
and Govaert 1996), with an alternate optimization technique
which results in an EM-type algorithm. Maximizing (18)
with respect to H , with S(H) defined in (19)—with the con-
straints

∑J
j=1 hj (yt ) = 1 for each observation t = 1, . . . , T ,

by means of Lagrange multipliers—results in the following
expression for the membership probabilities:

hj (yt ) = p(yt |mj , θj )π
j
n e−αD′(t,j,X,H)

∑J
l=1 p(yt |ml, θ l)πle−αD′(t,l,X,H)

, (20)

where D′(t, l,X,H) = ∑
l∼t (1 − 2hj (yl)) in the particular

case we are interested, D = DR , and assuming that l ∼ t im-
plies t ∼ l. Since the only term in (18) which depends on ψ

is L(Y |ψ,H), the optimal values of ψj = {(πj , θj ,mj ) for
j = {1, . . . , J }} do not change with respect to the original
TPMM algorithm. The regularized version of the TPMM
algorithm is summarized in the R-TPMM Algorithm be-
low (Regularized Translated Poisson Mixture Model Algo-
rithm).
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The EM suffers from local maxima, this can be alleviated
running the algorithm several times with different initializa-
tions. In particular, we add to the EM iterations an extra loop
where the parameters mj and θj of each class are reinitial-
ized every odd iteration and πj every even iteration.

R-TPMM Algorithm

REQUIRE: The point cloud data, J (number of desired
classes), k (scale of observation), α (regularization parame-
ter), and σ (noise level or full noise/translation function f ).

ENSURE: Regularized soft clustering according to dimen-
sionality and density.

1. Compute the local estimators

m(xt ) =
⎡
⎣ 1

k − 1

k−1∑
j=1

∫ R′
0 f (Ri(xt )|r) log Rk(xt )

r
dr∫ R′

0 f (Ri(xt )|r)dr

⎤
⎦

−1

θ(xt ) = log
(
(k − 1)/

(
V (m(xt ))Rk(xt )

m(xt )
))

.

In particular, we use the definition of f given in (11).
2. Initialize ψ0 = {πj

0 ,m
j

0, θ
j

0 } and ψ̄0 = {π̄ j

0 , m̄
j

0, θ̄
j

0 } to

any set of values which ensures that
∑

j π
j

0 =∑
j π̄

j

0 = 1 and H̄0 = {h̄j

0(yt ) = 1/J ; j = 1, . . . , J ,
t = 1, . . . , T }.

3. Iterations on l,
3A. If l is odd

Set m̄
j
l = m

j

0 and θ̄
j
l = θ

j

0 , for all j = 1, . . . , J .
Else

Set π̄
j
l = 1/J , for all j = 1, . . . , J .

3B. Iterations on n,
For all j = 1, . . . , J :
3B.1: Compute, for all t = 1, . . . , T ,

h
j

n+1(yt )

= p(yt |mj
n, θ

j
n )π

j
n e−αD′(t,j,X,Hn)

∑J
l=1 p(yt |ml

n, θ
l
n)π

l
ne

−αD′(t,l,X,Hn)
,

where Hn = {hj
n(yt ); j = 1, . . . , J , t =

1, . . . , T }.
3B.2: Compute

π
j

n+1 = 1

T

T∑
t=1

h
j
n(yt ) (21)

m
j

n+1 =
[

T∑
t=1

h
j
n(yt )m(xt )

−1/

T∑
t=1

h
j
n(yt )

]−1

(22)

ρ
j

n+1 = eθ
j
n+1

=
[

T∑
t=1

h
j
n(yt )f (xt )

−1/

T∑
t=1

h
j
n(yt )

]−1

(23)

where ρ(xt ) = eθ(xt ).
Until convergence of ψn, that is, when ‖ψn+1 −
ψn‖2 < ε, for a certain small value ε.

Set ψ̄l+1 = ψn and H̄l+1 = Hn.
Until ‖ψ̄l+1 − ψ̄l‖2 < ε, ‖H̄l+1 − H̄l‖2 < ε or l = lmax.3

Remark 1 The PMM and R-PMM algorithms introduced re-
spectively in Haro et al. (2006, 2007) are particular cases of
the parameters α (regularization) and σ (noise) in the R-
TPMM algorithm. Let us introduce the following notation
for the particular cases of these parameters:

• PMM: α = 0 and σ = 0.
• R-PMM: α > 0 and σ = 0.
• TPMM: α = 0 and σ > 0.
• R-TPMM: α > 0 and σ > 0.

We will use the above notation in the experiments in Sect. 5.

Remark 2 Notice that the estimators (22)–(23) in the PMM
and R-PMM approaches (σ = 0) are weighted harmonic
means of the local estimators (2)–(3) of Levina-Bickel. The
weight at each point is the probability of the membership
function, h. In the particular case of a unique class, J = 1,
we obtain the global dimension estimator proposed by
MacKay and Ghahramani (http://www.inference.phy.cam.
ac.uk/mackay/dimension/), a particular case of our proposed
framework.

Remark 3 We are using the same level of noise σ for all
the clusters. A better approach might be to use a σ suitable
for each class. Although computationally speaking it will
be more demanding, since we would have to recompute the
local estimators m(xt ) and θ(xt ) at each iteration with the σ

of the assigned class. Moreover, the different σ would have
to be estimated (this can be done for example as the value of
σ which minimizes the estimated dimension in each class).

As proved in Ambroise and Govaert (1998), if α is small
enough, (18) has a guaranteed global maximum for a fixed
value of ψ , and the additional term S(H) does not affect
the convergence of the EM-type algorithm. It can be shown
(see Appendix B) that, for the case of DR , the corresponding
bound on α is αR < 1/(2k).

3In the experiments we use lmax = 10.

http://www.inference.phy.cam.ac.uk/mackay/dimension/
http://www.inference.phy.cam.ac.uk/mackay/dimension/
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Using the same analysis as in Sect. 3.1 we find that the
relative error produced in (22) by using the approximation
(10) for m(xt ) is


mj

mj
≤ 4.5σ 2(mj − 1)

mini,t (Ri(yt )R̃i(yt )m
j −1)

(
1 + mj

mj (σ = 0)

)
,

where mj(σ = 0) is (22) with σ = 0, and R̃i(yt )
mj −1 =

IDi
(yt ).

4.3 Asymptotic Analysis

Levina and Bickel (2005) show that under the assumptions
T → ∞, k → ∞, and k/T → 0, that is when the Poisson
approximation is correct, the mean and variance of the di-
mension estimator (2) (with k − 2 instead of k − 1 in the
denominator) are

E[m(xt )] = mT , Var[m(xt )] = m2
T

k − 3
,

where mT is the actual dimension. We can apply the same
type of analysis to our model in the particular case of hard
clustering, that is

hj (yt ) =
{

1 if j = argmaxih
i(yt ),

0 otherwise.

We assume, in addition, that all the points that belong to
class j are well classified. Then, we obtain the following
results

E[mj ] = mj
T + mj

T

(k − 1)Nj − 1
,

Var[mj ] = (mj
T )2O

(
1

(k − 1)Nj − 4

)
,

where mj
T is the correct intrinsic dimension of class j and

Nj is the amount of points classified as class j . See Appen-
dix C for the details of the proof. This result shows that the
dimension estimator of each class is more biased when the
intrinsic dimension increases. On the other hand, when there
are more points in a class (Nj is larger), the bias is reduced.
It is reduced also by considering more nearest neighbors,
although there is a compromise for this value since increas-
ing k affects the underlying hypothesis of constant density
inside the ball. We have verified this result experimentally,
and we found that the bias results in a underestimation of
the intrinsic dimension (this behavior was also observed in
the Levina-Bickel estimator (Levina and Bickel 2005)), and
that it depends on the intrinsic dimension but not on the am-
bient dimension. We have also experimentally observed that
a possible bias in the estimated dimension does not affect the
clustering, unless the bias makes the estimated dimension of

one class to be close to any of the other clusters estimated
dimensions.

The analysis of the density estimator θj is the subject of
current research, as it is the study of the asymptotic behavior
for the full soft clustering model.

5 Experimental Results

We now present experimental results with synthetic and real
data for the proposed R-TPMM and its variants. We also
compare some of the results with the ones obtained with
GPCA (Vidal et al. 2003) and the Souvenir and Pless (2005)
algorithms. We fixed α and σ experimentally. For α we
usually use values in the interval [0,5]. As for the case
of σ we use a value in the order of the mean distance to
the first neighbor: σ = νR̄1, where R̄1 = 1

N

∑
t R1(xt ) and

0 ≤ ν ≤ 1. In the experiments with real data—digits, faces,
video activities, and motion—we use the following values
for ν: 0.4, 0.4, 0.25, and 1 respectively. In the first (arti-
ficial data) experiment, since we know the level of noise
in the point coordinates, we use the estimated σ as com-
puted in Appendix A. The only parameter in GPCA is the
number of clusters. In the Souvenir-Pless algorithm the in-
put parameters are the number of nearest neighbors and the
dimension of each cluster. We also fixed these parameters
experimentally in order to obtain the best classification re-
sults.

5.1 Synthetic Data

First, we work with a point cloud formed by 300 samples of
a spiral and 800 of a plane, both in 3D embedding space. We
compare the following algorithms: PMM, R-PMM, TPMM,
R-TPMM, GPCA, and Souvenir-Pless. Figure 1 shows, for
each algorithm, the point cloud with each point colored and
marked differently according to its classification. In the dif-
ferent versions of our proposed algorithm we set k = 30,
J = 2, α = 0.75, and σ = 0.1. We test TPMM and R-TPMM
with a small value of σ different than zero even if there is
no noise just to show that a small error in the estimation
of σ does not significantly affect the result. Notice that the
regularized versions of our proposed algorithm improve the
classification at the boundaries. In the Souvenir-Pless algo-
rithm we use k = 10 and dimensions 2 and 2 (it gives a
better result than using the actual dimensions, 2 and 1, as
parameters). The GPCA algorithm does not give good re-
sults because it is designed for linear manifolds. Table 1
contains quantitative results of the different versions of our
algorithm. Our approach gives some errors at the intersec-
tion of the two manifolds. This is due to the fact that a point
in the intersection has points of the other manifold as some
of its nearest neighbors. Thus, the extent of the classification
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Table 1 Estimated parameters, dimension m and density ρ = eθ , in
each class (C1 and C2), and clustering results of a plane and a spiral
(denoted by Pl. and Sp. respectively). The four algorithms use k = 30
and J = 2

PMM R-PMM TPMM R-TPMM

C1 C2 C1 C2 C1 C2 C1 C2

Estimated parameters for each class

m 1.90 1.02 1.90 0.99 1.87 1.03 1.87 1.00

θ 1.01 1.10 0.99 1.14 1.05 1.09 1.02 1.12

Number of points in each class

Pl. 787 13 800 0 788 12 800 0

Sp. 21 279 22 278 21 279 23 277

Table 2 Estimated parameters, dimension m and density ρ = eθ , in
each class (C1 and C2), and clustering results of a plane and a spiral
with noise (denoted by Pl. and Sp. respectively). The four algorithms
use k = 40 and J = 2

PMM R-PMM TPMM R-TPMM

C1 C2 C1 C2 C1 C2 C1 C2

Estimated parameters for each class

m 2.47 1.51 2.48 1.43 1.86 1.35 1.87 1.32

θ 0.13 0.03 0.15 0.03 0.87 0.34 0.83 0.40

Number of points in each class

Pl. 764 36 800 0 784 16 800 0

Sp. 22 278 25 275 27 273 29 271

errors in the intersection depends on the amount of k nearest
neighbors considered. Note that the GPCA handles intersec-
tions well when working with linear manifolds (Huang et al.
2004). Addressing this problem is part of the ongoing ef-
forts in the extensions of the proposed stratification learning
framework.

Next, we added Gaussian noise, with standard deviation
0.66, to the point coordinates. Then, if we approximate the
transition density with a Gaussian (see Appendix A), we use
the estimated standard deviation σ = 0.66

√
2 = 0.93. The

rest of the parameters we use are k = 40, J = 2, α = 1,
and for Souvenir-Pless, k = 20 and dimensions 2 and 2.
The qualitative comparison of the different algorithms can
be seen in Fig. 2. Again, notice how the classification of the
points at the manifold boundaries is better in the regularized
versions. Table 2 contains the quantitative results for the dif-
ferent variants of the proposed algorithm. In particular, it can
be seen that the translated versions give an estimation for the
dimension m less sensible to noise.

Due to the statistical nature of the R-TPMM approach,
it is not restricted to linear manifolds, such as GPCA (Vi-
dal et al. 2004), nor to Euclidean manifolds, such as Isomap

Fig. 3 Clustering of a sphere and a curve with R-TPMM (k = 20,
J = 2, α = 0.1, and σ = 0), GPCA and Souvenir-Pless (k = 20, di-
mensions 2 and 1). R-TPMM works well in non-Euclidean manifolds.
The estimated dimensions for each cluster in (a) are 0.98 and 2.05 for
clusters in green and red respectively (this is a color figure)

Fig. 4 R-TPMM clustering of a spiral and a plane with different
amount of added outliers, k = 30, α = 0.1, and σ = 0.1. Example (a)
is when considering two classes and the rest with three classes (this is
a color figure)

(Tenenbaum et al. 2000), on which the Souvenir-Pless tech-
nique (Souvenir and Pless 2005) is based on. This is man-
ifested in Fig. 3, where we cluster a sphere and a curved
line and compare the results of the R-TPMM, GPCA and
Souvenir-Pless. The R-TPMM gives a 100% accurate clus-
tering and the estimated dimensions are 0.98 for the line and
2.05 for the sphere.

Robustness to outliers has been studied for clustering lin-
ear manifolds. In Yang et al. (2006) a robust GPCA algo-
rithm is proposed. A segmentation of linear subspaces based
on information theory is proposed in Ma et al. (2007), and
it has been shown to be robust to outliers. In order to see
how the R-TPMM performs in the presence of outliers, we
have added outliers to a set of points sampling a spiral and
a plane. The original point coordinates are within the in-
tervals [−11,21], [5,25], and [−11,14]. The outliers fol-
low a uniform distribution within the intervals [−30,30],
[−15,35], and [−30,30]. We use α = 0.1 and σ = 0.1. Fig-
ure 4 shows the classification results for different amounts
of outliers and number of classes: (a) J = 2, 2.5% outliers;
(b) J = 3, 2.5% outliers; (c) J = 3, 50% outliers; (d) J = 3,
50% outliers; (e) J = 3, 75% outliers; (f) J = 3, 100% out-
liers. In the experiment (a) we set two classes and we ob-
tain a class formed by the spiral and the outliers with an
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Fig. 5 Clustering of a Swiss
roll and a line with two different
densities with R-TPMM,
k = 20, J = 3, α = 2, and
σ = 0, no noise (this is a color
figure)

estimated dimension of 1.10, the second class is the plane
with an estimated dimension of 1.87. Note that the estima-
tion of the embedding dimensions are not affected by the
outliers when its percentage is relatively low and we do not
allow an extra class for the outliers. If we set three classes,
experiments (b)–(f), the outliers are clustered as a separate
class, and the only errors are at the intersections (due to
points whose nearest neighbors actually belong to differ-
ent classes). The dimensions obtained in each experiment
are the following: (b) 1.06, 1.87, and 10.46; (c) 1.17, 1.88,
and 3.32; (d) 1.23, 1.87, and 2.92; (e) 1.29, 1.83, and 2.97;
(f) 1.28, 1.81, and 2.92. Independently of the amount of out-
liers, the algorithm is able to cluster apart the spiral and the
plane, and the correct estimation of their embedding dimen-
sions is not affected by the outliers. When the amount of
outliers is small, 2.5% in (c), the estimated dimension for
the class ‘outliers’ is very large due to the small amount of
points belonging to this class, and we do not have enough
samples of the class ‘outlier’ in each ball (there are mixed
samples from the spiral and/or the plane). In these balls, the
assumption of approximate constant density is not satisfied
either. When the amount of outliers is larger, their estimated
dimension is the same as the ambient dimension, since there
is no intrinsic structure for these points.

The experiment in Fig. 5 illustrates how the soft cluster-
ing is done according to both dimensionality and density.
The data consists of 2000 points on the Swiss roll, 400 on
a line with high density and 50 on another less dense line.
We have set J = 3 and the algorithm clusters the line in two
different classes, according to the different densities. The
estimated dimensions are: 1.98, 1.02 and 0.99. And the esti-
mated densities: 0.49, 0.53 and 6.89 respectively.

Before presenting results on real data, we show how the
regularization parameter α affects the classification. Fig-
ure 6 shows the evolution, according to α, of the classifi-
cation of the spiral and the plane by the R-PMM with DR .
We have perturbed 50 randomly picked samples of the spi-
ral by a Gaussian noise of standard deviation σ = 0.66. It
can be observed that a small amount of regularization helps
in the classification, while when α increases, it produces a
larger diffusion of the labelling, resulting in an inaccurate
classification. This is due to the fact that the regularization
component gains more importance than the log-likelihood
term. In the limit, when α is quite large, the optimal solu-
tion is a single class. Of course, the “optimal” value of α,
which marks these transitions, depends on each particular
experiment (this is common in MRF-type approaches, and

Fig. 6 Clustering of a 1D spiral and a 2D plane (R-PMM, k = 30,
J = 2). Evolution of the classification as the regularization parameter
α increases

the study of techniques from there to automatically compute
this regularization parameter is an interesting open prob-
lem). For the experiments in this paper, we have worked
with values of α within the interval [0,5]. In Haro et al.
(2007) we also tested the evolution of the classification with
respect to α with another term DC in the additional con-
straint S(H), imposing spatial compactness within a class.
Again, the dimension/density criterion for classification was
more penalized against the extra term S(H) for larger values
of α and thus yielding rather a k-means kind of clustering
(note that within the context of GPCA, Lu and Vidal (2006)
also proposed a combination of k-means and dimensionality
clustering).

5.2 Real Data

As a test of the performance with real data, we first work
with the MNIST database of handwritten digits,4 which has
a test set of 10,000 examples. Each digit is an image of
28 × 28 pixels and we treat the data as 784-dimensional
vectors. We analyze the mixture of digits one and two, some
examples of those scanned digits as well as the clustering re-
sults are presented in Fig. 7. Observe how the classification
improves adding regularization and including the noise in
the model (translated Poisson). We have used R-PMM with
α = 4, TPMM with σ = 1.5, and R-TPMM with α = 1 and
σ = 1.5. Levina-Bickel’s technique gives a dimension value
of 11.26 and Costa-Hero’s 9. These methods give a dimen-
sion in between the two different dimensions present in the
point cloud. With the R-TPMM algorithm (and its variants),
we are able to separate the points (images) corresponding to
each digit and handle the noise and regularization. Both sets
of digits have different dimensionality and density. We have

4http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


Int J Comput Vis (2008) 80: 358–374 369

PMM R-PMM TPMM R-TPMM

C1 C2 C1 C2 C1 C2 C1 C2

Estimated parameters for each class

m 7.33 12.79 7.36 12.95 2.86 7.14 2.88 7.24
θ −7.38 −23.99 −7.67 −23.26 −1.52 −12.70 −1.62 −12.90

Number of points in each class

‘1’ 1032 0 1032 0 1032 0 1029 3
‘2’ 70 1065 43 1092 36 1099 17 1118

Fig. 7 Clustering of scanned digits ‘1’ and ‘2.’ Some examples of
digits and table with estimated parameters, dimension m and density
ρ = eθ , for each class (C1 and C2), and clustering results for different

variants of the R-TPMM algorithms with J = 2, k = 30 (since the
density is ρ = eθ , ρ ≥ 0 for θ ∈ R)

observed that some other digits do have the same dimension-
ality, as expected. Observe in the Table of Fig. 7 how the
dimension is reduced with the (R-)TPMM, these values are
much closer (than the ones with (R-)PMM) to the dimension
obtained with Isomap, see graph in Fig. 8, separately applied
to each one of the digits. The fact that the dimension is re-
duced when considering the translated process indicates that
the high dimensions were originally due to the noise (this
can be also inferred by observing the Isomap eigenvalues in
Fig. 8).

We also analyze images from the Yale Face Database B,5

which contains images of 10 subjects under 585 viewing
conditions (9 poses and 65 illumination conditions), see
Fig. 9. Each image has a size of 640 × 480 pixels. For com-
putational reasons we subsampled the images by a factor
of ten and use each 64 × 48 image as a vector in a high
dimensional space. We analyze the point cloud formed by
the 585 images of subject 5 (varying pose and illumination)
together with the 65 images of subject 6 only in the first
pose and under varying illuminations. The estimated dimen-
sions and confusion matrices using the PMM and R-TPMM
algorithms with α = 0.25 and σ = 1 are presented in Ta-
ble 3. Note how both subjects are well separated, and the
set of images of subject 5 has a dimension one unity larger
than the dimension for subject 6, since we do not consider
the pose variation for this subject. The classification results
are improved using regularization and the translated Poisson
model. Observe also that changing the number of k nearest
neighbors does not significantly change the results. Table 4
contains the confusion matrix obtained with the GPCA and
the Souvenir-Pless algorithms. These algorithms are com-
puted with a pre-projection of the data onto a 5-dimensional
space.6 This is necessary in the GPCA because, although
not being an iterative algorithm, it consumes a lot of time in

5http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
6We compute the SVD of the matrix data I = U�V T and consider the
matrix formed by the first 5 columns of V T as the embedded data. In
GPCA we further use homogeneous coordinates (Vidal et al. 2004).

(a) Digit ‘1’

(b) Digit ‘2’

Fig. 8 Isomap dimensionality of Digits one and two. The graph shows
the residual variance of the first ten Isomap embedding dimensions

high dimensional spaces. For the Souvenir-Pless algorithm
this point is not so critical but we obtained better classifica-
tion results in the reduced dimensionality space. However,

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Fig. 9 Examples of images of subjects 5 and 6 of the Yale Face Data-
base B. See results in Table 3

Table 3 Dimension m for each class (C1 and C2) and clustering results
of the mixture of subject 5 (all poses, all illuminations) and subject 6
(one pose, all illuminations) in the Yale Face Database B. PMM and
R-TPMM (α = 0.25, σ = 1) algorithms with two different values of k.
The algorithms are applied in the 64 × 48 dimensional space

PMM R-TPMM

k = 35 k = 50 k = 35 k = 50

C1 C2 C1 C2 C1 C2 C1 C2

Estimated dimension for each class

m 4.10 2.94 4.37 2.79 3.34 2.59 3.60 2.55

Number of points in each class

S. 5 569 16 575 10 584 1 584 1

S. 6 0 65 0 65 0 65 0 65

Table 4 Clustering results of the mixture of subject 5 (all poses, all
illuminations) and subject 6 (one pose, all illuminations) in the Yale
Face Database B. We apply GPCA and Souvenir-Pless algorithms to
the data pre-projected onto a 5 dimensional space

GPCA Souvenir-Pless

C1 C2 C1 C2

Number of points in each class

Subject 5 325 260 476 109

Subject 6 0 65 20 45

with the proposed R-TPMM, we obtain better results in the
original space.

It must be clarified that the R-TPMM is able to sepa-
rate both subjects because their corresponding images lie
in manifolds of different dimensions. However, if we con-
sider, for example, a fixed pose under varying illuminations,
in both subjects, all the points are classified in the same class
since both manifolds have the same dimension (complexity).
In this particular case, we tested the GPCA algorithm and it
gives a 100% accurate classification.

The R-TPMM framework is also tested to study different
human activities in video. We created a point cloud with the
frames of a video of a person performing four different ac-
tivities, with a static background: Standing, walking, jump-

Fig. 10 Four sample frames of human activities in video

Table 5 Classifying human activities in video with the R-TPMM al-
gorithm (k = 10, α = 40, and σ = 0.25). We use the 6 previous and 6
posterior frames as neighbors in DR , which results in a temporal regu-
larization. The global classification is 96% accurate

Number of samples in each cluster

C1 C2 C3 C4

Standing 505 0 6 0

Walking 0 464 45 14

Waving 1 0 430 0

Jumping 0 0 0 207

ing, and arms waving. Each original frame is 480 × 640,
sub-sampled to 48 × 64 pixels, with 1673 frames (see some
frame examples in Fig. 10). This is mainly to speed up
computations. In video applications, one may be interested
in temporal regularization. For that, we consider a tempo-
ral neighborhood in DR , more concretely we take into ac-
count the 6 previous and 6 posterior frames in the regular-
ization term. The confusion matrix with the classification
results using the R-TPMM algorithm (with k = 10, α = 5
and σ = 0.25) is presented in Table 5. The error in the clas-
sification affects only 4% of the frames.

Finally, we tested the R-TPMM algorithm in a mo-
tion segmentation application. We use a sequence of the
Kanatani Lab,7 see some examples of frames in Fig. 11. This
sequence was originally used in Kanatani and Sugaya (2003)
and then in Vidal et al. (2004). The data consists of the 2D
projection coordinates of the trajectories along the sequence
of some interest points. The sequence that we analyze cor-
responds to a car moving in a parking lot, and there are two
different motions in the sequence. As in Vidal et al. (2004),
we pre-project the data, originally in a 60-dimensional space

7http://www.suri.it.okayama-u.ac.jp/data.html

http://www.suri.it.okayama-u.ac.jp/data.html
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Fig. 11 Two frames of a sequence of the motion segmentation data-
base of the Kanatani Laboratory

Table 6 Classification rates, using different methods, for the mo-
tion segmentation in the Kanatani Laboratory sequence (see example
frames in Fig. 11)

Method Effectiveness

Costeira-Kanade 60.3%

Ichimura 92.6%

Kanatani-Sugaya 100%

Souvenir-Pless 93.38%

GPCA 100%

RTPMM 100%

(2 coordinates × 30 frames), onto a 5-dimensional space. In
Table 6 we show the classification effectiveness for differ-
ent methods: Costeira-Kanade, Ichimura, Kanatani-Sugaya
(the three of them reported in Kanatani and Sugaya 2003),
Souvenir-Pless, GPCA and R-TPMM. For the R-TPMM we
use k = 10, α = 2 and σ = 0.05. We also tested our algo-
rithm with the other two sequences used in Kanatani and
Sugaya (2003), Vidal et al. (2004), and obtained a single
class since the two different motions have the same dimen-
sion (complexity). Thus, it is necessary to introduce an ad-
ditional constraint in the R-TPMM approach in order to deal
with these cases.

Regarding the computational time of our proposed frame-
work, the most expensive part is the kNN-graph. In the digits
experiment (Fig. 7), 2167 points of dimension 784, the exe-
cution takes 18.37 s while 10.29 s of the total time is spent
in the computation of the kNN-graph. For the experiment
with the Yale faces (Fig. 9, 650 points of dimension 3072)
the execution time is 7.64 s (3.70 s for the kNN-graph).
In the video experiment (Fig. 10, 1673 points of dimen-
sion 3072), the total time and the kNN-graph time are, re-
spectively, 29.78 s and 24.87 s (CPU: Pentium Core 2 Duo,
2.0 GHz, 2.0 GB memory).

6 Conclusions

In this paper we developed a framework for the simultane-
ous and regularized/constrained estimation of the intrinsic
dimensionality and density of high dimensional noisy point

cloud data sampled from a stratification, as the basis for
complexity/density based soft-clustering. The algorithm is
based on a statistical model which addresses the presence
of noise in the measurements. Our previous related works
(Haro et al. 2006, 2007) are particular cases of the R-TPMM
algorithm introduced in this paper. We showed that regu-
larization constraints can be naturally introduced in this ap-
proach. The experiments showed the importance of incorpo-
rating the noise in the model and also of adding regulariza-
tion in the classification. We also showed that the algorithm
is robust to outliers. With the proper dissimilarity function
and neighborhood type, we are able to add spatial or tem-
poral regularity in the classification and intra-class spatial
compactness. Other type of constraints are possible under
the same proposed framework. Asymptotic theoretical re-
sults were also presented.

We would like to follow this direction of work and study
other constraints which can be useful for stratification learn-
ing. One possibility is to define a dissimilarity function
which leads to separate different manifolds that share the
same dimensionality and density. This will define a new con-
straint that will also help in the classification process when
there is an intersection of two manifolds (and where the al-
gorithm fails at the present stage). Since the density depends
on the dimension, we are intrinsically giving more impor-
tance to the dimension criterion in our framework. The con-
trol of the relative importance of these two criteria needs
also to be addressed.

Appendix A: Estimation of the Distribution of Distance
Errors

In this section we derive the distribution of the error in the
distance between a pair of points when this distance is com-
puted from noisy points. We are interested in the particular
case when the noise follows an i.i.d. Gaussian distribution
in each of the point coordinates.

Let X = {xt ∈ R
p; t = 1, . . . , T } and X̂ = {x̂t ∈ R

p; t =
1, . . . , T } be two point clouds which are related in the fol-
lowing way: x̂t = xt + nt , for each index t , where nt ∼
N(0, σ 2), i.e., X̂ is a noisy version of X. Let Dij (resp. D̂ij )
be the Euclidean distance between points xi and xj (resp.
x̂i and x̂j ). We can write D̂ij as a function of the original
points xi and xj :

D̂ij = ‖x̂i − x̂j‖2

=
(
D2

ij + ‖ni − nj‖2
2 + 2〈(xi − xj ), (ni − nj )〉

)1/2
.

Expanding the previous expression in a Taylor series around
Dij (considering the rest of the terms sufficiently small),
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we obtain,

D̂ij ≈ Dij + 〈(xi − xj ), (ni − nj )〉
Dij

+ ‖ni − nj‖2
2

2Dij

− 1

8

(〈(xi − xj ), (ni − nj )〉)2

D3
ij

+ O(σ 3)

= Dij + Dn1 + Dn2 + Dn3 + O(σ 3).

In order to estimate the probability density function of the
three error terms Dni

, i = 1 . . .3, in D̂ij we make use of the
following properties:

1. If X ∼ N(μ,σ 2) and a, b ∈ R, then aX + b ∼ N(aμ +
b, (aσ )2).

2. If X ∼ N(μX,σ 2
X) and Y ∼ N(μY ,σ 2

Y ) are independent
variables, then:
a) X + Y ∼ N(μX + μY ,σ 2

X + σ 2
Y ),

b) X − Y ∼ N(μX − μY ,σ 2
X + σ 2

Y ).

3. If X1, . . . ,Xp are i.i.d. variables s.t. Xi ∼ N(μi, σ
2
i ),

then U = ∑p

i=1(
Xi−μi

σi
)2 follows a Chi-square distribu-

tion with p degrees of freedom, U ∼ χ2
p .

4. If X is a random variable with probability density func-
tion f (x) and Y = aX, where a ∈ R, then, the probabil-
ity density function of Y is 1

|a|f (x
a
).

5. The probability density function of the sum of two in-
dependent random variables X and Y with probability
density functions f and g is the convolution

(f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x − y)dy.

The error term Dn1 ∼ N(0,2σ 2), by using properties 1,
2(a) and 2(b) (notice that the denominator cancels out
the weights in the numerator when adding the individ-
ual (constant) variances in each coordinate). The second
term, Dn2 ∼ χ̂2

p = Dij

σ 2 χ2
p(

Dij

σ 2 x) (properties 2(b) and 3).

And for the last term, using properties 1–4, Dn3 ∼ χ̆2
1 =

32D2
ij

σ 2 χ2
1 (− 32D2

ij

σ 2 x).
Finally, using the previous results and Property 5, we can

write

D̂ij ≈ Dij + W ; where W ∼ N(0,2σ 2) ∗ χ̂2
p ∗ χ̆2

1 .

In Fig. 12 we show the distribution N(0,2σ 2) compared
with the estimated distribution W for σ = 0.5, p = 3 and
two different values for Dij : 1.0 and 3.0. As we can see in
this figure, for a fixed σ , as Dij gets larger, the distribution

W is closer to a N(0,2σ 2) distribution. Then, for values
Dij

σ

not very small, that is, for sufficient SNR, we can approxi-

Fig. 12 Gaussian distribution, N(0,2σ 2) with σ = 0.5, compared to
the estimated distribution W for two different values of Dij : 1.0 and 3.0

mate the probability density function of the error in the dis-
tance as a Gaussian.

Appendix B: Bound on α for Convergence

We now show that, for a fixed ψ , F(ψ,H) defined in (18)
has a global maximum. For that, we follow the same lines
as in Ambroise and Govaert (1998). Let us call Fψ(H) the
functional (18) when ψ is fixed. Fψ(H) has a global max-
imum if it is strictly concave, i.e., if its Hessian matrix H,
with components

Hil,j t = δ2F

δhi
l δh

j
t

=

⎧⎪⎪⎨
⎪⎪⎩

−1/h
j
t if i = j and l = t,

2α if i = j and l ∼ t,

0 otherwise,

(24)

is strictly negative. The Gerschgorin-Hadamard Theorem
tell us that the eigenvalues λ of this Hessian matrix belong
to the union of discs indexed by (j, t) and defined by

|λ − Hj t,j t | ≤
∑

(i,l)�=(j,t)

|Hj t,il |.

Substituting the last expression with values in (24) gives

∣∣∣∣λ − 1

h
j
t

∣∣∣∣ ≤
∑
l∼t

2α = 2αk,

where k is the number of neighbors in the regularization
term. Since h

j
t ∈ [0,1], H is strictly negative, i.e., every

eigenvalue λ < 0, if |λ − 1
h

j
t

| < 1, and this is true for

α < 1/(2k).
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Appendix C: Proof of the Asymptotic Analysis

When we consider the particular case of hard clustering we
have

hj (yt ) = δ
j
t =

{
1 if j = argmaxih

i(yt ),

0 otherwise.

The estimator of the dimension in class j can be expressed
as

mj =
[

1

Nj

T∑
t=1

δ
j
t

1

k − 1

k−1∑
i=1

log
Rk(yt )

R̄i(yt )

]−1

, (25)

where Nj is the number of points clustered in class j and

log R̄i(yt ) =
∫ R′

0 f (Ri(yt )|r) log rdr∫ R′
0 f (Ri(yt )|r)dr

. (26)

In the (R-)PMM approach we have R̄i = Ri . We can rewrite
(25) as

mj = Nj(k − 1)mj
T Z−1, (27)

where mj
T is the actual dimension of class j and Z is

Z =
T∑

t=1

δ
j
t Yt ; Yt = mj

T

k−1∑
i=1

log
Rk(yt )

R̄i(yt )
.

With the proper definition of the upper limit R′ in the in-
tegral in (26) and the transition density f (Ri |r) when Ri

is close to R′, we can guarantee that R̄i ≤ Rk (always true

in (R-)PMM). In this case, we use the fact that (R̄i/Rk)
mj

T

is distributed, under the Poisson assumption, as a Uni-
form(0, 1) distribution, the − log of such a distribution is
an Exponential(1), and then, the sum of (k − 1) Exponen-
tial(1) distributed variables is a Gamma(k − 1, 1). Then,
Yt ∼ Gamma(k − 1, 1) and the sum of Nj Gamma(k − 1, 1)
distributions gives Z ∼ Gamma(Nj(k − 1), 1) and Z−1 ∼
Inverse-Gamma((k − 1)Nj , 1). The expectation of Z−1 is
1/(Nj (k − 1)− 1), and substituting in (27), considering that
1 < Nj(k − 1), yields

E[mj ] = mj
T + mj

T

(k − 1)Nj − 1
.

Regarding the variance,

Var[mj ] = N2
j (k − 1)2Var[Z−1],

where

Var[Z−1] = 1

(Nj (k − 1) − 1)2(Nj (k − 1) − 2)
.

We now define

a := 2 − 5Nj(k − 1)

N2
j (k − 1)2(Nj (k − 1) − 2)

.

After simple computations and under the hypothesis that
|a| < 1, we obtain

Var[mj ] = (mj
T )2

Nj(k − 1) − 2

[
1 +

∞∑
n=1

an

]
,

and since the second term is smaller than the first one, we
can write

Var[mj ] = (mj
T )2O

(
1

Nj(k − 1) − 2

)
.
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