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Abstract The bilateral filter is a nonlinear filter that smo-
othes a signal while preserving strong edges. It has demon-
strated great effectiveness for a variety of problems in com-
puter vision and computer graphics, and fast versions have
been proposed. Unfortunately, little is known about the ac-
curacy of such accelerations. In this paper, we propose a new
signal-processing analysis of the bilateral filter which com-
plements the recent studies that analyzed it as a PDE or as
a robust statistical estimator. The key to our analysis is to
express the filter in a higher-dimensional space where the
signal intensity is added to the original domain dimensions.
Importantly, this signal-processing perspective allows us to
develop a novel bilateral filtering acceleration using down-
sampling in space and intensity. This affords a principled
expression of accuracy in terms of bandwidth and sampling.
The bilateral filter can be expressed as linear convolutions in
this augmented space followed by two simple nonlinearities.
This allows us to derive criteria for downsampling the key
operations and achieving important acceleration of the bi-
lateral filter. We show that, for the same running time, our
method is more accurate than previous acceleration tech-
niques. Typically, we are able to process a 2 megapixel im-
age using our acceleration technique in less than a second,
and have the result be visually similar to the exact compu-
tation that takes several tens of minutes. The acceleration is
most effective with large spatial kernels. Furthermore, this
approach extends naturally to color images and cross bilat-
eral filtering.
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1 Introduction

The bilateral filter is a nonlinear filter proposed by Aurich
and Weule (1995), Smith and Brady (1997), and Tomasi and
Manduchi (1998) to smooth images. It has been adopted
for several applications such as image denoising (Tomasi
and Manduchi 1998; Liu et al. 2006), relighting and tex-
ture manipulation (Oh et al. 2001), dynamic range com-
pression (Durand and Dorsey 2002), illumination correc-
tion (Elad 2005), and photograph enhancement (Eisemann
and Durand 2004; Petschnigg et al. 2004; Bae et al. 2006).
It has also be adapted to other domains such as mesh fair-
ing (Jones et al. 2003; Fleishman et al. 2003), volumetric
denoising (Wong et al. 2004), optical flow and motion esti-
mation (Xiao et al. 2006; Sand and Teller 2006), and video
processing (Bennett and McMillan 2005; Winnemöller et al.
2006). This large success stems from several origins. First,
its formulation and implementation are simple: a pixel is
simply replaced by a weighted mean of its neighbors. And
it is easy to adapt to a given context as long as a distance
can be computed between two pixel values, e.g. distance be-
tween hair orientations (Paris et al. 2004). The bilateral fil-
ter is also non-iterative, thereby achieving satisfying results
with only a single pass. This makes the filter’s parameters
relatively intuitive since their effects are not cumulated over
several iterations.

The bilateral filter has proven to be very useful, how-
ever it is slow. It is nonlinear and its evaluation is com-
putationally expensive since traditional accelerations, such
as performing convolution after an FFT, are not applicable.
Brute-force computation is on the order of tens of minutes.
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Nonetheless, solutions have been proposed to speed up the
evaluation of the bilateral filter (Durand and Dorsey 2002;
Elad 2002; Pham and van Vliet 2005; Weiss 2006). Unfor-
tunately, most of these methods rely on approximations that
are not grounded on firm theoretical foundations, and it is
difficult to evaluate the accuracy that is sacrificed.

Overview In this paper, we build on this body of work but
we interpret the bilateral filter in terms of signal process-
ing in a higher-dimensional space. This allows us to derive
an improved acceleration scheme that yields equivalent run-
ning times but dramatically improves accuracy. The key idea
of our technique is to analyze the frequency content of this
higher-dimensional space. We demonstrate that in this new
representation, the signal of interest is mostly low-frequency
and can be accurately approximated using coarse sampling,
thereby reducing the amount of data to be processed. The
quality of the results is evaluated both numerically and visu-
ally to characterize the strengths and limitations of the pro-
posed method. Our study shows that our technique is es-
pecially fast with large kernels and achieves a close match
to the exact computation. As a consequence, our approach
is well-suited for applications in the field of computational
photography, as illustrated by a few examples. Furthermore,
we believe that our new high-dimensional interpretation of
images and its low-sampling-rate encoding provide novel
and powerful means for edge-preserving image manipula-
tion in general.

This article extends our conference paper (Paris and
Durand 2006). We provide more detailed description and
discussion, including the algorithm pseudo-code. We con-
ducted new conceptual and quantitative comparisons with
existing approximations of the bilateral filter. We describe a
new and faster implementation based on direct convolution
with a small kernel rather than FFT, and demonstrate and
discuss the extension of our acceleration scheme to color-
image filtering and cross bilateral filtering. We also refer
readers to our recent work that extends the image repre-
sentation described in this article to other edge-aware ap-
plications beyond bilateral filtering such as scribble interpo-
lation, painting, and local histogram equalization (Chen et
al. 2007).

2 Related Work

The bilateral filter was first introduced by Aurich and Weule
(1995) under the name “nonlinear Gaussian filter”, then by
Smith and Brady (1997) as part of the “SUSAN” framework.
It was rediscovered later by Tomasi and Manduchi (1998)
who called it the “bilateral filter” which is now the most
commonly used name. The filter output at each pixel is a
weighted average of its neighbors. The weight assigned to

each neighbor decreases with both the distance in the image
plane (the spatial domain S ) and the distance on the inten-
sity axis (the range domain R). Using a Gaussian Gσ as a
decreasing function, and considering a gray-level image I ,
the result I b of the bilateral filter is defined by:

I b
p = 1

W b
p

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ip − Iq|)Iq (1a)

with W b
p =

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ip − Iq|). (1b)

The parameter σs defines the size of the spatial neigh-
borhood used to filter a pixel, and σr controls how much an
adjacent pixel is downweighted because of the intensity dif-
ference. W b normalizes the sum of the weights.

2.1 Choice of the Weighting Functions

The bilateral filter can be defined with various weighting
functions. The choice of the spatial function is mainly driven
by its frequency spectrum. Two options have been explored
in the literature: a box function (Yaroslavsky 1985; Weiss
2006) that leads to simple computation due to its binary na-
ture but introduces Mach bands and thus requires several
iterations of the bilateral filter (see Sect. 6.3 for details), and
a Gaussian kernel which is computationally more expensive
but does not require iterations. In practice, the latter option
is mostly used.

Durand and Dorsey (2002) showed that the choice of the
range function can be interpreted in terms of robust statis-
tics (Huber 1981; Hampel et al. 1986; Black et al. 1998).
Different functions yield to different behaviors with respect
to outliers. For instance, compactly supported functions are
insensitive to gross outliers but are not able to filter out ex-
treme defects such as salt-and-pepper noise.

In this article, we focus on the Gaussian bilateral fil-
ter which uses Gaussian kernels for both the spatial and
range weights because all the practical applications use this
version. Furthermore, we will see that these two Gaussian
kernels can be elegantly combined into a single higher-
dimensional Gaussian kernel leading to a well-defined no-
tion of bandwidth for the bilateral filter. We keep the study
of other weighting functions as future work.

2.2 Link with Other Filters

Barash (2002) showed that the two weight functions are ac-
tually equivalent to a single weight function based on a dis-
tance defined on S × R. Using this approach, he related the
bilateral filter to adaptive smoothing. Our work follows a
similar idea and also uses S × R to describe bilateral fil-
tering. Our formulation is nonetheless significantly different
because we not only use the higher-dimensional space for
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the definition of a distance, but we also use convolution in
this space. Elad (2002) demonstrated that the bilateral filter
is similar to using Jacobi iterations to minimize an energy
function defined over a large neighborhood. Buades et al.
(2005) exposed an asymptotic analysis of the Yaroslavsky
filter which is a special case of the bilateral filter with a step
function as spatial weight (Yaroslavsky 1985). They proved
that asymptotically, the Yaroslavsky filter behaves as the
Perona-Malik filter, i.e. it alternates between smoothing and
shock formation depending on the gradient intensity. Aurich
and Weule (1995) pointed out the link with robust statistics
(Huber 1981; Hampel et al. 1986; Black et al. 1998). Durand
and Dorsey (2002) also cast their study into this framework
and showed that the bilateral filter is a w-estimator (Ham-
pel et al. 1986, p. 116). This explains the role of the range
weight in terms of sensitivity to outliers. They also pointed
out that the bilateral filter can be seen as an extension of the
Perona-Malik filter using a larger neighborhood and a sin-
gle iteration. Weickert et al. (1998) and Barash et al. (2003)
described acceleration techniques for PDE filters. They split
the multi-dimensional differential operators into combina-
tions of one-dimensional operators that can be efficiently in-
tegrated. The obtained speed-up stems from the small spatial
footprint of the 1D operators, and the extension to bilateral
filtering is unclear. van de Weijer and van den Boomgaard
(2001) demonstrated that the bilateral filter is the first iter-
ation of a process that seeks the local mode of the intensity
histogram of the adjacent pixels. Mrázek et al. (2006) related
bilateral filtering to a large family of nonlinear filters. From
a single equation, they expressed filters such as anisotropic
diffusion and statistical estimators by varying the neighbor-
hood size and the involved functions.

The main difference between our study and existing work
is that the previous approaches link bilateral filtering to an-
other nonlinear filter based on PDEs or statistics whereas
we cast our study into a signal processing framework. We
demonstrate that the bilateral filter can be mainly com-
puted with linear operations, leaving the nonlinearities to be
grouped in a final step.

2.3 Variants of the Bilateral Filter

Higher-Order Filters The bilateral filter implicitly as-
sumes that the desired output should be piecewise constant:
such an image is unchanged by the filter when the step dis-
continuities between constant parts are high enough. Several
articles (Elad 2002; Choudhury and Tumblin 2003; Buades
et al. 2005) extended the bilateral filter to a piecewise-linear
assumption. They share the same idea and characterize the
local “slope” of the image intensity to better represent the
local shape of the signal. Thus, they define a modified filter
that better preserves the image characteristics. In particular,
they avoid the formation of shocks. We have not explored
this direction but it is an interesting avenue for future work.

Cross Bilateral Filter In computational photography ap-
plications, it is often useful to decouple the data I to be
smoothed from the data E defining the edges to be pre-
served. For instance, in a “flash no-flash” scenario (Eise-
mann and Durand 2004; Petschnigg et al. 2004), a picture
P nf is taken in a dark environment without flash and another
picture P f is taken with flash. Directly smoothing P nf is
hard because of the high noise level typical of low-light im-
ages. To address this problem, Eisemann and Durand (2004)
and Petschnigg et al. (2004) introduced the cross bilateral
filter (a.k.a. joint bilateral filter) as a variant of the classi-
cal bilateral filter. This filter smoothes the no-flash picture
P nf = I while relying on the flash version P f = E to locate
the edges to preserve. The definition is similar to (1) except
that E replaces I in the range weight Gσr :

I c
p = 1

W c
p

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ep − Eq|)Iq

with W c
p =

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ep − Eq|).

Aurich and Weule (1995) introduced ideas related to the
cross bilateral filter, but for a single input image when the
filter is iterated. After a number of iterations of bilateral fil-
tering, they filter the original images using range weights
derived from the last iteration.

The method described in this article also applies to cross
bilateral filtering.

Channel Smoothing Felsberg et al. (2006) described an ef-
ficient smoothing method based on a careful design of the
intensity weighting function. They showed that B-splines
enable the discretization of the intensity range into a small
set of channels. Filtering these channels yields smooth im-
ages with preserved edges akin to the output of the bilateral
filter. B-splines allowed for a precise theoretical character-
ization of their filter using robust statistics. The downside
of B-splines is the higher computational effort required to
handle them. This approach and ours are complementary
and closely related on a number of points that we discuss
in Sect. 9.2.

2.4 Fast Methods for Bilateral Filtering

The work most related to ours are the techniques that speed
up the evaluation of the bilateral filter. There are two cate-
gories of acceleration schemes: specialized filters that per-
form an exact computation but are restricted to a specific
scenario, and approximated filters that are more general but
do not produce exact results.
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Exact Computation Elad (2002) used Gauss-Seidel itera-
tions to accelerate the convergence of iterative filtering. This
technique is only useful when the filter is iterated to reach
the stable point, which is not the standard use of the bilateral
filter (one iteration or only a few). Weiss (2006) describes an
efficient algorithm to incrementally compute the intensity
histogram of the square windows surrounding each pixel.
This technique is primarily used for median filtering. As an
extension, Weiss showed that integrating these histograms
weighted by a range function Gσr (cf. (1)) is equivalent to
calculating a bilateral filter where a step function is used on
a square window instead of the isotropic Gaussian Gσs . This
filter actually corresponds to a Yaroslavsky filter computed
on square neighborhoods. The achieved computation times
are on the order of a few seconds for 8 megapixel images.
The downside is that the spatial weighting is restricted to a
step function that incurs defects such as ripples near strong
edges because its Fourier transform contains numerous ze-
ros. In addition, this technique can only handle color images
channel-per-channel, which can introduce color-bleeding ar-
tifacts. Although these two techniques are fast and produce
an exact result, they are too specialized for many applica-
tions such as image editing as shown later.

Approximate Computation At the cost of an approximate
result, several authors propose fast methods that address
more general scenarios. For instance, Weiss (2006) iterated
his filter based on square windows to obtain a smoother pro-
file, thereby removing the ripple defects. To avoid shocks
that sharpen edges and result in a cartoon look, the range
weights Gσr are kept constant through the iterations i.e. they
are always evaluated according to the original input picture.
van de Weijer and van den Boomgaard (2001) showed that
it corresponds to a search for the closest local mode in the
neighborhood histogram.

Durand and Dorsey (2002) linearized the bilateral filter
which makes possible the use of fast Fourier transforms.
They also downsample the data to accelerate the computa-
tion to a second or less for one-megapixel images. Although
their article mentions FFT computation for the linearized bi-
lateral filter, once the data is downsampled, a direct convo-
lution is more efficient because the kernel is small enough.
While their article does not emphasize it, their final results
are obtained with direct convolution, without FFT. Our tech-
nique is related to their work in that we also express the bi-
lateral filter with linear operations and draw much of our
speedup from downsampling. However, our formulation re-
lies on a more principled expression based on a new higher
dimensional interpretation of images. This affords a solid
signal processing perspective on the bilateral filter and im-
proved accuracy.

Pham and van Vliet (2005) applied a 1D bilateral filter in-
dependently on each image row and then on each column. It

produces smooth results that still preserve edges. The convo-
lutions are performed in the spatial domain (without FFT).
Compared to brute-force computation, all these approxima-
tions yield a better computational complexity and shorter
running times suitable for interactive applications, and even
real-time processing using modern graphics cards (Win-
nemöller et al. 2006). However, no theoretical study is pro-
posed, and the accuracy of these approximations is unclear.
In contrast, we base our technique on signal processing
grounds which helps us to define a new and meaningful
numerical scheme. Our algorithm performs low-pass filter-
ing in a higher-dimensional space. We show that our ap-
proach extends naturally to color images and can also be
used to speed up cross-bilateral filtering (Eisemann and Du-
rand 2004; Petschnigg et al. 2004). The cost of a higher-
dimensional convolution is offset by downsampling the data
without significant accuracy loss, thereby yielding a better
precision for running times equivalent to existing methods.

2.5 Contributions

This paper introduces the following contributions:

• An interpretation of the bilateral filter in a signal process-
ing framework. Using a higher dimensional space, we for-
mulate the bilateral filter as a convolution followed by
simple nonlinearities.

• Using this higher dimensional space, we demonstrate that
the convolution computation can be downsampled with-
out significant impact on the resulting accuracy. This ap-
proximation technique enables a speed-up of several or-
ders of magnitude while controlling the induced error.

• We evaluate the accuracy and performance of the pro-
posed acceleration over several scenarios. The obtained
results are compared to existing techniques, thereby char-
acterizing the strengths and limitations of our approach.

• We show that this method naturally handles color images
and can be easily adapted to cross bilateral filtering.

2.6 Notation

Table 1 summarizes the main notation we use throughout
this article. All the vectors in this paper are column vectors.
We sometimes use a row notation and omit the transpose
sign to prevent clutter in the equations.

3 Signal Processing Approach

We propose a new interpretation of the bilateral filter as a
higher-dimensional convolution followed by two nonlineari-
ties. For this, we propose two important re-interpretations of
the filter that respectively deal with its two nonlinear com-
ponents: the normalization division and the data-dependent



28 Int J Comput Vis (2009) 81: 24–52

Table 1 Notation used in the paper

S Spatial domain

I , W . . . 2D functions defined on S
p, C . . . Vectors

‖x‖ L2 norm of vector x

⊗ Convolution operator

Gσ 1D Gaussian: x �→ exp(− x2

2σ 2 )

ss, sr Sampling rates (space and range)

I b Result of the bilateral filter

R Range domain

i, w . . . 3D functions defined on S × R
p ∈ S Pixel position (2D vector)

Ip ∈ R Image intensity at p

δ(x) Kronecker symbol (1 if x = 0, 0 otherwise)

gσs,σr 3D Gaussian: (x, ζ ) ∈ S × R �→ exp(− x·x
2σs

2 − ζ 2

2σr
2 )

σs, σr Gaussian parameters (space and range)

W b Normalization factor

weights (1). First, we define a homogeneous intensity that
will allow us to obtain the normalization term W b

p as a ho-
mogeneous component. Second, we introduce an additional
dimension to the 2D image domain, corresponding to the
image intensity a.k.a. range. While the visualization of im-
ages as height fields in such 3D space is not new, we ac-
tually go further and interpret filtering using functions over
this full 3D domain, which allows us to express the bilateral
filter as a linear shift-invariant convolution in 3D. This con-
volution is followed by simple pixel-wise nonlinearities to
extract the relevant output and perform the normalization by
our homogeneous component.

3.1 Homogeneous Intensity

Similar to any weighted average, the two lines of (1) that
define the bilateral filter output and its normalization factor
are almost the same. The main difference is the normaliz-
ing factor W b

p and the image intensity Iq in the first equa-
tion. We emphasize this similarity by multiplying both sides
of (1a) by W b

p . We then rewrite the equations using two-
dimensional vectors:
(

W b
p I b

p

W b
p

)
=

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ip − Iq|)

(
Iq

1

)
, (2)

where Gσs and Gσr are Gaussian functions, S is the spatial
domain, I the input image, and I b the result of the bilat-
eral filter. To maintain the property that the bilateral filter is
a weighted mean, we assign a weight W = 1 to the input
values:
(

W b
p I b

p

W b
p

)
=

∑

q∈S
Gσs(‖p−q‖)Gσr(|Ip −Iq|)

(
WqIq

Wq

)
. (3)

By assigning a couple (WqIq,Wq) to each pixel q, we
express the filtered pixels as linear combinations of their
adjacent pixels. Of course, we have not “removed” the di-
vision since to access the actual value of the intensity, the
first coordinate (WI ) still has to be divided by the second
one (W ). This is similar to homogeneous coordinates used
in projective geometry. Adding an extra coordinate to our
data makes most of the computation pipeline computable
with linear operations; a division is made only at the final
stage. Inspired by this parallel, we call the two-dimensional
vector (WI,W) the homogeneous intensity. It is also related
to the use of pre-multiplied alpha in image algebra (Porter
and Duff 1984; Blinn 1996; Willis 2006). We discuss this
aspect in Sect. 7.1.1.

An important aspect of this homogeneous formulation is
its exact equivalence with the original formulation (1). Us-
ing a homogeneous representation enables a simpler formu-
lation of the filter. However, although (3) is a linear com-
bination, this does not define a linear filter yet since the
weights depend on the actual values of the pixels. The next
section addresses this issue.

3.2 The Bilateral Filter as a Convolution

If we ignore the term Gσr(|Ip − Iq|), (3) is a classical
convolution by a Gaussian kernel: (W b I b,W b) = Gσs ⊗
(WI,W). Furthermore, it has been pointed out that the prod-
uct of the spatial and range Gaussian defines a higher dimen-
sional Gaussian in the 3D product space of the domain and
range of the image. However, this 3D Gaussian interpreta-
tion has so far only been used to illustrate the weights of the
filter, not to linearize computation. Since these weights are
in 3D but the summation in (1) is only over the 2D spatial
domain, it does not define a convolution. To overcome this,
we push the 3D interpretation further and define an inten-
sity value for each point of the product space so that we can
define a summation over this full 3D space.

Formally, we introduce an additional dimension ζ and
define the intensity I for each point (x, y, ζ ). With the Kro-
necker symbol δ(ζ ) (δ(0) = 1, δ(ζ ) = 0 otherwise) and R
the interval on which the intensity is defined, we rewrite
(3) using δ(ζ − Iq) such that the terms are cancelled when
ζ �= Iq:

(
W b

p I b
p

W b
p

)
=

∑

q∈S

∑

ζ∈R
Gσs(‖p − q‖)

× Gσr(|Ip − ζ |)δ(ζ − Iq)

(
WqIq

Wq

)
. (4)

Equation (4) is a sum over the product space S × R. We
now focus on this space. We use lowercase names for the
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functions defined on S × R. The product GσsGσr defines a
separable Gaussian kernel gσs,σr on S × R:

gσs,σr : (x ∈ S, ζ ∈ R) �→ Gσs(‖x‖)Gσr(|ζ |). (5)

From the remaining part of (4), we build two functions i and
w:

i: (x ∈ S, ζ ∈ R) �→ Ix (6a)

w: (x ∈ S, ζ ∈ R) �→ δ(ζ − Ix) = δ(ζ − Ix)Wx

since Wx = 1. (6b)

With definitions (6), we rewrite the right side of (4):

δ(ζ − Iq)

(
WqIq

Wq

)
=

(
δ(ζ − Iq)WqIq

δ(ζ − Iq)Wq

)

=
(

w(q, ζ )i(q, ζ )

w(q, ζ )

)
. (7)

Then with definition (5), we get:

(
W b

p I b
p

W b
p

)
=

∑

(q,ζ )∈S×R
gσs,σr(p − q, Ip − ζ )

×
(

w(q, ζ )i(q, ζ )

w(q, ζ )

)
. (8)

The above formula corresponds to the value at point (p, Ip)

of a convolution between gσs,σr and the two-dimensional
function (wi,w):
(

W b
p I b

p

W b
p

)
=

[
gσs,σr ⊗

(
wi

w

)]
(p, Ip). (9)

According to the above equation, we introduce the functions
ib and wb:

(wbib,wb) = gσs,σr ⊗ (wi,w). (10)

Thus, we have reached our goal. The bilateral filter is ex-
pressed as a convolution followed by nonlinear operations:

linear: 3D convolution

(wbib,wb) = gσs,σr ⊗ (wi,w), (11a)

nonlinear: slicing + division

I b
p = wb(p, Ip)ib(p, Ip)

wb(p, Ip)
. (11b)

The nonlinear section is actually composed of two oper-
ations. The functions wbib and wb are evaluated at point

(p, Ip). We name this operation slicing. The second nonlin-
ear operation is the division that retrieves the intensity value
from the homogeneous vector. This division corresponds to
applying the normalization that we delayed earlier. In our
case, slicing and division commute i.e. the result is indepen-
dent of their order because gσs,σr is positive and w values
are 0 and 1, which ensures that wb is positive.

3.3 Intuition

To gain more intuition about our formulation of the bilat-
eral filter, we propose an informal description of the process
before further discussing its consequences.

The spatial domain S is a classical xy image plane and
the range domain R is a simple axis labelled ζ . The w

function can be interpreted as “the plot in the xyζ space of
ζ = I (x, y)” i.e. w is null everywhere except on the points
(x, y, I (x, y)) where it is equal to 1. The wi product is simi-
lar to w. Instead of using binary values 0 or 1 to “plot I”, we
use 0 or I (x, y) i.e. it is a plot with a pen whose brightness
equals the plotted value. An example is shown in Fig. 1.

Using these two functions wi and w, the bilateral fil-
ter is computed as follows. First, we “blur” wi and w,
that is we convolve wi and w with a Gaussian defined on
xyζ . This results in the functions wbib and wb. For each
point of the xyζ space, we compute ib(x, y, ζ ) by divid-
ing wb(x, y, ζ )ib(x, y, ζ ) by wb(x, y, ζ ). The final step is
to get the value of the pixel (x, y) of the filtered image I b.
This corresponds directly to the value of ib at (x, y, I (x, y))

which is the point where the input image I was “plotted”.
Figure 1 illustrates this process on a simple 1D image.

Note that although the 3D functions get smoothed aggres-
sively, the slicing nonlinearity makes the output of the filter
piecewise-smooth and the strong edges of the input are pre-
served.

4 Fast Approximation

The key idea which speeds up the computation is comput-
ing the 3D convolution at a coarse resolution. For this, we
demonstrate that the wi and w functions can be downsam-
pled without introducing significant errors. In fact, we never
construct the full-resolution product space. This ensures the
good memory and speed performance of our method. We
discuss the practical implementation of this strategy and an-
alyze the accuracy and performance of the proposed tech-
nique.

4.1 Downsampling the Data

We have shown that the bilateral filter can be interpreted as a
Gaussian filter in a product space. Our acceleration scheme
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Fig. 1 (Color online) Our computation pipeline applied to a 1D signal.
The original data (top row) are represented by a two-dimensional func-
tion (wi,w) (second row). This function is convolved with a Gaussian
kernel to form (wbib,wb) (third row). The first component is then di-

vided by the second (fourth row, blue area is undefined because of
numerical limitation, wb ≈ 0). Then the final result (last row) is ex-
tracted by sampling the former result at the location of the original
data (shown in red on the fourth row)

directly follows from the fact that this operation is a low-
pass filter. (wbib,wb) is a band-limited function which is
well approximated by its low frequencies. According to the
sampling theorem (Shannon 1949; Smith 2002, p. 35), it is
sufficient to sample with a rate at least half of the smallest
wavelength considered. We exploit this idea by performing
the convolution at a lower resolution. Formally, we down-
sample (wi,w), perform the convolution, and upsample the
result as indicated by the following equations. Note, how-
ever, that our implementation never stores full-resolution
data: the high-resolution data is built at each pixel and down-
sampled on the fly, and we upsample only at the slicing

location. The notion of using a high-resolution 3D space
which we then downsample is used only for formal expo-
sition (cf. Sect. 4.2 for implementation details):

(w↓i↓,w↓) = downsample(wi,w) [computed on the fly],
(12a)

(wb↓ib↓,wb↓) = gσs,σr ⊗ (w↓i↓,w↓), (12b)

(wb↓↑ib↓↑,wb↓↑) = upsample(wb↓ib↓,wb↓) [evaluated only at

slicing location].
(12c)



Int J Comput Vis (2009) 81: 24–52 31

The rest of the computation remains the same except that
we slice and divide (wb↓↑ib↓↑,wb↓↑) instead of (wbib,wb),
using the same (p, Ip) points. Since slicing occurs at points
where w = 1, it guarantees wb ≥ gσs,σr(0), which ensures
that we do not divide by small numbers that would degrade
our approximation.

We use box-filtering for the prefilter of the downsam-
pling (a.k.a. average downsampling), that is, we first con-
volve the data with a box profile before downsampling. For
upsampling, we use linear interpolation. While these filters
do not have perfect frequency responses, they offer much
better performances than schemes such as tri-cubic filters.
We name ss and sr the sampling rates of S and R, i.e. we
use a box function that measures ss × ss pixels and sr inten-
sity units.

4.2 Implementation

This section details the actual implementation of our al-
gorithm. We have not performed low-level optimization.
Although some optimization may be introduced by com-
pilers (we used GCC 3.3.5), the code used in these tests
does not explicitly rely on vector instructions of mod-
ern CPU nor on the streaming capacities of recent GPU.
In a dedicated article (Chen et al. 2007), we describe
a graphics-hardware implementation that achieves perfor-
mances two orders of magnitude faster than the CPU
implementation tested here. Our code is publicly avail-
able on our webpage: http://people.csail.mit.edu/
sparis/bf#code. The software is open-source and under the
MIT license.

4.2.1 Design Overview

In order to achieve high performance, we never build the
S × R space at the fine resolution. We only deal with the
downsampled version. In practice, this means that we di-
rectly construct the downsampled S × R domain from the
image, i.e. we store each pixel directly into the correspond-
ing coarse bin. At the slicing stage, we evaluate the upsam-
pled values only at the points (p, Ip), i.e. we do not upsam-
ple the entire S × R space, only the points corresponding to
the final result.

4.2.2 Pseudo-Code

Our algorithm is summarized in Fig. 2. Step 3 directly com-
putes the downsampled versions of wi and w from the in-
put image I . The high-resolution value (wi,w) computed in
Step 3a is a temporary variable. Downsampling is performed
on the fly: We compute (wi,w) (Step 3a) and directly add
it into the low-resolution array (w↓i↓) (Step 3c). In Step 3b,
we offset the R coordinate to ensure that the array indices

start at 0. Note that in Step 3c, we do not need to normal-
ize the values by the size of the downsampling box. This
results in a uniform scaling that propagates through the con-
volution and upsampling operations. It is cancelled by the
final normalization (Step 5b) and thus does not affect the re-
sult. Step 4 performs the convolution. We discuss two differ-
ent options in the following section. Steps 5a and 5b corre-
spond respectively to the slicing and division nonlinearities
described previously.

For completeness, Fig. 3 gives the pseudo-code of a di-
rect implementation of (1).

4.2.3 Efficient Convolution

Convolution is at the core of our technique and its efficiency
is important to the overall performance of our algorithm. We
describe two options that will be evaluated in Sect. 5.

Full Kernel One can use the fast Fourier transform to effi-
ciently compute the convolution. This has the advantage that
the computation does not depend on the Gaussian size, but
on only the domain size. Thus, we can use an exact Gaussian
kernel. In this case, the approximation comes only from the
downsampling and upsampling applied to the data before
and after the convolution and from cross-boundary artifacts
inherent in FFT. To minimize these artifacts, the domain is
padded with zeros over 2σ.

Truncated Kernel When the convolution kernel is small,
an explicit computation in the spatial domain is an effec-
tive alternative since only a limited number of samples are
involved. Although the Gaussian kernel has no compact sup-
port, its tail falls off quickly. We therefore use the classical
approximation by truncating the kernel beyond 2σ . We only
apply this technique for the case where the sampling rate
equals the Gaussian standard deviation (i.e. s = σ ) since,
in this case, the downsampled kernel is isotropic and has
a variance equal to 1. The truncated kernel then covers a
5 × 5 × 5 region which is compact enough to ensure fast
computation. Since the kernel is shift-invariant and sepa-
rable, we further shorten the running times by replacing
the 3D kernel by three 1D kernels. This well-known tech-
nique reduces the number of points to an average of 15
(= 3 × 5) instead of 125 (= 53). Unlike the separable ap-
proximation (Pham and van Vliet 2005), this separation is
exact since the original 3D kernel is Gaussian and therefore
separable.

We shall see that this convolution in the spatial domain
with a truncated kernel yields a better ratio of numerical ac-
curacy over running time than the frequency-space convolu-
tion with the full kernel. This latter option remains nonethe-
less useful to achieve high numerical accuracy, at the cost of
slower performances.

http://people.csail.mit.edu/sparis/bf#code
http://people.csail.mit.edu/sparis/bf#code
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FAST BILATERAL FILTER

Input: Image I

Gaussian parameters σs and σr

Sampling rates ss and sr

Output: Filtered image I b

1. Initialize all w↓i↓ and w↓ values to 0.
2. Compute the minimum intensity value:

Imin ← min
(X,Y )∈S

I (X,Y )

3. For each pixel (X,Y ) ∈ S with an intensity I (X,Y ) ∈ R
(a) Compute the homogeneous vector (wi,w):

(wi,w) ← (
I (X,Y ),1

)

(b) Compute the downsampled coordinates (with [·] the rounding operator)

(x, y, ζ ) ←
([

X

ss

]
,

[
Y

ss

]
,

[
I (X,Y ) − Imin

sr

])

(c) Update the downsampled S × R space
(

w↓i↓(x, y, ζ )

w↓(x, y, ζ )

)
←

(
w↓i↓(x, y, ζ )

w↓(x, y, ζ )

)
+

(
wi

w

)

4. Convolve (w↓i↓,w↓) with a 3D Gaussian g whose parameters are σs/ss and σr/sr

(wb↓ib↓,wb↓) ← (w↓i↓,w↓) ⊗ g

5. For each pixel (X,Y ) ∈ S with an intensity I (X,Y ) ∈ R
(a) Tri-linearly interpolate the functions wb↓ib↓ and wb↓ to obtain W bI b and W b:

W bI b(X,Y ) ← interpolate

(
wb↓ib↓,

X

ss
,
Y

ss
,
I (X,Y )

sr

)

W b(X,Y ) ← interpolate

(
wb↓,

X

ss
,
Y

ss
,
I (X,Y )

sr

)

(b) Normalize the result

I b(X,Y ) ← W bI b(X,Y )

W b(X,Y )

Fig. 2 Pseudo-code of our algorithm. The algorithm is designed such that we never build the full-resolution S × R space

5 Evaluation of Our Approximation

This section investigates the accuracy and performance of
our technique compared to the exact computation. The tim-
ings are measured on an Intel Xeon 2.8 GHz with 1 MB
cache using double-precision floating-point numbers.

On Ground Truth In practical applications such as photo-
graph enhancement (Bae et al. 2006) or user-driven image
editing (Weiss 2006), the notions of numerical accuracy and

ground truth are not always well defined. Running times can
be objectively measured, but other aspects are elusive and
difficult to quantify. Furthermore, whether the bilateral fil-
ter is the ideal filter for an application is a separate ques-
tion.

Since our method achieves acceleration through approx-
imation, we have chosen to measure the numerical accuracy
by comparing the outputs of our technique and of other ex-
isting approximations with the result of the original bilat-
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BRUTE FORCE BILATERAL FILTER

Input: Image I

Gaussian parameters σs and σr

Output: Filtered image I b

1. Initialize all I b and W b values to 0.
2. For each pixel (X,Y ) ∈ S with an intensity I (X,Y ) ∈ R

(a) For each pixel (X′, Y ′) ∈ S with an intensity I (X′, Y ′) ∈ R
(i) Compute the associated weight:

weight ← exp

(
− (I (X′, Y ′) − I (X,Y ))2

2σr
2

− (X′ − X)2 + (Y ′ − Y)2

2σs
2

)

(ii) Update the weight sum W b(X,Y ):

W b(X,Y ) ← W b(X,Y ) + weight

(iii) Update I b(X,Y ):

I b(X,Y ) ← I b(X,Y ) + weight × I b(X′, Y ′)

(b) Normalize the result:

I b(X,Y ) ← I b(X,Y )

W b(X,Y )

Fig. 3 Pseudo-code of the brute force algorithm

eral filter. This comparison pertains only to the “numerical
quality” of the approximation, and the readers should keep
in mind that numerical differences do not necessarily pro-
duce unsatisfying outputs. To balance this numerical aspect,
we also provide visual results to let the readers examine by
themselves the outputs. Important criteria are then the reg-
ularity of the achieved smoothing, artifacts that add visual
features which do not exist in the input picture, tone (or
color) faithfulness, and so on.

5.1 Numerical Accuracy

To evaluate the error induced by our approximation, we
compare the result I b↓↑ from our fast algorithm to the exact

result I b obtained from (1). We have chosen three images
as different as possible to cover a broad spectrum of content
(Fig. 12):

• An artificial image with various edges, frequencies, and
white noise.

• An architectural picture structured along two main direc-
tions.

• And a photograph of a natural scene with more stochastic
structure.

To express numerical accuracy, we compute the peak
signal-to-noise ratio (PSNR) considering R = [0;1]:

PSNR(I b↓↑) = −10 log10(
1

|S|
∑

p∈S |I b↓↑(p) − I b(p)|2). For
instance, considering intensity values encoded on 8 bits, if
two images differ from one gray level at each pixel, the re-
sulting PSNR is 48 dB. As a guideline, PSNR values above
40 dB often corresponds to limited differences, almost invis-
ible. This should be confirmed by a visual inspection since
a high PSNR can “hide” a few large errors because it is a
mean over the whole image.

The box downsampling and linear upsampling schemes
yield very satisfying results while being computationally ef-
ficient. We tried other techniques such as tri-cubic down-
sampling and upsampling. Our tests showed that their com-
putational cost exceeds the accuracy gain, i.e. a similar gain
can be obtained in a shorter time using a finer sampling of
the S × R space. The results presented in this paper use
box downsampling and linear upsampling. We experimented
with several sampling rates (ss, sr) for S × R. The meaning-
ful quantities to consider are the ratios ( ss

σs
, sr

σr
) that indicate

the relative position of the frequency cutoff due to downsam-
pling with respect to the bandwidth of the filter we apply.
Small ratios correspond to limited approximations and high
ratios to more aggressive downsamplings. A consistent ap-
proximation is a sampling rate proportional to the Gaussian
bandwidth (i.e. ss

σs
≈ sr

σr
) to achieve similar accuracy on the

whole S × R domain. The results plotted in Fig. 4 show that
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Fig. 4 Accuracy evaluation. All the images are filtered with (σs =
16, σr = 0.1). The PSNR in dB is evaluated at various sampling rates of
S and R (greater is better). Our approximation scheme is more robust
to space downsampling than range downsampling. It is also slightly

more accurate on structured scenes (a, b) than on stochastic ones (c).
This test uses the full-kernel implementation of the 3D convolution
based on FFT

Fig. 5 Running times on the architectural picture with
(σs = 16, σr = 0.1). The PSNR isolines are plotted in gray. Ex-
act computation takes several tens of minutes (varying with the actual
implementation). This test uses the full-kernel implementation of the
3D convolution based on FFT

this remark is globally valid in practice. A closer look at
the plots reveals that S can be slightly more downsampled
than R. This is probably due to the nonlinearities and the
anisotropy of the signal.

5.2 Running Times

Figure 5 shows the running times for the architectural
picture with the same settings. In theory, the gain from
space downsampling should be twice the one from range
downsampling since S is two-dimensional and R one-
dimensional. In practice, the nonlinearities and caching is-
sues induce minor deviations. Combining this plot with the
PSNR plot (in gray under the running times) allows for se-
lecting the best sampling parameters for a given error tol-

erance or a given time budget. As a simple guideline, using
sampling steps equal to σs and σr produces results without
visual difference with the exact computation (see Fig. 12).
Our scheme achieves a dramatic speed-up since direct com-
putation of (1) lasts several tens of minutes (varying with
the actual implementation). Our approximation requires one
second.

Effect of the Kernel Size An important aspect of our ap-
proximation is visible on Fig. 6 (right). Our technique runs
faster with larger kernels. Indeed, when σ increases, keep-
ing the level of approximation constant (the ratio s

σ
is

fixed) allows for a more important downsampling, that is,
larger sampling steps s. The rationale of this behavior is
that the more the image is smoothed, the more the high
frequencies of S × R are attenuated, and the more we
can afford to discard them without incurring visible differ-
ences.

Truncated Kernel versus Full Kernel Figure 6 also shows
that, for a limited loss of accuracy, the direct convolution
with a truncated kernel yields running times significantly
shorter than the Fourier-domain convolution with a full ker-
nel. We believe that the direct convolution with the 53 kernel
is a better choice for most applications.

High and Low Resolution Filtering To evaluate the us-
ability of our technique in a professional environment, we
processed a 8 megapixel image and obtained a running time
of 2.5 s. This is in the same order of magnitude as the
iterated-box filter and orders of magnitude faster than cur-
rently available professional software (see Weiss 2006 for
details). We also experimented with an image at DVD res-
olution, i.e. 576 × 320 ≈ 0.2 megapixel, and we obtained
a running time of about 57 ms near the 40 ms required
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Fig. 6 (Color online) Left: Accuracy-versus-time comparison. Our
approximations are tested on the architectural picture (1600 × 1200)
using σs = 16 and σr = 0.1 as parameters. The full-kernel can
achieve variable degrees of accuracy and speed-up by varying the
sampling rates of S × R. We tested it with the following sam-
pling rates of S × R (from left to right): (4, 0.025), (8, 0.05),
(16, 0.1), (32, 0.2), (64, 0.4). The result with the coarsest sampling

(ss = 64, sr = 0.4) is shown on Fig. 7. Right: Time-versus-radius com-
parison. Our approximations are tested on the architectural image us-
ing σr = 0.1. The full-kernel technique uses a sampling rate equal
to (σs, σr).Remember that an exact computation lasts at least sev-
eral tens of minutes (varying with the implementation). The color
dots in the left and right plots correspond to the same measure-
ments

Fig. 7 We filtered the architectural picture (a) and applied an ex-
treme downsampling to the S × R domain, four times the filter band-
width, i.e. (σs, σr) = (16,0.1) and (ss, sr) = (64,0.4). The result (c)
exhibits numerous visual artifacts: the whole image is overly smoothed
and the smoothing strength varies spatially (observe the roof railing
for instance). Compared to the exact computation (b), the achieved

PSNR is 25 dB. The difference image (with a 10× multiplier) shows
that large errors cover most of the image (d). We do not recom-
mend such extreme downsampling since the speed gain is limited
while the accuracy loss is important as shown on Fig. 6 (left) (this
result corresponds to the lower-left measured point on the dashed
curve)

to achieve real-time performances, i.e. a 25 Hz frame rate.
This motivated us to run our algorithm on our most recent
machine, an AMD Opteron 252 at 2.6 GHz with 1 MB of
cache, in order to simulate a professional setup. With this
machine, the running time is 38 ms. This means that our
algorithm achieves real-time video processing in software.
Although this does not leave any time to apply other ef-
fects as demonstrated by Winnemöller et al. (2006) using
the GPU, we believe that our technique paves the way to-
ward interactive video applications that are purely software-
based.

Bottlenecks Figures 6 and 7 show that when the sampling
rate becomes too coarse, the accuracy suffers dramatically
but the running time does not improve. This is because slic-
ing becomes the bottleneck of the algorithm: The trilinear
interpolation necessary at each output pixel becomes signif-
icantly more costly than the operations performed on the 3D
data (see Table 2). On the other extreme, when the sampling
rate becomes very fine, the running time grows significantly
but the plot shows little improvement because the errors be-
come too small to be reliably measured after the quantiza-
tion on 8 bits.
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Fig. 8 Left: Per-pixel distance to the mean. We filter 1000 times the
architectural picture using the 53 kernel with a different offset of the
downsampling grid. For each pixel p, we computed the mean value
Mp. Then for each run, we measured the distance between the result
value I b↓↑(p) and the mean M(p). The histogram shows the distribution
of these distances across the 1000 runs. Right: Comparison between
the distance to the mean and the distance to the exact result. For each

run, we measured the PSNR between the approximated result I b↓↑ and

the mean result M . We also measured the PSNR between I b↓↑ and the

exact result Ib . The plot shows these two measures for each run. The
approximated results are one order of magnitude closer to the mean M .
This demonstrates that the position of the downsampling grid a limited
influence on the produced results. These tests use the 53-kernel imple-
mentation

5.3 Effect of the Downsampling Grid

Our method uses a coarse 3D grid to downsample the data.
The position of this grid is arbitrary and can affect the pro-
duced results as pointed out by Weiss (2006). To evaluate
this effect, we filter 1000 times the same image and applied
each time a different random offset to the grid. We average
all the outputs to get the mean result. For each grid posi-
tion, we measured at each pixel the difference between the
intensity obtained for this offset and the mean value over all
offsets. Figure 8 (left) shows the distribution of these varia-
tions caused by the grid offsets. We can see that there are a
few large variations (under 40 dB) but that most of them are
small (≈50 dB and more). These variations have to be com-
pared with the accuracy of the approximation: Fig. 8 (right)
shows that they are significantly smaller than the error in-
curred by the approximation. In other words, the potential
variations caused by the position of the downsampling grid
are mostly negligible in regards of the error stemming from
the approximation itself.

Although these variations have never been a problem in
our applications (cf. Sect. 8), they might be an issue in other
contexts. To better appreciate the potential defects that may
appear, we built a worst-case scenario with the statistics of
the 1000 runs. We computed the minimum and maximum re-
sults:

I b
min(p) = min

all runs
I b↓↑(p) and I b

max(p) = max
all runs

I b↓↑(p).

(14)

These two images correspond to the worst-case hypotheses
where all the negative (resp. positive) deviations happened
at the same time which is unlikely. Figure 9 (left) plots the
histogram of the differences between I b

max and I b
min: Even

in this worst-case scenario, most variations remain above
40 dB. Globally, the maximum and minimum results still
achieve satisfying accuracies of 42 dB and 43 dB compared
to the exact computation. Figure 9 (right) reveals that the
errors are larger on discontinuities (edges, corners) and tex-
tured regions. As a consequence, the variation distribution
(Fig. 9 (left)) is bimodal with a high-accuracy mode cor-
responding to the smooth sky and a lower-accuracy mode
stemming from the building. Nonetheless, if higher accuracy
is required, one can refine the downsampling grid at the cost
of longer running times as shown earlier (Fig. 5).

6 Comparisons with Other Acceleration Techniques

We now compare our method to other fast approximations of
the bilateral filter. To better understand the common points
and differences with our approach, we look into the details
of these methods. We selected the methods that explicitly
aim for bilateral filtering (Durand and Dorsey 2002; Pham
and van Vliet 2005; Weiss 2006). We did not test the Gauss-
Seidel scheme proposed by Elad (2002) since it requires a
large number of iterations whereas practical applications use
non-iterative bilateral filtering. As we shall see, our tech-
nique performs especially well on large kernels and has the
advantage to be general and simple to implement.
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Fig. 9 Left: Influence of the grid position in a worst-case scenario.
The histogram shows the distances between the maximum and mini-
mum of all the runs (14). We used the architectural picture. The two
modes of the distribution correspond to the building area that contains
many contrasted features likely to be affected by the grid position, and

to the smooth sky region with almost no such features. Right: Vari-
ation map. The thin features are the most affected by the downsam-
pling grid position whereas the smooth areas are mostly unaltered. The
variation amplitudes are mapped to gray levels after a 10× multiplica-
tion

6.1 Comparison with the Piecewise-Linear Approximation

Durand and Dorsey (2002) describe a piecewise-linear ap-
proximation of the bilateral filter that is closely related to
our approach. Our framework provides better understanding
their method: As we will see, the main difference with our
technique lies in the downsampling strategy.

Using evenly spaced intensity values ζ1..ζn that cover R,
the piecewise-linear scheme can be summarized as (for con-
venience, we also name Gσs the 2D Gaussian kernel):

ι↓ = downsample(I ) [image downsampling], (15a)

∀k ∈ {1..n}, ω↓k(p) = Gσr(|ι↓(p) − ζk|)
[range weight evaluation], (15b)

∀k ∈ {1..n}, ωι↓k(p) = ω↓k(p)ι↓(p)

[intensity multiplication], (15c)

∀k ∈ {1..n}, (ωιb↓k,ω
b
↓k) = Gσs ⊗S (ωι↓k,ω↓k)

[spatial convolution on S ], (15d)

∀k ∈ {1..n}, ιb↓k = ωιb↓k/ω
b↓k

[normalization], (15e)

∀k ∈ {1..n}, ιb↓↑k = upsample(ιb↓k)

[layer upsampling], (15f)

I b
pl(p) = interpolation(ιb↓↑k)(p)

[linear layer interpolation]. (15g)

Without downsampling (i.e. {ζk} = R and Steps 15a–f
ignored), the piecewise-linear scheme is equivalent to ours
because Steps 15b–d correspond to a convolution on S × R.
Indeed, ι↓(p) = Ip, Steps 15b and 15c can be rewritten
in a vectorial form, and the value of the Gaussian can be
expressed as a convolution on R with a Kronecker sym-
bol:

[Step 15c]

[Step 15b]

(
ωι↓k(p)

ω↓k(p)

)
=

(
Ip

1

)
Gσr(|Ip − ζk|)

=
(

Ip

1

)
[δIp

⊗R Gσr](ζk) (16a)

with δIp
(ζ ∈ R) = δ(Ip − ζ ). (16b)

With Step 15d, the convolution on S , these three steps
perform a 3D convolution using a separation between R
and S .

The main differences comes from the downsampling ap-
proach, where Durand and Dorsey downsample in 2D while
we downsample in 3D. They also interleave linear and non-
linear operations differently from us: Their division is done
after the convolution 15d but before the upsampling 15f.
There is no simple theoretical ground to estimate the er-
ror. More importantly, the piecewise-linear strategy is such
that the intensity ι and the weight ω are functions defined
on S only. A given spatial pixel in the downsampled image
has only one intensity and one weight. After downsampling,
both sides of a discontinuity may be represented by the same
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Fig. 10 (Color online) a The piecewise-linear approximation is such
that only a single value can representation at each position. After down-
sampling discontinuities are represented by only one intensity value
which poorly approximates the discontinuity. b With our scheme, the

discontinuities are represented by two distinct values in the downsam-
pled S × R domain, even after downsampling. The original function
(in red) is the same as in Fig. 1. The corresponding downsampled rep-
resentation of the intensity is shown below

Fig. 11 (Color online) Left: Accuracy-versus-time comparison. The
methods are tested on the architectural picture (1600 × 1200) using
σs = 16 and σr = 0.1 as parameters. The piecewise-linear approxi-
mation and our method using an untruncated kernel can achieve vari-
able degrees of accuracy and speed-up by varying the sampling rates
of S × R. We tested them with the same sampling rates of S × R
(from left to right): (4, 0.025), (8, 0.05), (16, 0.1), (32, 0.2), (64, 0.4).

Right: Time-versus-radius comparison. The methods are tested on the
architectural image using σr = 0.1. Our method using the full kernel
uses a sampling rate equal to (σs , σr ). Its curve and the piecewise-
linear curve are identical because we allow the same computation bud-
get to both methods. Remember that an exact computation lasts at least
several tens of minutes (varying with the implementation). The color
spots in the left and right plots correspond to the same measurements

values of ι and ω. This is a poor representation of disconti-
nuities since they inherently involve several values. In com-
parison, we define functions on S × R. For a given image
point in S , we can handle several values on the R domain.
The advantage of working in S × R is that this characteristic
is not altered by downsampling (cf. Fig. 10). It is the major
reason why our scheme is more accurate than the piecewise-
linear technique, especially around discontinuities.

Numerical and Visual Comparisons We have implemented
the piecewise-linear technique with the same code base
as our technique. Figure 11 shows the precision and run-
ning time achieved by both approaches. Both techniques ex-
hibit similar profiles but our approach achieves significantly
higher accuracies for the same running times (except for
extreme downsampling, but these results are not satisfying
as shown on Fig. 7). Figure 12 confirms visually this mea-
sure: Our method approximates better the exact result. As a
consequence, our technique can advantageously replace the

piecewise-linear approximation since it is both simpler and
more precise.

6.2 Comparison with the Separable-Kernel Approximation

Pham and van Vliet (2005) approximate the 2D bilateral
filter with a separable kernel by first filtering the image
rows and then the columns. This dramatically shortens the
processing times since the number of pixels to process is
proportional to the kernel radius instead of its area in the 2D
case. Pham (2006) also describes an extension to his work
where the separation axes are oriented to follow the image
gradient. However, we did not learn of this extension in time
to include it in our tests. Our experiments focus on the axis-
aligned version that has been shown to be extremely effi-
cient by Winnemöller et al. (2006). We have implemented
this technique in C++ using the same code base as for our
method. Our C++ code on 2.8 GHz Intel Xeon achieves a
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Fig. 12 We have tested our approximated scheme on three images
(first row): an artificial image (512×512) with different types of edges
and a white noise region, an architectural picture (1600 × 1200) with
strong and oriented features, and a natural photograph (800×600) with
more stochastic textures. For clarity, we present representative close-
ups. Full resolution images are provided as supplemental material. Our
approximations produces results visually similar to the exact compu-
tation. Although we applied a 10× multiplier to the difference ampli-
tudes, the image differences do not show significant errors. In compar-
ison, the piecewise-linear approximation introduces large visual dis-
crepancies: small yet contrasted features are washed out. Furthermore
this defect depends the neighborhood. For instance, on the artificial
image, the noise region is less smoothed near the borders because of

the adjacent white and black bands. Similar artifacts are visible on the
brick shadows of the architectural image. The separable kernel intro-
duces axis-aligned streaks which are visible on the bricks of the archi-
tectural picture. In comparison, the iterated-box kernel does not incur
artifacts but the filter does not actually approximate a Gaussian kernel
(Sect. 6.3). This results in large differences. All the filters are com-
puted for σs = 16 and σr = 0.1. Our filter uses a sampling rate of (16,
0.1). The piecewise-linear filter is allocated the same time budget as
our full-kernel approximation: its sampling rate is chosen in order to
achieve the same (or slightly superior) running time. The iterated-box
method is set with 2 additional iterations as described by Weiss (2006)
and σr

′ = 0.1√
3

≈ 0.0577 (Sect. 6.3)
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5× speed-up compared to the experiment in Matlab on an
1.47 GHz AMD reported in the original article.

As in the original paper, our tests confirm that the
separable-kernel strategy is useful for small kernels. Fig-
ure 11 (right) shows that this advantage applies to radii that
do not exceed a few pixels (σs ≈ 5 pixels with our imple-
mentation). Winnemöller et al. (2006) have shown that it is
a suitable choice to simplify the content of videos by ap-
plying several iterations of the bilateral filter using a small
kernel. This approximation is less suitable for larger ker-
nels as shown by the running times on Fig. 11 (right) and
because artifacts due to the approximation become visible
(Figs. 12 and 15f). As the kernel becomes bigger, the pixel
neighborhoods contain more and more complex features,
e.g. several edges and corners. These features are poorly
handled by the separable kernel because it considers the
rows and columns separately. This results in axis-aligned
artifacts which may be undesirable in a number of cases. In
comparison, our approach handles the complete neighbor-
hoods. The incurred error is significantly lower and follows
the image structure, yielding mostly imperceptible differ-
ences (Figs. 12 and 15g).

6.3 Comparison with the Iterated-Box Method

Weiss (2006) describes an algorithm that computes effi-
ciently the exact bilateral filter using a square box function
to define the spatial influence. It is based on the maintenance
of local intensity histograms, and Sect. 9.5 relates this con-
cept with our higher-dimensional interpretation. In this sec-
tion, we discuss performances and accuracy. The complexity
of Weiss’s algorithm evolves as the logarithm of the kernel
radius, thereby achieving running times in the order of a few
seconds even for large kernels (100 pixels and above for an
8 megapixel image).

However, the box function is known to introduce visual
artifacts because its Fourier transform is not band-limited
and it introduces Mach bands. To address this point, Weiss
iterates the filter three times while keeping the range weights
constant, i.e. the range values are always computed accord-
ing to the input image. Weiss motivates this approach by
the fact that, on regions with smooth intensity, the range
weights have little influence and the iteration corresponds
to spatially convolving a box function β0 with itself, i.e.
β0 ⊗S β0 ⊗S β0. This results in a smooth quadratic B-spline
β2 that approximates a Gaussian function. This interpreta-
tion does not hold on non-uniform areas because the spatial
component interacts with the range function. van de Wei-
jer and van den Boomgaard (2001) have shown that this it-
eration scheme that keeps the weights constant eventually
leads to the nearest local maximum of the local histogram.
A downside of this sophisticated scheme is that the algo-
rithm is more difficult to adapt. For instance, extension to
color images seems nontrivial.

6.3.1 Running Times

A performance comparison with our method is difficult be-
cause Weiss’s implementation relies on the vector instruc-
tions of the CPU. Implementing this technique as efficiently
as the original article could not be done in a reasonable
amount of time. And since the demonstration plug-in1 does
not run on our platform, we cannot make side-by-side tim-
ing comparisons. Nonetheless, we performed some tests on
a 8 megapixel image as Weiss uses in his article. For a small
kernel (σs = 2 pixels), our software runs in 18 s whereas the
iterated-box technique runs in ≈ 2 s. Although the CPU and
the implementation are not the same, the difference is sig-
nificant enough to conclude that the iterated-box method is
faster on small kernels. We also experimented with bigger
kernels (recall that our running times decrease): our running
times are under 3 s for radii over 10 pixels and stabilize at
2.5 s for larger radii (σs ≥ 30 pixels) because of the fixed
time required by downsampling, upsampling, and nonlin-
earities. These performances are in the same order as the
iterated-box technique. In such situations, the running times
depend more on the implementation than on the actual algo-
rithm. Our code can be clearly improved to exploit the vec-
tor and multi-core capacities of modern architectures. Weiss
also describes avenues to speed up his implementation. We
believe that both techniques are approximately equivalent
in terms of performance for intermediate and large kernels.
The major difference is that our running times decrease with
big kernels whereas the ones of the iterated-box slowly in-
crease.

6.3.2 Numerical and Visual Evaluation

Comparing the accuracy is not straightforward either since
the iterated version of this filter approximates a Gaussian
profile only on constant regions while the kernel has not
been studied in other areas. To better understand this point,
we conducted a series of tests to characterize the produced
results. Weiss (2006) points out that convolving a box func-
tion n times with itself produces a B-spline βn, and as n

increases, βn approximates a Gaussian profile. The iterated-
box method is however more complex since at each it-
eration, the spatial box function β0 is multiplied by the
Gaussian range weight Gσr and then normalized. This mo-
tivated us to investigate the link between the iterated-box
scheme and the non-iterative bilateral filter with a B-spline
as spatial weight.

Test Setup We have coded a brute-force implementation of
the iterated-box filter using classical “for loops”. Although
our piece of software is slow, it uses exactly the same space

1http://www.shellandslate.com/fastmedian.html

http://www.shellandslate.com/fastmedian.html
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Fig. 13 Comparisons with exact bilateral filtering using a Gaussian
spatial kernel (left) and using a B-spline spatial kernel (right). As the
number of iterations increases, the iterated-box filter becomes more
different from the non-iterated bilateral filters, for both spatial profiles
(Gaussian and spline) and both range settings. On the left, the spline

profile converges toward a Gaussian kernel with higher spline order
although numerical precision issues limit the convergence speed. The
spline shape is indicated on the curve. On the right, the iterated-box
kernel does not converge towards a spline kernel. The shape of the
spline used for the comparison is indicated on the top axis

and range functions as the iterated-box method. Thus we can
perform visual and numerical comparisons safely as long as
we do not consider the running times.

We computed the iterated-box filter with increasing num-
bers of iterations and compared the results with the exact
computation of the bilateral filter using a Gaussian as spatial
weight as well as with the exact computation of the bilateral
filter using a B-spline βn with n matching the number of it-
erations. In both cases, the range weight remains a Gaussian
as described by Weiss. We set the radius rbox of the box
function so as to achieve the same standard deviation σs for
the all the tests. For a square box function (i.e. no iteration),
a classical variance computation gives σs

2 = 2
3 r2

box. For n it-

erations, we use rbox = σs

√
3

2(n+1)
.

Setting the range influence is equally important. A first
solution is to use the same value σr independently of the
number of iterations. As a consequence, the smoothing
strength varies with the number of iterations (Fig. 14). Our
interpretation of the bilateral filter shows that the range do-
main also undergoes a convolution. This suggests to set

σr
′ = σr

√
1

n+1 when the filter is applied a total of n + 1
times. It would result in a range Gaussian of size σr if the
filter was purely a convolution. Let’s use our framework
to examine the effects of the iterations with fixed weights.
Because the weights are kept constant, the same 3D kernel
and normalization factors are applied at each iteration. How-
ever, the normalization factors vary spatially and slicing oc-
curs after each pass. This corresponds to setting to 0 all the
S × R points (x, ζ ) such that ζ �= Ix. Hence, the process

is not purely a succession of convolutions. Nevertheless, we
shall see that adapting σr to the total number of iterations
has some visual advantages over the fixed value.

Note that Weiss experimented with adapting both the
space and range sigmas to the total number of iterations al-
though his article did not focus on approximating any kernel
and showed only results from three iterations.

Numerical Evaluation Figure 13 shows that the iterated-
box scheme does not converge either toward Gaussian bi-
lateral filtering or toward spline bilateral filtering, at least
with the parameters that we used. It might not be a prob-
lem depending on the application, since it does not affect
the visual quality of the result. For instance, this scheme is
well-suited for applications such as denoising or smooth-
ing (Weiss 2006). A formal characterization of the achieved
kernel would nevertheless be a valuable contribution since
it would enable a better comparison with the other existing
methods and allows for motivated choices.

Visual Results Figure 14 illustrates the typical defect ap-
pearing with a square box function as spatial weight and a
single iteration: A faint band appears above the dark cor-
nice. It is worth mentioning that we tested several images
and this defect was less common than we expected. As soon
as the contrast is large enough or when the picture is tex-
tured, no defect is visible. As an example, no banding is vis-
ible around the dome contour and near the windows. How-
ever, when this defect appears, it impacts the overall image
quality. The solution is to apply a smoother kernel, either by
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Fig. 14 Results from the spline
and iterated-box bilateral filters.
Several defects may appear de-
pending on the chosen scenario;
their location is shown on the
close-up (b). Using a square box
function without iteration
produces a faint band above the
cornice (first row (e, f, g)).
Iterating the filter makes this
band disappear. If the range
Gaussian is not adapted
according to the number of
iterations, the results become
blurry (see the cross and the
cornice in (f)). Decreasing σr as
the square root of the number of
iterations prevents blurriness
and produces more stable
results (g). But iterating the
filter can introduce exaggerated
contrast variations (see the edge
of the wall). The contrast of the
close-ups has been increased for
clarity purpose. Original images
are available in supplemental
material

using a higher-order spline, or by iterating the filter. Our ex-

periment shows that using a spline of order 1 (a linear tent)

solves the problem while a single additional iteration only

attenuates the band without completely removing it. As sug-

gested by Weiss (2006), three iterations yield results without

visible artifacts. Furthermore, this figure shows that the re-

sults are progressively washed out if the range setting is not

adapted according to the number of iterations. Adapting σr

as the square root of the number of iterations prevents this

effect and produces more stable results. The downside of it-
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erating can be seen on the wall corner at the bottom right
end of the close-up: Stacking up the nonlinearities results in
an exaggerated contrast variation because the top part of the
corner has been smoothed at each iteration while the bottom
part has been preserved. The non-iterated versions of the fil-
ter (either with a spline or a Gaussian kernel) do not present
such contrast variations. This effect may be a concern de-
pending on the application.

7 Extensions

An advantage of our approach is that it can be straightfor-
wardly adapted to handle color images and cross bilateral
filtering. In the following sections, we describe the details
of these extensions.

7.1 Color Images

For color images, the range domain R is typically a three-
dimensional color space such as RGB or CIE-Lab. We name
C = (C1,C2,C3) the vector in R describing the color of a
pixel. The bilateral filter is then defined as:

C b
p = 1

W b
p

∑

q∈S
Gσs(‖p − q‖)Gσr(‖C p − C q‖)C q (17a)

with W b
p =

∑

q∈S
Gσs(‖p − q‖)Gσr(‖C p − C q‖). (17b)

The definition is similar to (1), except that we handle
color vectors C instead of scalar intensities I . We derive
formulae that isolate the nonlinearities similarly to (11) by
propagating this change through all the equations. We give
the main steps in the following paragraphs and the details
are identical to the gray-level case.

Akin to the homogeneous intensity defined in Sect. 3.1,
we name homogeneous color the 4D homogeneous vector
(WC ,W). This let us write (17) in a vector form:
(

W b
p C b

p

W b
p

)
=

∑

q∈S
Gσs(‖p − q‖)Gσr(‖C p − C q‖)

×
(

WqC q

Wq

)
. (18)

Then, we define the functions c and w on the joint domain
S × R:

c: (x ∈ S, ζ ∈ R) �→ C x, (19a)

w: (x ∈ S, ζ ∈ R) �→ δ(‖ζ − C x‖)Wx. (19b)

We obtain formulae similar to (11):

linear: (wbcb,wb) = gσs,σr ⊗ (wc,w), (20a)

nonlinear: C b
p = wb(p,C p)cb(p,C p)

wb(p,C p)
. (20b)

7.1.1 Discussion

Dimensionality For color images, the S × R domain is
5D: 2 dimensions for the spatial position and 3 dimensions
to describe the color. Each point of S × R is a 4D vector
since C is 3D, thus the homogeneous color (WC,W) is
four-dimensional. This dimensionality increase becomes a
problem when the S × R domain is finely sampled because
of the memory required to store the data. Nonetheless, in
many cases, the computation is still tractable. The valida-
tion section details this aspect.

Pre-Multiplied Alpha Transparency is classically repre-
sented by an additional image channel named alpha (Porter
and Duff 1984; Blinn 1996; Willis 2006). Pixel values are
then 4D vectors (C, α) and it is well-known that most fil-
tering operations such as blurring must be done on the
pre-multiplied alphas (αC, α) in order to obtain correct
color and transparency values. Intuitively, transparent pix-
els contribute less to the output. Although this representa-
tion “looks” similar to the homogeneous colors, there are a
few important differences. An α value has a physical mean-
ing: the transparency of a pixel. As a consequence, it lies
in the [0;1] interval. In contrast, a W value carries statisti-
cal information since it corresponds to a pixel weight. It is
non-negative and has no upper bound. A major difference
between both representations is that W values can be scaled
uniformly across the image without changing their meaning.
This is a known property of homogeneous quantities: they
are defined up to a scale factor. On the other side, a global
scaling on α values alters the result since objects become
more or less transparent.

7.1.2 Validation

We tested several alternative strategies on a color image
(Fig. 15). First, we filtered an RGB image as three indepen-
dent channels and compared the output to the result of fil-
tering colors as vectors. We found that vector filtering yields
better results but color inconsistencies remained. Thus, we
experimented with the CIE-Lab color space which is known
to be perceptually meaningful.

Per-channel Filtering versus Vector Filtering Processing
the RGB channels independently induces inconsistencies
when an edge has different amplitudes depending on the
channel. In that case, an edge may be smoothed in a chan-
nel while it is preserved in another, inducing incoherent re-
sults between channels. Figure 15d shows our truncated-
kernel approximation on an example where the blue sky
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Fig. 15 (Color online) Comparison on a color image. We tested vari-
ous strategies to filter a color image (a, b). Processing the red, green,
and blue channels independently results in color bleeding that makes
the cross disappear in the sky (d). Dealing with the RGB vector as
described in (20) improves this aspect but some bleeding still oc-
curs (e). In contrast, working in the CIE-Lab space achieves satisfying
results (c, g). Comparing our method (g) to the separable-kernel tech-

nique (f) shows our technique is slower but produces a result closer to
the exact computation (c). Especially, the separable kernel incurs axis-
aligned streaks (f) that may undesirable in a number of applications.
These remarks are confirmed by the numerical precision evaluated with
the PSNR computed the RGB and CIE-Lab color spaces. The contrast
of the close-ups has been increased for clarity purpose. Original images
are available in supplemental material
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Fig. 16 Time-versus-radius
comparison. We processed the
image shown in Fig. 15 with
σr = 0.1 in RGB color space,
and σr = 10 in the CIE-Lab
color space. Both settings
correspond to 10% of the
intensity range. The plots show
the running times of various
options depending on the spatial
extent of the kernel. Our
approximation is not able to
process small kernels because of
memory limitations (see the text
for details). We used a truncated
kernel for our method

“leaks” over the brown cross. Considering the RGB chan-
nels altogether using (20) significantly reduces this bleed-
ing defect (Fig. 15e). The downside is the longer computa-
tion times required to process the 5D space (cf. Sect. 7.1.1
and Fig. 16). It precluded our algorithm from handling
small kernels because of the fine sampling required. In that
case, the memory usage was over 1 GB for an image of
0.5 megapixel with sampling rates (ss, sr) = (8,0.1). We
did not measure the running time because it was perturbed
by disk swapping. This limitation makes our technique not
suitable for small kernels on color images. For these cases,
one should prefer per-channel filtering and since the ker-
nel is small, the iterated-box method (Weiss 2006) seems
an appropriate choice. However, even the RGB-vector filter-
ing result exhibits some color leaking (observe the cross in
Fig. 15e). This motivated us to experiment with the CIE-Lab
color space which is known to provide better color manage-
ment (Margulis 2005).

RGB versus CIE-Lab The CIE-Lab space solves the color-
bleeding problem. Visual and numerical comparisons show
that our technique produces results close to the exact com-
putation (Fig. 15c, g). In contrast, the separable-kernel
technique (Pham and van Vliet 2005) applied in the CIE-
Lab space yields results degraded by axis-aligned streaks
(Fig. 15f). The iterated-box method is described only for
per-channel processing, and the extension to vector filtering
is unclear.

7.2 Cross Bilateral Filter

Another advantage of our approach is that it can be extended
to cross bilateral filtering. The cross bilateral filter has been
simultaneously discovered by Eisemann and Durand (2004)
and Petschnigg et al. (2004) (who named it “joint bilateral

filter”). It smoothes an image I while respecting the edges
of another image E:

I c
p = 1

W c
p

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ep − Eq|)Iq (21a)

with W c
p =

∑

q∈S
Gσs(‖p − q‖)Gσr(|Ep − Eq|). (21b)

The only difference with a classical bilateral filter is the
range weight Gσr which uses E instead of I . Applying this
change to all the equations results in a new definition for the
w function while the function i remains unmodified (6):

i: (x ∈ S, ζ ∈ R) �→ Ix, (22a)

w: (x ∈ S, ζ ∈ R) �→ δ(ζ − Ex)Wx. (22b)

These new functions are used to obtain a set of equations
that isolate the nonlinearities. Note that the slicing has to be
done at the points (p,Ep):

linear: (wcic,wb) = gσs,σr ⊗ (wi,w), (23a)

nonlinear: I c
p = wc(p,Ep)ic(p,Ep)

wc(p,Ep)
. (23b)

Intuition Following the example of a pen whose ink varies
(cf. Sect. 3.3), the function wi can be interpreted as the plot
of E using a pen with a brightness equal to I (cf. (22)). The
brightness of the plot depends on I and its shape is con-
trolled by E.

Validation Figure 17 illustrates the effects of the bilateral
filter on a flash/no-flash pair. The flash picture has a low
level of noise but an unpleasant illumination. The no-flash
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Fig. 17 Example of cross bilateral filtering with a flash/no-flash pair
of photographs (a, b). Directly denoising the no-flash picture is hard
because of the high level of noise (c). Relying on the flash picture to
define the edges to preserve greatly improves the result quality (d, e).
Our approximation scheme produces a result (e) visually similar to the
exact computation (d). The difference image (f) reveals subtle devi-

ations (a 10× multiplication has been applied). The PSNR is 41 dB.

We used σs = 6 for all the experiments, and σr = 0.25 for direct bi-

lateral filtering and σr = 0.1 for cross bilateral filtering. These values

produce the most pleasing results from all our tests. The input images

are courtesy of Elmar Eisemann

image has a better illumination but is very noisy. We de-
noised it with the cross bilateral filter by using the flash im-
age to define the range influence. The achieved result ex-
hibits crisper details than a direct bilateral filter based on the
no-flash image alone. Our approximation of the cross bilat-
eral filter achieves the same accuracy and performances as
demonstrated for bilateral filtering. We refer the reader to
the articles by Petschnigg et al. (2004) and Eisemann and
Durand (2004) for more advanced approaches to processing
flash/no-flash pairs. Bae et al. (2006) propose another use
of the cross bilateral filter to estimate the local amount of
texture in a picture. All the results of this article have been
computed with our technique.

8 Applications

In this section, we illustrate the capacities of our technique
to achieve quality results and meet high standards. We repro-
duce several of results published previously by the authors.

Tone Mapping We used our technique to manipulate the
tone distribution of pictures. First, we implemented a sim-
plified version of the tone-mapping operator described by
Durand and Dorsey (2002). Given a high dynamic range im-
age H whose intensity values span a range too broad to be
displayed properly on a screen, the goal is to produce a low
dynamic range image L that fits the display capacities. The
technique can be summarized as follows (see Durand and
Dorsey 2002 for details):

1. Compute the logarithmic image log(H) and apply the
bilateral filter to split it into a large-scale component
(a.k.a. base) B = bf (log(H)) and a small-scale compo-
nent (a.k.a. detail) D = log(H) − B .

2. Compress the base: B ′ = γB where γ = contrast/
(max(B) − min(B)). ‘contrast’ is set by the user to
achieve the desired rendition.

3. Compute the result L = exp(B ′ + D).



Int J Comput Vis (2009) 81: 24–52 47

Fig. 18 Example of tone mapping. The input has a dynamic range too
large to be displayed correctly, either the sky is over-exposed or the city
is under-exposed. Tone-mapping computes a new image that contains
all the details in the sky and in the city and that can viewed on a stan-

dard display. We implemented a simplified version of the tone-mapping
operator described by Durand and Dorsey (2002). Our approximation
does not incur any artifact in the result. The input image is courtesy of
Paul Debevec

Figure 18 shows a sample result that confirms the ability of
our technique to achieve high-quality outputs.

Tone Management We also used our method within a more
complex pipeline to manipulate the “look” of digital pho-
tographs. This technique starts from the same idea as the
tone-mapping operator by splitting the image into two layers
but then the two layers undergo much stronger transforma-
tions in order to adjust both the global contrast and the local
amount of the texture of the picture. The bilateral filter is
used early in the pipeline to separate the picture into a large-
scale layer and a small-scale layer. Cross bilateral filtering
is applied later to compute a map that quantifies the local
amount of texture at each pixel. Our fast scheme allows this
application to be interactive since the result is computed in a
few seconds. The details of the algorithm are given in a ded-
icated paper (Bae et al. 2006). A sample result is shown in
Fig. 19. Notice how the result is free form artifacts although
an extreme increase of contrast has been applied.

9 Discussion

9.1 Dimensionality

Our approach may seem counterintuitive at first since to
speed up the computation, we increase the dimensionality
of the problem. Our separation into linear and nonlinear
parts comes at the cost of additional range dimensions (one

for gray-level images, three for color images). One has to
be careful before increasing the dimensionality of a prob-
lem since the incurred performance overhead may exceed
the gains, restricting our study to a theoretical discussion.
The key of our performances is the possibility to perform
an important downsampling of the S × R domain with-
out incurring significant errors. Our tests have shown that
the dimensionality is a limiting factor only with color im-
ages when using small kernels. In that case, the 5D S × R
space is finely sampled and the required amount of mem-
ory becomes prohibitive (Sect. 7.1). Adapting the narrow
band technique (Adalsteinsson and Sethian 1995) to bilat-
eral filtering would certainly help on this aspect. Never-
theless, in all the other scenarios (color images with big-
ger kernels, and single-channel images with kernel of any
size), we have demonstrated that our formalism allows for
a computation scheme that is several orders of magnitude
faster than a straightforward application of the bilateral fil-
ter. This advocates performing the computation in the S × R
space instead of the image plane. This strategy is remi-
niscent of level sets (Osher and Sethian 1988) which alle-
viate topology management by representing surfaces in a
higher-dimensional space. In comparison, we introduce a
higher-dimensional image representation that enables dra-
matic speed-ups through signal downsampling.

Note that using the homogeneous intensities and colors
does not increase the dimensionality since (1) and (17) com-
pute the W b function in addition to I b or C b.
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Fig. 19 Example of tone management. Our approximation of the bilateral filter and of the cross bilateral filter has been used to enhance digital
photographs. See the original article for details (Bae et al. 2006)

9.2 Comparison with Channel Smoothing

Felsberg et al. (2006) describe an edge-preserving filter that
represents an image as a set of channels corresponding to
regularly spaced intensity values. For each pixel, the three
closest channels are assigned a value corresponding to a
second-order B-spline centered on the pixel intensity. Then,
the channels are smoothed independently. The output values
are computed by reconstructing a B-spline from three chan-
nel values. In our bilateral filter framework, this technique
can be interpreted as the replacement of the Gaussian by a
B-spline to define the range influence. The channels are sim-
ilar to our downsampling strategy applied only to the range
domain except that we use a box function and a Gaussian
instead of a B-spline. This suggests that further speed-up
can be obtained by downsampling the channels as well, akin
to our space downsampling. The strength of this approach
is that aspects such as the influence function (Huber 1981;
Hampel et al. 1986; Black et al. 1998; Durand and Dorsey
2002) can be analytically derived and studied. The down-
side is the computational complexity introduced to deal with
splines. In particular, a relatively complex process is run at
each pixel during the final reconstruction to avoid aliasing.
In comparison, we cast our approach as an approximation
problem and characterize the achieved accuracy with signal
processing arguments. Thus, we do not define a new filter
and focus on bilateral filtering to improve dramatically its
computational efficiency. For instance, we prevent aliasing
with a simple linear interpolation and downsample both the
range and space domains. Further study of both approaches
would be a valuable research contribution.

9.3 Comparison with Image Manifolds

Sochen et al. (1998) describe the geometric framework that
handles images as manifolds in the S × R space. For in-

stance, a gray-level image I is seen as a 2D surface embed-
ded in a 3D space, i.e. z = I (x, y). This representation leads
to techniques that define functions on the manifold itself in-
stead of the xy plane, and that can be interpreted as deforma-
tions of the image manifold. In this context, the bilateral fil-
ter is shown to be related to the short-time kernel of the heat
equation defined directly on the image manifold: Sochen et
al. (2001) demonstrate that bilateral filtering using a small
window and blurring using a Gaussian kernel embedded in
the image manifold yield results close to bilateral filtering.
This interpretation based on small neighborhoods is related
to other results linking bilateral filtering to anisotropic diffu-
sion using partial differential equations (Durand and Dorsey
2002; Elad 2002; Buades et al. 2005) since these filters in-
volve only the eight neighbors of a given pixel. In a simi-
lar spirit, Barash (2002) uses points in the S × R domain
to interpret the bilateral filter. He handles S × R to com-
pute distances and express the difference between adaptive
smoothing and bilateral filtering as a difference of distance
definitions.

The main difference between these techniques and our
interpretation stems from the image representation: in image
manifolds, images remain fundamentally two-dimensional—
but embedded in a 3D space, while our representation stores
values in the whole 3D space. In the geometric framework,
each pixel is mapped to a point in S × R. Given a point in
S × R, either it belongs to the manifold and its S and R co-
ordinates directly indicate its position and intensity, or it is
not on the manifold and is ignored by the algorithm. These
methods also use the intrinsic metric of the image manifold.
In contrast, we deal with the entire S × R domain, we use
its Euclidean metric, we define functions on it, resample it,
perform convolutions, and so on. Another major difference
is that we define the intensity through a function (i or ib),
and that in general, the intensity of a point (x, ζ ) is not its
range coordinate ζ , e.g. ib(x, ζ ) �= ζ . To our knowledge, this
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use of the S × R domain has not been described before and
opens new avenues to deal with images. We have shown
that it enables the use signal-processing techniques and the-
ory to better compute and understand the bilateral filter. Our
approach is complementary to existing frameworks and has
potential to inspire new image processing techniques.

9.4 Frequency Content

Our interpretation shows that the bilateral filter output is ob-
tained from smooth low-frequency data which may seem
incompatible with the feature-preserving aspect of bilat-
eral filtering. The convolution step of our algorithm indeed
smoothes the functions defined on the S × R domain. Nev-
ertheless, the final result exhibits edges and corners be-
cause during the slicing nonlinearity, two adjacent pixels,
i.e. two adjacent points in the spatial domain, can sample
this smooth signal at points distant in the range domain,
thereby generating discontinuities in the output.

9.5 Comparison with Local-Histogram Approaches

Local histograms are classical intensity histograms where
each pixel contributes only a fraction defined by a spatial
influence function. Koenderink and van Doorn (1999) have
shown that local histograms are a useful tool to study im-
age structure and content. van de Weijer and van den Boom-
gaard (2001) and Weiss (2006) demonstrated that the result
of the bilateral filter at a given pixel is the average inten-
sity of its local histogram with each bin weighted by the
range function. This average is normalized by the sum of
the weights. Our technique can be interpreted in this frame-
work by remarking that the ζ axis represents histograms.
When we first build the S × R domain, the homogeneous
coordinate of the w function is a trivial histogram at each
pixel p: w(p, ζ ) = 1 at ζ = Ip and 0 at ζ �= Ip. The bins
are point-wise, i.e. there is a single intensity value per bin.
Then when we downsample the R domain by a factor sr, the
bins become wider and cover an intensity interval of size sr.
At this stage, each pixel has still its own histogram. After
downsampling the S domain with a box function of size ss,
each group of ss × ss pixels shares the same histogram, and
in general, several bins are occupied, i.e. w↓(p, ζ ) > 0 for
several ζ values. Then applying the spatial Gaussian approx-
imates a Gaussian window for the histograms, and the range
Gaussian is equivalent to weighting the histogram bins.

Let’s have a look at a few specifics of our approach. First,
although groups of pixels share the same histogram, there
are no blocks in the results since the linear interpolation ap-
plied at the end of the algorithm assigns to each pixel its
own histogram. In addition, we compute the wi function that
stores the mean intensity of each bin. Using this value, we
adapt the intensity associated to each bin to the data it con-
tains instead of using a generic value. For instance, if we

Fig. 20 A simple edge picture. Our approximations produce the exact
result. Although we downsample both the space and range domains,
there are no spatial blocking artifacts nor intensity aliasing defects. See
the text for details

put a single sample into a bin, this bin is represented by the
sample value and not by its midpoint, thereby preventing
any error. If several samples are stored together, the bin is
assigned their mean. Coupled with the linear interpolation
on the range domain, this ensures that our technique does
not suffer from intensity aliasing. Figure 20 shows a sim-
ple example that confirms that our approximated schemes
do not introduce blocks (the diagonal edge is preserved) and
that there is no intensity aliasing (constant intensity regions
are unaltered).

9.6 Complexity

Our algorithm operates on two types of data: the original
2D full-resolution image of size |S| and the low-resolution
3D representation of size |S|

s2
s

× |R|
sr

where | · | indicates the

cardinality of a set, and ss and sr are the sampling rates of
the space and range domains. The complexity of the method
depends on operations performed on both types. The com-
plexity of the convolution is:

• O(
|S|
s2
s

|R|
sr

log(
|S|
s2
s

|R|
sr

)) for the full-kernel option com-

puted with fast Fourier transform and multiplication in the
frequency domain.

• O(
|S|
s2
s

|R|
sr

) for the 53-kernel option computed explicitly in

the spatial domain. Since in this case, we have (ss, sr) =
(σs, σr), the complexity can be expressed as O(

|S|
σ 2

s

|R|
σr

).

Downsampling, upsampling, slicing, and dividing are
done pixel by pixel and are linear in the image size i.e.
O(|S|). The total algorithm complexity is thus O(|S| +
|S|
s2
s

|R|
sr

log(
|S|
s2
s

|R|
sr

)) with the full-kernel convolution and

O(|S| + |S|
s2
s

|R|
sr

) using a truncated kernel. Hence, depend-

ing on the sampling rates, the algorithm’s order of growth
is dominated either by the convolution or by the downsam-
pling, upsampling, and nonlinearities. Table 2 illustrates the
impact of the sampling rates on the running times: Convo-
lution takes most of the time with small sampling values
whereas it becomes negligible for large values. This com-
plexity also characterizes the effects of large kernels when
the sampling rates are equal to the Gaussian sigmas: The
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Table 2 Time used by each step at different sampling rates of
the architectural image. Upsampling is reported with the non-
linearities because our implementation computes ib↓↑ only at the

(x, Ix) points rather than upsampling the whole S × R space
(cf. Sect. 4.2). We use the full-kernel implementation with σs = 16 and
σr = 0.1

Sampling (ss,sr) (4, 0.025) (8, 0.05) (16, 0.1) (32, 0.2) (64, 0.4)

Downsampling 1.3 s 0.23 s 0.09 s 0.07 s 0.06 s

Convolution 63 s 2.8 s 0.38 s 0.02 s 0.01 s

Alicing, upsampling, division 0.48 s 0.47 s 0.46 s 0.47 s 0.46 s

per-pixel operations are not affected but the convolution be-
comes “cheaper”. This is confirmed in practice on the run-
ning times shown in Figs. 16 and 11. Finally, photography
applications set the kernel spatial radius as a portion of the
image size (Durand and Dorsey 2002; Eisemann and Durand
2004) and the range parameter can also be proportional to
the intensity range (Petschnigg et al. 2004; Bae et al. 2006).
In the latter case, the ratios |S|

σ 2
s

and |R|
σr

are fixed. This leads

to a constant-cost convolution and a global complexity lin-
ear in the image size O(|S|). For these applications, the run-
ning time variations are purely due to the per-pixel opera-
tions (downsampling, upsampling, and division).

9.7 Practical Use

Our experiments have highlighted the differences between
a number of accelerations of the bilateral filter. In practice,
the choice of a method will depend on the specific applica-
tion, and in particular on the spatial kernel size, the need for
accuracy vs. performance, the need for extensions such as
cross-bilateral filtering and color filtering, as well as ease of
implementation constraints.

Brute-Force Bilateral Filter The brute-force bilateral fil-
ter is a practical choice only for small kernels (in the 5 × 5
range) and when accuracy is paramount. It is trivial to im-
plement but can be extremely slow (minutes per megapixel).

Separable Kernel The separable kernel approximation
should be used only with small spatial kernels (no more than
10 pixels). It is simple to implement and can be adapted to
graphics hardware. However, processing time and accuracy
suffer dramatically with bigger kernels. This technique is
thus well adapted to noise-removal tasks that typically use
small spatial and range sigmas.

Iterated Box Weiss’s iterated box method is very efficient
for kernels of all sizes. It is only an approximation of the
Gaussian bilateral filter, but for most applications such as
computational photography, this is probably not an issue.
The speed of Weiss’s implementation draws heavily from
the vector instruction set of modern CPUs and the algorithm
implementation might be more complex than the one in this

paper. The main drawbacks of Weiss’s method are the re-
striction to box spatial weights, to single-channel images,
and the difficulty in extending it to cross bilateral filtering.

Our Method Our method is most efficient for large ker-
nels such as the ones used in computational photography to
extract a large-scale component of an image, e.g. (Durand
and Dorsey 2002; Eisemann and Durand 2004; Petschnigg
et al. 2004; Bae et al. 2006). It is very easy to implement and
to extend to color images and cross bilateral filtering. The
main weakness of our technique is for small kernels where
the size of the higher-dimensional representation becomes
prohibitive. Our method subsumes Durand and Dorsey’s
fast bilateral filter (Durand and Dorsey 2002) and, in our
opinion, there is no compelling reason to use that older
method since the new version is conceptually simpler and
implementation-wise, and has better accuracy-performance
tradeoffs.

The above discussion is summarized in Table 3.

10 Conclusions

We have presented a fast approximation of the bilateral filter
based on a signal processing interpretation. From a theoret-
ical point of view, we have introduced the notion of homo-
geneous intensity and demonstrated a new approach of the
space-intensity domain: We define intensities through func-
tions that are resampled and convolved in this space whereas
existing frameworks use it to represent images as manifolds.
Although smooth functions are at the core of our approach,
the results exhibit sharp features because of the slicing non-
linearity. We believe that these concepts can be applied be-
yond bilateral filtering, and we hope that these contributions
will inspire new studies. From a practical point of view, our
approximation technique yields results visually similar to
the exact computation with interactive running times. We
have demonstrated that this technique enables interactive ap-
plications relying on quality image smoothing. Our experi-
ments characterize the strengths and limitations of our tech-
nique compared to existing approaches. Our study casts a
new light on these other methods, leading for instance to a
consistent strategy to set the parameters of the iterated-box
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Table 3 Summary of the properties of the various implementations of the bilateral filter

Complexity Pros Cons

Brute force |S|2 Accurate Very slow with kernels larger than 5 × 5

Separable kernel |S|σs Fast with small kernels, easy to implement
and adapt

Axis-aligned artefacts

Iterated box |S| log(σs) Always fast Gray-level images only, hard to imple-
ment and adapt

Our method |S|+ |S|
s2
s

|R|
sr

log(
|S|
s2
s

|R|
sr

) or |S|+
|S|
s2
s

|R|
sr

Visually similar to brute force, fast with
large kernels, easy to implement and adapt

Slow with small kernels, large memory re-
quirement for color images

technique. It also points out its lack of convergence toward
Gaussian and B-spline kernels. We have listed a few guide-
lines stemming from these tests to select an appropriate bi-
lateral filter implementation depending on the targeted ap-
plication. Our technique is best at dealing with big kernels.
Furthermore, our method is extremely simple to implement
and can be easily extended to cross bilateral filtering and
color images.
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