
Int J Comput Vis (2008) 78: 187–206
DOI 10.1007/s11263-007-0101-9

Minimal Aspect Distortion (MAD) Mosaicing of Long Scenes

Alex Rav-Acha · Giora Engel · Shmuel Peleg

Received: 15 March 2007 / Accepted: 1 October 2007 / Published online: 22 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Long scenes can be imaged by mosaicing multi-
ple images from cameras scanning the scene. We address the
case of a video camera scanning a scene while moving in a
long path, e.g. scanning a city street from a driving car, or
scanning a terrain from a low flying aircraft.

A robust approach to this task is presented, which is ap-
plied successfully to sequences having thousands of frames
even when using a hand-held camera. Examples are given
on a few challenging sequences. The proposed system con-
sists of two components: (i) Motion and depth computation.
(ii) Mosaic rendering.

In the first part a “direct” method is presented for com-
puting motion and dense depth. Robustness of motion com-
putation has been increased by limiting the motion model
for the scanning camera. An iterative graph-cuts approach,
with planar labels and a flexible similarity measure, allows
the computation of a dense depth for the entire sequence.

In the second part a new minimal aspect distortion
(MAD) mosaicing uses depth to minimize the geometri-
cal distortions of long panoramic images. In addition to
MAD mosaicing, interactive visualization using X-Slits is
also demonstrated.

Keywords Video mosaicing · Ego motion · Stereo ·
Panorama · X-slits · Multi-perspective

This research was supported by the Israel Science Foundation. Video
examples and high resolution images can be viewed in
http://www.vision.huji.ac.il/mad/ .

A. Rav-Acha · G. Engel · S. Peleg
School of Computer Science and Engineering, The Hebrew
University of Jerusalem, 91904 Jerusalem, Israel

1 Introduction

Many mosaicing applications involve long image sequences
taken by translating cameras scanning a long scene. This in-
cludes a video camera mounted on a vehicle scanning city
streets (Ono et al. 2003; Agarwala et al. 2006a; Román et al.
2004; Zheng 2000; Shi and Zheng 2005), or a video camera
mounted on a low altitude aircraft scanning a terrain (Zhu
et al. 2004). We present a direct method to compute cam-
era motion and dense depth that are needed for this mosaic-
ing. The computed motion and depth information are used
for two visualization approaches. (i) A new Minimal Aspect
Distortion (MAD) mosaicing of the scene. (ii) An immersive
3D visualization using X-Slits (Zomet et al. 2003).

MAD mosaicing is using the motion and depth infor-
mation to create mosaic images where distortion of objects
is minimal. Mosaicing from translating cameras normally
gives pushbroom distortions, where far away objects be-
come wider and closer objects become narrower. In MAD
mosaicing the appearance of objects in the mosaic is closer
to their appearance in the original images, avoiding as much
as possible the pushbroom distortion. While MAD mosaic-
ing reduces local distortions, it may not be convenient for
the generation of new views. This can be done by X-Slits
mosaicing, allowing interactive changes of viewpoint and
viewing direction.

The effectiveness of the proposed approach is demon-
strated by processing several video sequences taken from
moving cars and from helicopters. Long MAD mosaics, and
a few fly through videos using X-Slits, are presented online
in http://www.vision.huji.ac.il/mad.

While the proposed computation of camera motion is
accurate, depth may not be computed accurately for many
scene points. Occlusions, low contrast, varying illumination,

188 Int J Comput Vis (2008) 78: 187–206

and reflections will always leave many scene points with no
depth values, or even with a wrong depth. Traditional model
based rendering approaches may fail when depth is not ac-
curate everywhere. But since image based rendering such as
MAD mosaicing and X-Slits projection use only statistics of
depth, such problems can be avoided.

The proposed approach uses only image data, and does
not require external motion information. If motion and/or
depth information is available, e.g. when using a GPS or
laser scanners, (Kawasaki et al. 2001; Ono et al. 2003), it
could be replace or enhance the motion computation part.

1.1 Overview of Proposed Approach

Panoramic images of long scenes, generated from images
taken by a translating camera, are normally distorted com-
pared to perspective images. When large image segments are
used for stitching a panoramic image, each segment is per-
spective but the seams between images are apparent due to
depth parallax. When narrow strips are used the panoramic
image is seamless, but its projection is normally pushbroom,
having aspect distortions. The distortions become very sig-
nificant when the variations in scene depth are large com-
pared to the distance from the camera.

In Sect. 5 we present “MAD Mosaicing”, which is a long
mosaic having minimum aspect distortions. It is based on
the observation that only the perspective projection is undis-
torted in a scene with large depth variations, while for a
scene at a constant depth almost any projection can give an
undistorted mosaic. MAD mosaicing changes the panoramic
projection depending on scene structure at each location,
minimizing two costs: A distortion cost and a stitching cost.
Minimization is done using dynamic programming.

An alternative visualization method is the X-Slits projec-
tion, described in Sect. 6. Even though X-Slits images are
more distorted, they enable to control the viewpoint and cre-
ate fly through sequences. In this case the depth information
is mostly needed when handling large displacements, when
the stitching process requires better interpolation.

Knowledge of camera motion and dense depth is needed
for mosaicing, and this information can be provided by any
source. A robust approach is proposed, alternating between
direct ego-motion computation (Sect. 3) and depth compu-
tation (Sect. 2). This results in a robust method to compute
both motion and depth, which can overcome large dispari-
ties, moving objects, etc. A general description of the alter-
nation between motion and depth computation is described
in Sect. 4.

By limiting our analysis to the most common case of a
camera moving sideways, motion and depth can be com-
puted robustly for otherwise ambiguous sequences. We can
robustly handle cameras mounted on moving cars and scan-
ning city streets, down-looking cameras scanning the ground

from a low altitude aircraft, etc. The camera is allowed, of
course, to rotate, as rotations are common in such cases due
to the vibrations of the vehicle.

The computation of camera motion uses a simple varia-
tion of the Lucas-Kanade method (Bergen et al. 1992) that
takes into account the estimated scene depth. Given the es-
timated motion, depth is computed using a graph cuts ap-
proach to detect planar surfaces in the scene. In long im-
age sequences, planar surfaces that were computed for pre-
vious frames are used as priors for the new frames, increas-
ing robustness. Additional robustness is achieved by incor-
porating a flexible pixel dissimilarity measure for the graph
cuts method. The variations of motion and depth computa-
tions that allowed handling inaccurate inputs are described
in Sects. 3 and 2.

A note about notation: We use the terms “depth” and “in-
verse depth” when we actually refer to “normalized dispar-
ity”: The horizontal disparity due to translation, divided by
the horizontal camera translation. This normalized disparity
is proportional to the inverse of the depth. The exact mean-
ing will be clear from the context.

1.2 Related Work

One of the declared benefits of the X-Slits mosaicing is its
reduced distortion compared to pushbroom (Feldman and
Zomet 2004). But for very long mosaics, the X-Slits images
become very close to pushbroom with its significant distor-
tions. Attempts to reduce the distortion of the long mosaic
were presented in (Román et al. 2004; Román and Lensch
2006), using different X-Slits projections for different scene
segments. This work inspired MAD mosaicing, which ex-
tends the piecewise constant approach to a continuous varia-
tion of X-Slits. Another source of inspiration is (Wexler and
Simakov 2005), where a mosaic image is generated by min-
imizing a stitching cost using dynamic programming. Other
papers on mosaicing of long scenes include (Shi and Zheng
2005; Zheng 2000), where long mosaics are generated from
a narrow slit scanning a scene. In these papers the camera is
assumed to move slowly in a roughly constant velocity, and
the scene depth can be estimated from stationary blur. In
Agarwala et al. (2006b) a long panorama is stitched from a
sparse set of still images, mainly addressing stitching errors.

The motion and depth computation in this paper is
closely related to many intensity based (“direct”) ego mo-
tion computations such as (Irani et al. 2002; Hanna 1991).
While these methods recover unrestricted camera motions,
they are relevant only for short sequences since they require
an overlapping region to be visible in all frames. For mosaic-
ing long sequences, a robust motion computation method is
required, which can also handle degenerate cases where gen-
eral motion can not be recovered. In particular, the algorithm

Int J Comput Vis (2008) 78: 187–206 189

should give realistic mosaic images even when no 3D infor-
mation is available in large portions of the scene. Earlier ver-
sions of our work on ego-motion computation for sideways
moving cameras were proposed in (Rav-Acha et al. 2004;
Rav-Acha and Peleg 2004). They had initialization and ro-
bustness problems that are addressed in this paper. In addi-
tion, they did not address the computation of dense depth
maps and the creation of undistorted mosaics.

In (Agarwala et al. 2006a; Román et al. 2004) meth-
ods are described for creating a multi-perspective panorama.
These methods recover camera motion using structure-from-
motion (Hartley and Zisserman 2004), matching features
(Lowe 2004) between pairs of input images. Matched points
are used to recover the camera parameters as well as a sparse
cloud of 3D scene points, recovery that is much easier when
fisheye lens are used as in (Agarwala et al. 2006a). This is
an opportunity to discuss the differences between our ap-
proach and earlier work. The first difference is the use of a
“direct” method rather than using feature point matches. Di-
rect methods can be preferred when feature points may be
rare, ambiguous, or noisy. Feature points will be preferred
in clean, high contrast, and unambiguous imagery.

All mosaicing work can be regarded as a special case of
creating a full model of the observed scene (Pollefeys et al.
2004). Having multiple images of the scene theoretically en-
ables both the computation of camera parameters and the
geometric and photometric structure of the scene. As the
mosaicing process is much simpler than the creation of a
scene model, it is likely to work in more cases. Mosaicing
works especially well when long scenes are involved, hav-
ing motion only in one direction. Even when a scene model
has successfully been constructed, the generation of a very
long panoramic image of the entire scene, having minimum
distortion, is a challenging problem.

For depth computation we use a variation of the iterative
graph cuts approach as described in (Kolmogorov and Zabih
2001), which is based on (Kolmogorov and Zabih 2002;
Boykov et al. 2001). Instead of extracting constant dispar-
ities, we segment the image into planar surfaces. Combining
the graph cuts approach with planar surfaces was described
in (Birchfield and Tomasi 1999; Hong and Chen 2004). The
main differences between (Birchfield and Tomasi 1999) and
our method is in the initialization of the planar surfaces
and in the extension of the two-frames algorithm to long
un-stabilized sequences. A more detailed discussion can be
found in Sect. 8.

2 Graph Cuts for Depth Computation (Assuming
Known Motion)

Given a stereo image pair, depth can be computed by find-
ing for each pixel in the left image its corresponding pixel

in the right image. Many methods improve stereo computa-
tion by incorporating the depth consistency between neigh-
boring points. A method that gives excellent results uses a
graph cuts approach to compute depth from stereo (Boykov
et al. 2001). We start by briefly describing the basic formu-
lation of the graph cuts approach. In Sects. 2.1 and 2.2 we
describe our variants on this formulation: defining a flexible
data penalty, and using planar surfaces instead of constant
disparities.

Let L be the set of pixels in the left image. In the com-
mon graph cuts approach to stereo each pixel p in the left
image is labeled with its disparity fp . A desirable labeling
f usually minimizes the Potts energy (Boykov et al. 2001):

E(f) =
∑

p∈L

Cp(fp) +
∑

p,q∈N

Vp,qδ(fp �= fq), (1)

where Cp(fp) is a cost for the pixel p to have the dispar-
ity fp based on image pair similarity, N denotes the set of
pixel pairs in the left image which are in a neighborhood
and δ(·) is 1 if its argument is true and 0 otherwise. Each
Vp,q represents a penalty for assigning different disparities
to neighboring pixels p and q . The value of the penalty Vp,q

is smaller for pairs {p,q} with larger intensity differences
|Ip − Iq |.

In stereo computations using the graph cuts approach, it
is assumed that disparities can only have a finite set of values
[0, . . . , dmax]. Minimizing the energy in (1) is still NP-hard,
but in (Boykov et al. 2001) it was shown that using a set of
“α-expansion” moves, each finding a minimal cut in a binary
graph, can give good results that are very close to the global
optimum.

Following (Boykov et al. 2001) improvements to graph-
cuts stereo were introduced in (Kolmogorov and Zabih
2001; Deng et al. 2005). These include better handling of
occlusions, and symmetrical formulation of stereo. While
we used the basic formulation of (Boykov et al. 2001), the
newer approaches can be incorporated into the proposed
method if needed.

It should be noted that since we pass the depth values
from frame to frame, we need a consistent description that
is independent of the relative motion between frames. There-
fore, after computing the disparities, we normalize them by
the camera translation Tx between the two frames (In this
section, we assume that the camera motion is given).

2.1 Flexible Pixel Dissimilarity Measure for Graph Cuts

Depth computation using iterative the graph cuts approach,
as most other stereo computation methods, assumes one di-
mensional displacements between input images. This is a
valid assumption when accurate image rectification is possi-
ble. Rectification needs accurate camera calibration, where
both internal and external camera parameters are known

190 Int J Comput Vis (2008) 78: 187–206

(or can be accurately computed). However, when the in-
put frames are part of an uncalibrated video sequence, the
computed motions usually accumulate small errors in a few
frames. In addition, the internal parameters of the camera are
not always known. As a result, methods that assume accurate
calibration and rectification fail for such video sequences.
Moreover, the presence of small sub-pixel miss-registrations
between frames not only reduces the accuracy of the com-
puted depth, but usually results in a totally erroneous depth
computation.

A possible way to overcome this problem is by com-
puting a two dimensional optical flow rather than a one-
dimensional optical flow. This approach increases the size
of the graph and the computational complexity. We there-
fore keep the original structure of the graph using only hor-
izontal displacements, but change the dissimilarity measure
to be more tolerant for small vertical displacements.

2.1.1 Allowing 2D Sub-Pixel Displacements

The first step towards a flexible graph cuts approach is to
allow horizontal and vertical sub-pixel displacements. To do
so we extend an idea suggested in (Birchfield and Tomasi
1998), where a pixel dissimilarity takes into account image
sampling. Let (x, y) be a coordinates of a pixel in the image
I1 and let fp be some candidate disparity. Instead of using
the pixel dissimilarity Cp(fp) = |I1(x, y) − I2(x + fp, y)|,
they suggested the following pixel dissimilarity:

Cp(fp) = min
− 1

2 ≤s≤ 1
2

|I1(x, y) − I2(x + fp + s, y)|. (2)

Equation (2) is more accurate due to the fact that only a dis-
crete set of disparities is possible. When the sampling of the
image values at sub-pixel locations are computed using a
linear interpolation, the above dissimilarity measure can be
computed efficiently by:

Cp(fp) = max{0, I1(x, y) − vmax, vmin − I1(x, y)}, (3)

where vmax and vmin are respectively the maximum and min-
imum of the two pixel values {I2(x + fp ± 1

2 , y)}.
To allow sub-pixel vertical displacements, we will further

change the range of the target pixel (x + fp, y) from a 1D
interval to a 2D region:

Cp(fp) = min
− 1

2 ≤s,r≤ 1
2

|I1(x, y) − I2(x + fp + s, y + r)|, (4)

which can also be efficiently computed, in a similar way to
the one dimensional case (see (3)).

2.1.2 Handling Larger Vertical Displacements

The next step is to handle larger vertical displacements. This
is most common when having small rotation about the opti-
cal axis, in which case the pixels at the left and right bound-
aries have large vertical displacements. Allowing large pixel

displacements without any penalty will reduce the accu-
racy of the 1D search that overcomes the aperture prob-
lem. Therefore, unlike the sub-pixel displacements, larger
displacements have some penalty. Considering all possible
vertical displacements of up to a single pixel, gives our final
pixel dissimilarity measure:

Cp(fp, l) = min
− 1

2 ≤s,r≤ 1
2

|I1(x, y)

− I2(x + fp + s, y + r + l)| + |l| · K, (5)

Cp(fp) = min
l∈{−1,0,1}Cp(fp, l),

where l is a vertical displacement and K is a penalty factor
(we used K = 5). Note that for a very large K , (5) reduces
to the sub-pixel case in (4).

The advantage of using the flexible graph cuts approach
is demonstrated in Fig. 1.

2.2 A Planar Representation of the Scene using Graph Cuts

In the proposed framework depth is computed by the graph
cuts approach only for a partial set of frames, and is prop-
agated to the rest of the frames by depth warping. In order
to propagate depth, it should be accurate and piecewise con-
tinuous. The widely used graph cuts methods give piecewise
constant depth values. As a result, they tend to over-segment
the image and do not obtain sub-pixel accuracy.

Instead, we compute a piecewise planar structure, as also
suggested by (Hong and Chen 2004; Deng et al. 2005;
Xiao and Shah 2005; Birchfield and Tomasi 1999). The main
differences between (Birchfield and Tomasi 1999) and our
method is in the initialization of the planes and in the exten-
sion of the two-frames algorithm to long un-stabilized se-
quences. A detailed discussion of important differences can
be found in Sect. 8.

There are several advantages in using a planar represen-
tation of the depth rather than discrete disparity values: (1)
The piecewise planar model gives a better representation of
the scene especially in urban areas. (2) The planar dispar-
ity surfaces can be estimated with sub-pixel accuracy, and
therefore can be used to predict the depth even at far away
frames without losing its accuracy. (3) Description of the
depth map with planar surfaces requires a smaller number
of segments compared to constant depths. Having a smaller
number of more accurate segments significantly reduces the
number of pixels marked as occlusions due to quantization
errors.

The depth of a planar scene surface can be denoted as
a′X + b′Y + c′Z + d ′ = 0 in the coordinate system of
frame I1. Assuming a perspective projection (x = f X/Z

Int J Comput Vis (2008) 78: 187–206 191

Fig. 1 The advantage of using flexible graph cuts. One of two inputs
frames is shown in (a). The disparities computed by the flexible and
the regular graph cuts approaches on the original frames are shown
in (b) and (c) respectively. The disparities computed by the flexible
and the regular graph cuts approaches after rotating the right frame
by one degree are shown in (d) and (e) respectively (unknown depths

are marked in black). It can be seen that the flexible and regular graph
cuts approaches have similar results when using two calibrated frames,
but when one of the images is slightly rotated, the flexible graph cuts
approach successfully recovers the disparities for most of the pixels,
while regular graph cuts approach fails

and y = f Y/Z, where f is the focal length) and multiplying
the surface equation by f

d ′Z yields:

a′

d ′ x1 + b′

d ′ y1 + f c′

d ′ + f

Z
= 0. (6)

Dividing by d ′ is valid as d ′ = 0 only for planes that pass
through the focal point, and these are planes that the camera
does not see. Assuming a horizontal camera translation Tx

between frames I1 and I2, the disparity between the corre-
sponding pixels x1 and x2 is x1 − x2 = f Tx

Z
so the normal-

ized disparity x1−x2
Tx

equals the inverse depth f
Z

. From (6) it
can be seen that the normalized disparity (or inverse depth)
of a planar surface in the scene can be expressed as an affine
function in the image coordinates:

x1 − x2

Tx

= f

Z
= −a′

d ′ x1 − b′

d ′ y1 − f c′

d ′ . (7)

This formulation suggests that planar surfaces in the world
induce affine disparities between the images (and vice
versa). We will refer to planes in the world and “planar”
disparities in the image in the same manner.

The process of computing planar disparities using graph-
cuts can be described schematically as follows:

1. Run regular graph-cuts with constant disparities in the
range of [0, . . . , dmax].

2. Find the parameters of a new plane and add them to the
planes list.

3. Run the graph cuts method with planar labels from the
list (described in Sect. 2.2.2).

4. Optionally, remove unused planes and return to Step 2.

This general scheme is described in a more detail in the
following paragraphs.

2.2.1 Finding Candidate Planes (Steps 1-2)

Our purpose is to determine planes that will be used as la-
bels in the planes-based graph-cuts (Step 3 and Sect. 2.2.2).
A naive way to do so would be to select representatives of all
planes, as is done in the case of constant disparities. How-
ever, this is not realistic as the space of all planar surfaces
is too big, and sub-pixel accuracy is required. Therefore, the
list of planes should be determined in a more efficient way.

Many times, an initial list of planes is already available.
This is the case, for example, when the list of planes can be
transferred from another image in the sequence where such
a list has already been computed (see Sect. 2.3). In other
cases, where no initial list of planes is available, we apply
the following scheme:

Step 1: Run regular graph-cuts with constant disparities.
These disparities can be viewed as disparities of planar sur-
faces:

mi = 0 · x + 0 · y + i, 0 ≤ i ≤ dmax.

Computing stereo with constant disparities can be done with
the regular graph-cuts (Boykov et al. 2001). Note, however,
that we always use a flexible pixel dissimilarity measure as
described in Sect. 2.1.

Step 2: The output of the graphcuts process is used to
segment the image into connected components of equal dis-
parity. Our assumption is that each planar surface is rep-
resented by multiple segments with constant disparities as
demonstrated in Fig. 2. Based on this assumption, we cal-
culate the affine motion parameters for each large enough
segment. Let S be such a segment, then the computed affine
motion parameters ms = (a, b, c) are those that minimize
the error:

E(a,b, c) =
∑

(x,y)∈S

[
I1(x, y) − I2(x + ax + by + c, y)

]2
.

(8)

192 Int J Comput Vis (2008) 78: 187–206

Fig. 2 A regular graph cuts approach with constant disparities is used
to obtain an initial over-segmentation of the image disparities. It is
assumed that each planar surface is represented by multiple segments
with constant disparities. This is demonstrated in (b). For each segment
in (b) an parametric motion model is computed directly from the image

intensities (using the Lucas-Kanade method) and all planes where this
computation converge are used as planar labels in the planes-based
graph-cuts. The result of the planes-based graph-cuts is shown in (c).
This result is distinguishable from the ground truth in only a few pixels

These motion parameters are computed directly from the
image intensities using a gradient descent algorithm in a
multiresolution framework as suggested by (Bergen et al.
1992). With the method of (Bergen et al. 1992), the affine
parameters can be computed in a sub-pixel accuracy. If a
plane consists of several disparity segments, it is sufficient
that only one of the corresponding parametric motion com-
putations will converge, while the computations that do not
converge are ignored. Having multiple descriptions for the
same plane is allowed. The task of segmenting the image
into planar disparities according to the planes list is left to
the plane based graph-cuts described next.

2.2.2 Graph Cuts with Planar Labels (Step 3)

In this section we assume that a list of candidate planes is
given, and we would like to represent the disparity map be-
tween the two images with these candidate planes. An iter-
ative graph cuts approach is performed, where each pixel
p = (x, y) can be assigned with a single corresponding
plane denoted as mp = (a, b, c). Similar to the classical
graph cuts approach we use the Potts model as in (1),

E(f) =
∑

p∈L

Cp(fp(mp)) +
∑

p,q∈N

Vp,qδ(mp �= mq) (9)

where fp(mp) is the disparity of the pixel p according to the
planar disparity fp(mp) = ax + by + c. As a data penalty
function Cp we use the flexible pixel dissimilarity measure
introduced in Sect. 2.1 (see (5)). Note that the smoothness
term penalizes transitions between different planes, and not
transitions between different disparities. This implies that a
single planar label will be the preferred representation of a
single planar surface, as using multiple planes having simi-
lar parameters will be penalized. As a result, the planar rep-
resentation of the scene will tend to be sparse even if the list
of planes is redundant.

In addition to the labels representing planar surfaces,
a special label, denoted as ’unknown’ is used to represent
pixels with unknown disparities. This label is assigned with
a constant penalty. Although stronger formulations exist for
the specific case of occlusions (such as Kolmogorov and
Zabih 2001), we use this general purpose label to handle
both occlusions, moving objects and deviations from the
motion model.

The energy function defined above is very similar to the
constant-disparities case, and can be minimized in the same
manner. The result of the energy minimization will be an as-
signment of a planar surface to each pixel in the image. As
noted before, the process of finding new candidate planes
(while removing unused planes) can be repeated, this time
with the better segmentation obtained by the plane-based
graphcuts.

2.3 Forward Warping of Planes

A basic building block in the proposed scheme is the map-
ping of the inverse depths to the next frames. Let the inverse
depth map for frame I1 be described by planar surfaces, and
let each pixel in I1 be labeled as belonging to one of these
planes.

The inverse depth of I2 can be estimated from that of
I1 and from the horizontal translation Tx between the two
frames in the following way:

1. The parameters of each planar surface are translated from
the coordinate system of the source frame I1 to the co-
ordinate system of the target frame I2. This is done as
follows: Let

D1(x, y) = f

Z
= ax + by + c

describe a planar (normalized) disparity in I1. Using (7),
one can go back to the coefficients of the plane in the 3D

Int J Comput Vis (2008) 78: 187–206 193

space (up to a scale factor) giving: aX + bY + cZ
f

− 1 =
0. Applying a horizontal translation Tx to get the rep-
resentation of the plane in the coordinate system of I2

yields: a(X − Tx) + bY + cZ
f

− 1 = 0, or

aX + bY + c
Z

f
− (aTx + 1) = 0.

Using (7) gives the normalized disparity in frame I2:

D2(x, y) = a

aTx + 1
x + b

aTx + 1
y + c

aTx + 1
. (10)

The parameters of a planar disparity in I2 can therefore
be computed simply from the corresponding plane para-
meters in I1 and the relative horizontal translation Tx .

2. The pixel labeling of I2 can be computed by warping
forward the pixel labeling of I1. When two labels are
mapped to the same pixel in I2, the label corresponding
to a smaller depth is used to account for occlusion. Pixels
in I2 that were not assigned with a label by the forward
warping are marked as “unknowns”, and are not used in
further computations.

The forward warping of inverse depth may leave some
pixels in I2 with no assigned label. This is not an immediate
problem to motion computation, as the depth of all pixels is
not required for motion analysis. At a later stage, the labels
are completed from neighboring frames or interpolated from
other pixels.

2.4 Implementation and Efficiency

In general, stereo computation of each frame included: (a)
A single call to graph-cuts, using planes warped from the
previous computation plus constant disparities. (b) A single
call to graph-cuts after removing unused planes and adding
new planes using the parametric affine motion computation.
Each call to graph-cuts involves two cycles of graph-cuts,
each cycle consists of a single expansion move for each la-
bel. We found that similar results were produced with only
a single cycle in the first call and two cycles in the second
call. The second cycle is important mainly to obtain a clean
segmentation, which is not crucial in the first call.

For scenes having high depth variability, e.g. Street Se-
quence, fifty constant disparities were used in the initializa-
tion step. Foe scenes with lower depth variability, e.g. Boat
Sequence, twenty constant disparities were enough.

Stereo computations using graph-cuts require most of the
computational cost in the proposed framework, and take
∼20 seconds per frame of size 360 by 240. In our ex-
periments we used the graph-cuts implementation of Kol-
mogorov (http://www.cs.cornell.edu/∼rdz/graphcuts.html),
and added to it the flexible dissimilarity measure and the pla-
nar labels. These additions did not have a significant effect

on the performance, since the number of candidate planes
was practically smaller than the number of constant dispar-
ity labels.

The stereo computations may be accelerated significantly
using a multi-resolution framework. In addition, our for-
mulation of planar and flexible graph-cuts can be incor-
porated with other methods for solving Markov Random
Fields. For example, in (Felzenszwalb and Huttenlocher
2006), a fast multi-resolution implementation of Belief-
Propagation, which is an alternative way to solve MRFs, was
shown to produce good results much more efficiently. Yang
et al. (2006) even introduced a real-time implementation of
stereo matching using graphics hardware.

3 Computing Ego Motion (Assuming Known Depth)

Assume that the image Ik−1 has already been aligned and
de-rotated according to the motion parameters that were
computed in previous steps. Let Ik be the new frame to be
aligned. We are also given the inverse depth map Dk−1 cor-
responding to (the de-rotated) Ik−1. Our motion model in-
cludes a horizontal camera translation Tx and camera rota-
tions R about the x and z axis:

P + �Tx = R−1P ′, (11)

where P and P ′ are corresponding 3D points in the co-
ordinate systems of Ik−1 and Ik respectively, and �Tx =
[Tx,0,0]t denotes the horizontal translation. Note that the
rotation matrix R is applied only on frame Ik , as we as-
sume that Ik−1 has already been aligned and de-rotated. On
the other hand, the translation is applied on Ik−1, since the
depths are known only for frame Ik−1. A schematic diagram
of the ego-motion computation is shown in Fig. 3(a).

Assuming small rotations, the image displacements can
be modeled as:

x′ = x + Tx · Dk−1(x, y) + cos(α)x′ − sin(α)y′,
(12)

y′ = y + b + sin(α)x′ + cos(α)y′.

The camera rotation about the z axis is denoted by α, and
the tilt is denoted by a uniform vertical shift b. in cases of a
larger tilt, or when the focal length is small, the fully accu-
rate rectification can be used.

To extract the motion parameters, we use a slight modi-
fication of the Lucas-Kanade direct 2D alignment (Bergen
et al. 1992), iteratively finding motion parameters which
minimize the sum of square differences using a first order
Taylor approximation. The approximations cos(α) ≈ 1 and

194 Int J Comput Vis (2008) 78: 187–206

Fig. 3 Schematic diagrams of the motion and depth computations:
(a) Motion computation between frame Ik−1 with computed inverse
depth Dk−1, and a new image Ik . (i) Initial translation T̃ and R̃ are
estimated (e.g. same as last frame, or zero). (ii) Ik−1 is warped with
the estimated disparity, equivalent to T̃ multiplied by Dk−1, to give the
warped Ĩk−1. Ik is rotated by R̃−1 to give Ĩk . (iii) New estimations for
rotation R̃ and translation T̃ are computed between the warped images

Ĩk−1 and Ĩk . (iv) The process is repeated from step (ii) until conver-
gence. (b) Computation of inverse depth for a new reference frame Ik

is performed between the previous reference frame Ir , and Ĩk . Ĩk is
the new frame Ik after it has been rotated to the coordinate of Ir by
the rotation estimated in part (a). The inverse depth Dk is the disparity
computed between Ir and Ĩk divided by the translation T previously
computed between these two frames

Fig. 4 Intermediate depth maps computed during the iterative depth
and motion computations process (unknowns are marked in black). To
make this example more interesting, we rotated the right frame by two
degrees before applying the algorithm. It can be seen that the columns

at the left and right margins are marked as unknowns in the first itera-
tion due to their large vertical displacements. The support of the center
pixels was sufficient to correctly extract the relative motion between
the two frames

sin(α) ≈ α are also used, giving the following error function
to be minimized:

E(Tx, b,α) =
∑

x,y

{Ik−1(x − Tx · Dk−1(x, y), y)

− Ik(x
′ − αy′, y′ + b + αx′)}2. (13)

We use the first order Taylor expansion around Ik−1(x, y)

and around Ik(x
′, y′) to approximate:

Ik−1(x − Tx · Dk−1(x, y), y)

≈ Ik−1(x, y) − ∂Ik−1

∂x
TxDk−1(x, y),

(14)
Ik(x

′ − αy′, y′ + b + αx′)

≈ Ik(x
′, y′) + ∂Ik

∂x′ (−αy′) + ∂Ik

∂y′ (b + αx′),

which results in the following minimization:

E(Tx, b,α) =
∑

x,y

{Ik−1(x, y) − Ik(x
′, y′)

− ∂Ik−1

∂x
TxDk−1(x, y) − ∂Ik

∂x′ (−αy′)

− ∂Ik

∂y′ (b + αx′)}2. (15)

The minimization can be solved efficiently by taking the
derivatives of the error function E with respect to each of the

Int J Comput Vis (2008) 78: 187–206 195

three motion parameters and setting them to zero, giving the
following linear set of equations with only three unknowns:

AT A

⎡

⎣
Tx

α

b

⎤

⎦ = cAT , (16)

where

A =
[∑

x,y

∂Ik−1

∂x
Dk−1(x, y),

∑

x,y

(
∂Ik

∂y′ x
′ − ∂Ik

∂x′ y
′
)

,

∑

x,y

∂Ik

∂y′

]
,

and

c =
∑

x,y

(Ik−1(x, y) − Ik(x
′, y′)).

Similar to (Bergen et al. 1992), we handle large motions by
using an iterative process and a multi-resolution framework.
In our case, however, we simultaneously warp both images,
one towards the other: we warp Ik−1 towards Ik according to
the computed camera translation Tx (and the given inverse
depth), and we warp Ik towards Ik−1 according to the com-
puted rotation α and the uniform vertical translation b.

For additional robustness, we added outlier removal and
temporal integration:

• Pixels having a large intensity difference are marked as
outliers and are omitted from the motion computation.
Specifically, we omit pixels with

|∑W (Ik−1(x, y) − Ik(x
′, y′)) · ∂Ik−1

∂x
|

∑
W

∂Ik−1
∂x

2
> s, (17)

where W is a 5 × 5 neighborhood, and s is a threshold
(we used s = 1). Other schemes such as re-weighted least
squares can also be used (Montoliu and Pla 2003). Obvi-
ously, pixels that were marked by the depth computation
as having an unknown disparity are also not used.

• Frames that were already aligned are averaged with ear-
lier frames, also known as “Temporal Integration”. In-
stead of computing motion using a single reference frame,
we use the temporal integration that was shown in (Irani
et al. 1992) to add stability and robustness to outliers in
traditional 2D alignment methods.

Since the computed depth is quantized, a consistent depth
pattern (e.g. the common case when near objects are on the
bottom of the image and far objects are on the top of the
image) can cause a small rotational bias, which accumulates
in long sequences. A small modification of the motion com-
putation method described earlier can overcome this prob-
lem: Since the depth parallax is horizontal, only vertical dis-
placements are used to compute image rotation. To do so,

we change the error function in (13) to:

E(Tx, b,α) =
∑

x,y

{Ik−1(x − Tx · Dk−1(x, y), y)

− Ik(x
′, y′ + b + αx′)}2. (18)

As in the original method, the iterative image warping is
done using the accurate rotation matrix. It should be noted
that more general motion models can be computed, how-
ever our experience showed that adding motion parameters
that are not independent (e.g. pan with horizontal transla-
tion) may reduce the robustness of the motion computation
for scenes with small depth variations. Our current approach
can even handle scenes that are entirely flat.

4 Interleaving Computation of Depth and Motion

The recovery of depth and motion is initialized by comput-
ing the inverse depth using the first two frames. It is con-
tinued by interleaving stereo and motion computations, un-
til the motion of the camera and the corresponding inverse
depths are computed for the entire sequence. The initializa-
tion is described in Sect. 4.1 (and Fig. 5), and the interleav-
ing process is described in Sect. 4.2. A schematic work-flow
of the interleaving process is shown in Fig. 6.

As the process seems to depend on the selection of the
initial frames, we tested this dependency by randomly se-
lecting 30 different starting points in a sequence of two thou-
sand frames. In this experiment all different starting points
converged to very similar mosaic results.

4.1 Initialization: First Two Frames

A 2D image translation (u, v) is initially computed using the
traditional Lucas-Kanade method (Bergen et al. 1992), be-
tween I1 (the reference frame) and Ik , for k = 2,3, This
is performed until a frame Ik having sufficient horizontal
displacement from I1 is reached. Given (u, v), Ik is warped
vertically towards I1 according to v, and it is assumed that
Tx = u. The vertical motion v is estimated accurately since
the parallax is mostly horizontal.

The graph cuts algorithm is applied on I1 and the warped
Ik to estimate the depth map of I1 as described in Sect. 2.
Despite the rotational component which has not yet been
compensated, a correct depth map for most of the pixels can
be estimated by using the “Flexible Dissimilarity Measure”
(Sect. 2.1). The “unknown” label is automatically assigned
to pixels with large vertical displacements induced by the
rotation. The pixels that get valid depth values can now be
used to compute a better estimate for the relative camera mo-
tion between I1 and Ik (using the ego motion computation
described in Sect. 3).

196 Int J Comput Vis (2008) 78: 187–206

Fig. 5 A schematic work-flow of the initialization stage

After warping Ik towards I1 according to the estimated
rotation matrix, the depth map of I1 is re-computed. This
iterative process is continued until convergence.

An example for the process is shown in Fig. 4. In this
example, two frames from a video sequence were selected,
and one of the frames was manually rotated by 2◦. The inter-
mediate depth maps that were obtained during the iterative
process are shown, demonstrating the effective convergence
of the proposed method.

4.2 Interleaving Computation for the Entire Sequence

During the initialization process the inverse depth map D1

was computed, corresponding to frame I1. The reference
frame Ir is set to be I1, and its inverse depth map Dr is
set to be D1.

With the inverse depth Dr the relative camera motion be-
tween the reference frame Ir and its neighboring frame Ik

can be computed as described in Sect. 3. Let (Tk,Rk) be the
computed camera pose for frame Ik compared to the refer-
ence frame Ir . Given (Tk,Rk) and the inverse depth map Dr

for image Ir , the inverse depth values of Dr can be mapped
to the coordinate system of Ik as described in Sect. 2.3, giv-
ing Dk . A schematic diagram of the work-flow is shown in
Fig. 3.

Camera motion is computed as described above between
Ir and its neighboring frames Ir+1, Ir+2, etc., until the max-
imal disparity between the reference frame Ir and the last
frame being processed, Ik , reaches a certain threshold. At
this point the inverse depth map Dk has been computed by
forward warping of the inverse depth map Dr . Dk is up-
dated using the iterative graph cuts approach between Ik and
Ir to get better accuracy. To encourage consistency between
frames, small penalties are added to all pixels that are not

Fig. 6 A schematic work-flow of the interleaving process

assigned with labels of their predicted planes. This last step
can be done by slightly changing the data term in (1).

Recall that for keeping the consistency between the dif-
ferent frames, the disparities computed by the graph cuts
method should be normalized by the horizontal translation
computed between the frames, giving absolute depth values
(up to a global scale factor).

After Dk was updated, the new reference frame Ir is set
to be Ik , and its inverse depth map Dr is set to be Dk . The
relative pose and the inverse depth of the frames following
Ir are computed in the same manner, replacing the refer-
ence frame whenever the maximal disparity exceeds a given
threshold.

The process continues until the last frame of the sequence
is reached. In a similar manner, the initial frame can be set
to be one of the middle frames, in which the interleaving
process continues in the both positive and negative time di-
rections.

This scheme requires a computation of the inverse depths
using the graph cuts method only for a subset of the frames
in the sequence. Besides the benefit of reducing the process-
ing time, disparities are more accurate between frames hav-
ing larger separation. While depth is computed only on a
subset of frames, all the original frames are used for stitch-
ing seamless panoramic images.

4.3 Panoramic Rectification

In real scenarios, the motion of the camera may not perfectly
satisfy our assumptions. Some small calibration problems,
such as lens distortion, can be treated as small deviations

Int J Comput Vis (2008) 78: 187–206 197

Fig. 7 (a) A general cut C(t) through the space-time volume. (b) The same cut in the spatially aligned space-time volume. C(t) designates the
leftmost column of the strip St taken from frame t

from the motion model and can be overcome using the ro-
bust tools (such as the “unknown” label or the “flexible”
graph cuts approach presented in Sect. 2.1).

However, a bigger challenge is introduced by the cam-
era’s initial orientation: if the camera is not horizontally lev-
eled in the first frame, the motion computations may consist
of a false global camera rotation. The deviation of the com-
puted motion from the actual motion may hardly be noticed
for a small number of frames (making traditional calibra-
tion much harder). But since the effect of a global camera
rotation is consistent for the entire sequence, the error accu-
mulates, causing visual artifacts in the resulting panoramas.

This problem can be avoided using a better setup or by
pre-calibrating the camera. But very accurate calibration is
not simple, and in any case our work uses videos taken by
uncalibrated cameras, as shown in all the examples.

A possible rotation of the first image can be addressed
based on the analysis of the accumulated motion. A small
initial rotation is equivalent to a small vertical translation
component. The effect for a long sequence will be a large
vertical displacement. The rectification of the images will
be based on this effect: After computing image translations
(ui, vi) between all the consecutive frames in the sequence,
the camera rotation α of the first frame can be estimated as
α = arctan(

∑
i vi/

∑
i ui). A median can be used instead of

summation in the computation of α if a better robustness
is needed. All the frames are de-rotated around the z axis
according to α.

5 Minimal Aspect Distortion (MAD) Panorama

The visualization process can start once the camera ego-
motion and the dense depth of the scene have been com-
puted. Motion and depth computation can be done as pro-
posed in the previous sections, or can be given by other

processes. We propose two approaches for visualizing long
scenes. In Sect. 6 the existing X-Slits approach is used for
rendering selected viewpoints. In this section a new method
is presented for generation of a long minimal aspect distor-
tion (MAD) panorama of the scene. This panorama should
satisfy the following properties: (i) The aspect distortions
should be minimal. (ii) The resulting mosaic should be
seamless.

Since the visualization stage comes after motion com-
putation, the images in this section are assumed to be de-
rotated and vertically aligned. The residual displacements
between the images are therefore purely horizontal. It is also
assumed that the depth maps are dense. The depth values for
pixels that were labeled as unknowns are interpolated from
other frames (see Sect. 2.3). When pixels are occluded in all
neighboring frames, they are interpolated from neighboring
pixels according to the planar surface model.

5.1 Panorama as a Cut in the Space-Time Volume

A panoramic image is determined by a cut C(t) through the
space-time volume, as seen in Fig. 7. For each image t , C(t)

determines the left column of a strip St in image t to be
stitched into the panorama.

To obtain a seamless stitching, the right border of the strip
St is a curved line, corresponding to the left side of the next
strip, i.e. C(t + 1) (as shown in Fig. 8). This curved line is
computed using the camera motion and the known inverse
depth. The image strip St is warped to a rectangular strip S′

t

before being pasted into the panorama. The warping is done
by scaling each row independently, from its width in St to
the width of S′

t given by:

width(S′
t) = C(t + 1) − C(t)

+ alignmentt+1(C(t + 1)), (19)

198 Int J Comput Vis (2008) 78: 187–206

Fig. 8 The panorama is stitched from a collection of rectangular strips
S′

t warped from the input frames St . The stitching is seamless because
each point A′ on the right border of the image strip St corresponds
to the point A on the left border St+1 according to its the computed
disparity. A and A′ are the same point in the mosaic’s coordinates

where alignmentt+1(x) is set to be the average disparity of
the pixels in column x of image t + 1 relative to image t .
This average disparity equals to the average inverse depth
at this column multiplied by the relative horizontal transla-
tion Tx . In the warping from St to S′

t far away objects are
widened and closer objects are becoming narrower.

In pushbroom and X-Slits projections (see Fig. 13), C(t)

is a linear function of the camera translation. The local deriv-
ative of a general cut C(t) can represent a local X-Slits slice
having a slope of:

slope(t) = dC(t)/dt, (20)

as demonstrated in Fig. 9. The local X-Slits slope can change
spatially throughout the panorama. Special slopes are the
pushbroom projection (slope(t) = 0) and the perspective
projection (slope(t) → ∞).

In Román and Lensch (2006) a minimum distortion mo-
saic is created such that the slope function is piecewise con-
stant, and a non-linear optimization is used to minimize this
distortion. In MAD mosaicing the cut C(t) is allowed to be a
general function, and simple dynamic programming is used
to find the global optimum.

5.2 Defining the Cost of a Cut

The optimal cut through the space-time volume that creates
the MAD mosaic is the cut that minimizes a combination of
both a distortion cost and a stitching cost. The cost of a cut
C(t) is defined as follows:

cost(C) =
∑

t

distortiont (Ct ,Ct+1)

+ α
∑

t

stitchingt (Ct ,Ct+1), (21)

where t is a frame number and α is a weight. The distortion
term estimates the aspect distortion in each strip, and the

stitching term measures the stitching quality at the bound-
aries. Both are described next.

Distortion cost: As described before, a cut C deter-
mines a set of strips {St }. We define the distortion cost
distortiont (C(t),C(t + 1)) to be the variance of disparities
of the pixels in strip St . This is a good measurement for dis-
tortion, as strips with high variance of disparities have many
dominant depths. Objects in different depths have different
motion parallax, resulting in a distorted mosaic. In that case,
we prefer such strips to be wider, giving a projection that
is closer to perspective, as shown in Fig. 10. A single wide
strip in a high variance region will be given a lower cost than
multiple narrow strips.

We have also experimented with a few different distortion
functions: spatial deviation of pixels relative to the original
perspective; aspect-ratio distortions of objects in the strip
(Román and Lensch 2006), etc. While the results in all cases
were very similar, depth variance in a strip (as used in our
examples) was preferred as it consistently gave the best re-
sults, and due to its simplicity.

Stitching cost: The stitching cost measures the smooth-
ness of the transition between consecutive strips in the
panoramic image, and encourages seamless mosaics. We se-
lected a widely used stitching cost (similar to the one used in
Agarwala et al. 2004), but unlike the common case, we also
take the scene depth into consideration when computing the
stitching cost. This stitching cost is defined as the sum of
square differences between the C(t + 1) column of image
t + 1 and the corresponding column predicted from image t .
To compute this predicted column an extra column is added
to S′

t , by generating a new strip of width width(S′
t)+1 using

the method above. The right column of the new strip will be
the predicted column.

In addition to the distortion and stitching costs, strips
having regions that go spatially backwards are prohibited.
This is done by assigning an infinite cost to strips for which
C(t +1) < C(t)+Dmin(C(t +1)), where Dmin(C(t +1)) is
the minimal disparity in the column C(t +1) of image t +1.
For efficiency reasons, we also limit C(t + 1) − C(t) to be
smaller than 1/5 of the image’s width.

The distortion cost and the minimal and average dispari-
ties are computed only from image regions having large gra-
dients. Image regions with small gradients (e.g. a blue sky)
should not influence this cost as distortions are impercepti-
ble at that regions, and their depth values are not reliable.

5.2.1 Graph Construction and Minimal Cut

The graph used for computing the optimal cut is constructed
from nodes representing image columns. We set a directed
edge from each column x1 in frame t to each column x2 in
frame t + 1 having the weight

Vt(x1, x2) = distortiont (x1, x2) + α · stitchingt (x1, x2).

Int J Comput Vis (2008) 78: 187–206 199

Fig. 9 (a) A path C in the graph. C(t) indicates the node selected
in time t . Locally C(t) is a X-Slits projection as shown by the dotted
line, with slope = cot(θ). (b) Graph Construction: the nodes are all

the columns in the X − T space. There are edges from each column of
image t to all the columns of image t + 1

Fig. 10 Disparity variance at columns in the non-aligned x − t volume
corresponding to Fig. 12. Each row represents an input image, and the
value at location (x, t) represents the variance of normalized disparity
at column x of image t . The distortion cost is the variance of each strip,
and here we show the variance of each column. It can be observed that
the selected cut has a large slope when it passes through problematic
areas that have high variance. A large slop is equivalent to wide strips,
giving a result that is close to the original perspective

Each cut C corresponds to a path in the graph, passing
through the column C(t) at frame t . The sum of weights
along this path is given by

∑
t Vt (C(t),C(t + 1)), and is

equal to the cost defined in (21).
Finding the optimal cut that minimizes the cost in (21)

is therefore equivalent to finding the shortest-path from the
first frame to the last frame in the constructed graph. Any
shortest-path algorithm can be used for that purpose. We im-
plemented the simple Bellman-Ford dynamic programming
algorithm with online graph construction.

Figure 11 compares MAD mosaics with pushbroom mo-
saics on two regions taken from a long panorama. The differ-
ences between the two mosaics are large because the camera
is very close to the scene, and depth differences inside the
scene are very large compared to the distance between the
camera and the scene.

5.2.2 Implementation and Efficiency

The time complexity of the stitching process is dominated
by the computation of the stitching cost. By definition the
stitching cost has a complexity of w2 · h operations per
frame. The computation of the distortion cost is relatively
negligible as it has a complexity of w2 operations per frame.
We do not have to actually calculate the variance for each
strip, because we can pre-calculate the first two moments of
each column, and use them to estimate the variance of every
strip. The computation time for the dynamic programming
is negligible as well.

Online graph construction enables us to run on any num-
ber of frames with a low memory constraint: the frames are
loaded and processed sequentially and the graph-solving ad-
vances one frame at a time. The memory used in our imple-
mentation is of size w · N , where w is the image width, h is
the image height, and N is the number of frames.

Our non-optimized Matlab implementation has a process-
ing time of 2.4 seconds per frame with the stitching cost (not
including loading the images). The processing time without
the stitching cost is 0.2 seconds per frame. The processing
was performed on 360 × 240 images with a 3 GHz CPU.

200 Int J Comput Vis (2008) 78: 187–206

Fig. 11 Pictures (a, c) are
segments from a long
pushbroom mosaic, while (b, d)
show the same area in a long
MAD mosaic. Substantial
widening of far away objects
and narrowing of close objects
in evident in pushbroom. While
width of strips is uniform in
pushbroom, strip boundaries are
marked on top of the MAD
Mosaic image. Note also that
the MAD mosaic avoids cutting
inside moving objects

6 Dynamic Image Based Rendering with X-Slits

MAD mosaicing generates a single panoramic image with
minimal distortions. A MAD panorama has multiple view-
points, and it can not be used to create a set of views having
a 3D effect. Such 3D effects can be generated by X-Slits
mosaicing.

New perspective views can be rendered using image
based rendering (IBR) methods when the multiple input im-
ages are located densely on a plane (Levoy and Hanrahan
1996; Gortler et al. 1996). In our case the camera motion is
only 1D and there is only horizontal parallax, so perspective
images can not be reconstructed by IBR. An alternative rep-
resentation that can simulate new 3D views in the case of a
1D camera translation is the X-Slits representation (Zomet
et al. 2003). With this representation, the slicing function

C(t) is a linear functions of the horizontal translation (see
Fig. 13).

Constant slicing functions (C(t) = const), as in Fig. 13b,
correspond to pushbroom views from infinity. More general
linear functions,

C(t) = a · Ux + b

where Ux is the accumulated horizontal camera translation,
correspond to finite viewing positions. The geometrical in-
terpretation of these slices appears in (Zomet et al. 2003).
It was shown in (Feldman and Zomet 2004) that synthesized
views obtained using the X-Slits projection are the closest to
a perspective projection under the constraint of using linear
slices.

As the linear slicing functions of the X-Slits are more
constrained than those used in MAD mosaicing, they can not

Int J Comput Vis (2008) 78: 187–206 201

Fig. 12 (a) A MAD mosaic of a street in Jerusalem. The small marks
on the top are the strip boundaries. It can be noticed that large vertical
objects that cannot be sampled correctly (e.g. moving people or ob-
jects that are too close and have bad depth values) are preserved in a
single wide strip due to the stitching cost. A top view of the space-time
volume of this sequence is shown in Fig. 10. (b) A graph showing
C(t), the left strip boundary for each frame. The width of the graph is

scaled to the mosaic’s coordinates, and an identical value is shown for
all columns corresponding to the same strip. Each location in the graph
therefore corresponds to the strip in (a) above it. Lower values of C(t)

represent a strip from the left side of the input image (and a view to the
left). Higher values of C(t) represent a strip from the right side, and a
view to the right. (c) The constructed depth map of the mosaic

avoid distortions as in MAD mosaicing. On the other hand,
X-Slits projections are more powerful to create a desired
viewpoint. For example, in MAD-mosaicing distortions are
reduced by scaling each strip according to the average dis-
parity, while in the X-slits representation image strips are not
scaled according to disparity. This is critical for preserving
the geometrical interpretation of X-Slits, and for the consis-
tency between different views, but it comes at the expense
of increasing the aspect distortions.

6.1 Seamless Stitching for X-Slits

Since a video sequence is not dense in time, interpola-
tion should be used to obtain continuous mosaic images.
When the displacement of the camera between adjacent
frames is small, reasonable results can be obtained using
some blurring of the space-time volume (Levoy and Han-
rahan 1996; Gortler et al. 1996). For larger displacements
between frames, a depth-dependent interpolation must be
used. The effects of using depth information for stitching
is shown in Fig. 14. Figure 14a shows results without using
the dense depth. While the restaurant (whose depth is close
to the dominant depth in the scene) is stitched well, closer
objects (rails) are truncated and faraway objects are dupli-
cated. In contrast, stitching according to the dense depth
map (Fig. 14b) gives a far better stitching result. Note that
very narrow objects are still a challenge to our method and
may not be stitched well (such as the narrow pole on the

right side of the restaurant). This problem is usually avoided
in the MAD mosaicing, which tends to keep such narrow
objects in a single strip.

We used two different rendering approaches of X-Slit
images. An accurate stitching using the dense depth maps,
and a faster implementation suitable for interactive view-
ing. The accurate stitching is similar to the one described in
Sect. 5.1, with the only difference that the image strips are
not scaled according to average disparity. To get real-time
performance suitable for interactive viewing each row can-
not be scaled independently. Instead, the following steps can
be used in real-time X-Slits rendering: (i) Use a pre-process
to create a denser sequence by interpolating new frames be-
tween the original frames of the input sequence. This can
be done given the camera motion between the frames, and
their corresponding inverse depth maps. (ii) From the denser
sequence, continuous views can be obtained by scaling uni-
formly each vertical strip pasted into the synthesized view,
without scaling each row separately. The uniform scaling of
each strip is inversely proportional to the average disparity
in the strip.

7 Experimental Results

All experiments discussed in this paper were performed on
videos without camera calibration other than the removal of
lens distortion. The only manual involvement was the setting

202 Int J Comput Vis (2008) 78: 187–206

Fig. 13 New views are
generated as linear slices in the
horizontal translation
C(t) = a · Ux + b, where Ux is
the accumulated horizontal
camera translation.
(a) Changing the slope of the
slice simulates a
forward-backward camera
motion, while shifting the slice
simulates a sideways camera
motion. (b) The special case of
parallel slices in the space-time
volume (C(t) = const) results in
different viewing directions of
oblique pushbroom images

Fig. 14 The benefit of stitching using dense depth. (a) A street view
(X-Slits) obtained by stitching without depth scaling. The restau-
rant (whose depth is close to the dominant depth in the scene) is
stitched well, but closer and farther objects are truncated or duplicated.

(b) Depth-based stitching eliminates duplications and truncations.
Note that very narrow objects may still pose a problem for our method
(such as the narrow pole on the right side of the restaurant)

Fig. 15 The panoramic image was constructed by X-Slits mosaicing from a sequence captured from a river boat. The corresponding panoramic
inverse depth map is also shown

Int J Comput Vis (2008) 78: 187–206 203

Fig. 16 New synthetic views can be generated from the original boat
sequence using X-Slits, resulting in a new sequence where the camera
travels inside or outside the street, and it can even see behind the trees.

Few frames from such a sequence are shown, and the full video is
available at http://www.vision.huji.ac.il/mad

Fig. 17 A panoramic view of a derailed Shinkansen train, with its corresponding inverse depth and motion parameters (Tx and accumulated tilt
and image rotations). Inverse depth maps are also shown for a few frames (unknowns are marked in black)

204 Int J Comput Vis (2008) 78: 187–206

Fig. 18 A simulation of a forward motion from the original sequence
moving sideways. (a) and (c) are synthesized to appear from a distance
similar to the camera location, while (b) and (d) are synthesized from

closer into the scene. Synthesis is done using X-Slits (slicing the space
time volume). Objects marked by arrows were occluded in (a) and (c),
and the changes in occlusions give a strong feeling of a walk-through

of the maximal allowed disparity, which was done only to
speed up performance.

The data and the full panoramas are available online at
http://www.vision.huji.ac.il/mad. The examples demonstrate
the applicability of our method to a variety of scenarios, in-
cluding a sequence captured from a river boat (Figs. 15–
16), a helicopter (Fig. 17) and a driving car in a long street
(Figs. 11, 12, 18). The long MAD panorama of the entire
street can be seen online. We constructed panoramic images
using X-Slits (Figs. 15, 17) as well as sample images from a
virtual walk-through (Figs. 16 and 18). In Figs. 11–12 MAD
mosaicing was used to reduce distortions.

To successfully process all these different scenarios, the
method had to handle different types of camera motions (e.g.
highly unstable camera in the helicopter sequence), and dif-
ferent kinds of scenes (such as the street sequence, where the
depths varies drastically between the front of the buildings
and the gaps between them).

MAD mosaicing was proven to work particularly well on
long and sparse sequences, as shown in Figs. 11–12. Some
objects have such a large disparity that the stereo computa-
tion could not register them well, e.g. the close traffic signs
that have a disparity greater than 50 pixels. In such cases the
stitching cost is responsible for rendering these objects us-
ing a wide strip from a single frame. As shown in Fig. 12,
moving people and some of the very close traffic signs were
rendered correctly in most cases. The long MAD panorama
of the entire street is available online.

The total computational time ranges from 10–30 seconds
for each frame of size 360 × 240, depending on the motion
between frames and the depth variation. The stereo com-
putations, which are the most time consuming part, take
approximately 20 seconds per frame. In a dense video se-
quence, stereo computations run only once in a few frames.
The ego-motion computations and the stitching of MAD
mosaics take approximately 5 and 2.5 seconds per frame re-
spectively in an unoptimized Matlab implementation.

More details about each sequence are described next:
Boat: The input sequence used to produce the panoramic

boat image in Fig. 15 consists of 450 frames. The camera

is relatively far from the scene, and therefore the variance
of the depth was small relative to other sequences (such as
the street sequence). This allowed us to limit the maximal
disparity to 20 pixels, and reduce the run-time which is ap-
proximately linear in the number of labels. In addition, the
iterative graph-cuts was applied on this sequence only once
in 5 frames on average (The graph cuts method is performed
only when the maximal disparity reaches a certain threshold,
as described in Sect. 4).

Street: The length of the street as shown online and in
Figs. 11–12 is about 0.5 km, and the sequence consists of
1800 frames. This sequence is very challenging, as it is
sparsely sampled: The average disparity between pairs of
frames is about 20 pixels, and the depth variations are also
very large. Most stitching problems in this sequence are due
to very close objects having a disparity larger than our pre-
determined limit of 50 pixels. In this sequence, the iterative
graph-cuts was called almost for each frame.

Shinkansen: The input sequence used to produce the
panoramic image in Fig. 17 consists of 333 frames. The
derailed Shinkansen train is not moving. Some intermedi-
ate depth maps and the motion parameters are also shown.
A panoramic image of the same scene consisting of 830
frames appears in the homepage.

8 Discussion: What Makes This Work

Our goal was to build a system that will enable the robust
creation of urban and terrain models from cameras mounted
on vehicles or aircraft scanning an urban scene or a terrain.
The system should work for a reasonably captured video,
even in cases that other methods fail. We believe that this
goal has been achieved, and in this section we discuss the
elements that contributed to that.

The most important decision was to restrict the motion
model. A one dimensional translation (say horizontal), and
rotations about the x and z axis, is the most appropriate mo-
tion model for a camera scanning a scene from a moving

Int J Comput Vis (2008) 78: 187–206 205

vehicle. While this restriction keeps most classes of videos
applicable, it adds significantly to the robustness of the sys-
tem. All three components of the motion are orthogonal, so
no component can compensate for the other. Motion analy-
sis works perfectly well even in cases considered degenerate
for more general motion models (e.g. a flat scene having a
uniform depth).

The direct Lucas-Kanade motion computation using im-
age intensities, avoiding feature detection, succeeds even
when features are ambiguous or hard to detect. The sideways
motion may also pose a problem for some feature based
methods that need to track all features in all frames. In side-
ways motion feature points exist in a very small number of
frames relative to other types of motion.

The depth computation of our system uses a graph cuts
method to find planar surfaces in the scene. While we be-
lieve that other methods can replace the graph cuts method,
the detection of scene surfaces rather than computing a sin-
gle depth for each pixel enables better prediction of the
depth of new frames from the depths computed in earlier
frames. Another important element in the depth computation
is the “flexible” modeling of correspondences between im-
ages. Rather than assuming purely horizontal displacements,
we allow slight vertical displacements as well. This allows
convergence even from a wrong initial motion model, and
even under some camera distortions.

Temporal integration, that helped robustness in tradi-
tional 2D Lucas-Kanade (Irani and Peleg 1993; Rav-Acha
and Peleg 2006), was used as well. The computation of mo-
tion between the new frame and a temporal average of some
recent frames is equivalent to simultaneous alignment of the
current frame and all previous frames, which can overcome
noise and corrupted frames.

While all the above elements contributed substantially
to the robustness and success of the computation of cam-
era motion, depth computation can never be perfect for all
points at all locations. Ambiguity and occlusions always oc-
cur, in which case depth is impossible to compute. If no
user interaction is used for correcting the scene depth, the
available computed depth would not be sufficient for model-
based rendering. Here comes the decision to use image-
based rendering methods for creating panoramic images and
for a virtual walkthrough.

The natural human motion is on the ground plane: left,
right, forward, and backwards. All these motions are on a
plane that includes the camera path, and they all can be
simulated using X-Slits with no need for an accurate scene
depth. We found that when rendering a narrow field of view,
or when the scene is relatively flat, the distortion of the X-
Slits projection compared to perspective projection is barely
noticeable. These distortions become more visible when the
depth in the scene is large compared to the distance from the
camera, and when the field of view becomes wider.

When only a single panoramic image of the long scene is
needed, without creating multiple views, MAD mosaicing
creates an undistorted panoramic image. A pleasant side ef-
fect of MAD mosaicing is avoiding the truncation of objects
where the depth computations fails (such as walking people
that are always there when imaging city streets).

References

Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A.,
Curless, B., Salesin, D., & Cohen, M. (2004). Interactive digital
photomontage. In SIGGRAPH (pp. 294–302).

Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., & Szeliski, R.
(2006a). Photographing long scenes with multi-viewpoint panora-
mas. ACM Transactions on Graphics, 25(3), 853–861.

Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., & Szeliski, R.
(2006b). Photographing long scenes with multi-viewpoint panora-
mas. In SIGGRAPH’06 (pp. 853–861), July 2006.

Bergen, J., Anandan, P., Hanna, K., & Hingorani, R. (1992). Hierarchi-
cal model-based motion estimation. In ECCV (pp. 237–252).

Birchfield, S., & Tomasi, C. (1998). A pixel dissimilarity measure that
is insensitive to image sampling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(4), 401–406.

Birchfield, S., & Tomasi, C. (1999). Multiway cut for stereo and motion
with slanted surfaces. In ICCV (Vol. 1, pp. 489–495).

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11), 1222–1239.

Deng, Y., Yang, Q., Lin, X., & Tang, X. (2005). A symmetric patch-
based correspondence model for occlusion handling. In ICCV
(pp. 1316–1322), Washington, DC, USA.

Feldman, D., & Zomet, A. (2004). Generating mosaics with minimum
distortions. In Proceedings of the 2004 conference on computer
vision and pattern recognition workshop (CVPRW’04) (Vol. 11,
pp. 163–170), Washington, DC, USA.

Felzenszwalb, P., & Huttenlocher, D. (2006). Efficient belief propaga-
tion for early vision. International Journal of Computer Vision,
70(1), 41–54.

Gortler, S., Grzeszczuk, R., Szeliski, R., & Cohen, M. (1996). The lu-
migraph. SIGGRAPH, 30, 43–54.

Hanna, K. (1991). Direct multi-resolution estimation of ego-motion
and structure from motion. In MOTION’91 (pp. 156–162).

Hartley, R., & Zisserman, A. (2004). Multiple view geometry (2nd ed.).
Cambridge: Cambridge University Press.

Hong, L., & Chen, G. (2004). Segment-based stereo matching using
graph cuts. In CVPR (Vol. 1, pp. 74–81), Los Alamitos, CA, USA.

Irani, M., & Peleg, S. (1993). Motion analysis for image enhancement:
Resolution, occlusion, and transparency. Journal of Visual Com-
munication and Image Representation, 4, 324–335.

Irani, M., Rousso, B., & Peleg, S. (1992). Detecting and tracking
multiple moving objects using temporal integration. In ECCV’92
(pp. 282–287).

Irani, M., Anandan, P., & Cohen, M. (2002). Direct recovery of planar-
parallax from multiple frames. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(11), 1528–1534.

Kawasaki, H., Murao, M., Ikeuchi, K., & Sakauchi, M. (2001). En-
hanced navigation system with real images and real-time infor-
mation. In ITSWC’01, October 2001.

Kolmogorov, V., & Zabih, R. (2001). Computing visual correspon-
dence with occlusions via graph cuts. In ICCV (Vol. 2, pp. 508–
515), July 2001.

Kolmogorov, V., & Zabih, R. (2002). What energy functions can be
minimized via graph cuts? In ECCV’02 (pp. 65–81), May 2002.

206 Int J Comput Vis (2008) 78: 187–206

Levoy, M., & Hanrahan, P. (1996). Light field rendering. SIGGRAPH,
30, 31–42.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91–110.

Montoliu, R., & Pla, F. (2003). Robust techniques in least squares-
based motion estimation problems. In Lecture notes in computer
science: Vol. 2905. Progress in pattern recognition, speech and
image analysis (pp. 62–70). Berlin: Springer.

Ono, S., Kawasaki, H., Hirahara, K., Kagesawa, M., & Ikeuchi, K.
(2003). Ego-motion estimation for efficient city modeling by us-
ing epipolar plane range image. In ITSWC’03, November 2003.

Pollefeys, M., VanGool, L., Vergauwen, M., Verbiest, F., Cornelis, K.,
Tops, J., & Koch, R. (2004). Visual modeling with a hand-held
camera. International Journal of Computer Vision, 59(3), 207–
232.

Rav-Acha, A., & Peleg, S. (2004). A unified approach for motion
analysis and view synthesis. In Second IEEE international sym-
posium on 3D data processing, visualization, and transmission
(3DPVT), Thessaloniki, Greece, September 2004.

Rav-Acha, A., & Peleg, S. (2006). Lucas–Kanade without iterative
warping. In ICIP’06 (pp. 1097–1100).

Rav-Acha, A., Shor, Y., & Peleg, S. (2004). Mosaicing with paral-
lax using time warping. In Second IEEE workshop on image and
video registration, Washington, DC, July 2004.

Román, A., & Lensch, H. P. A. (2006). Automatic multiperspective
images. In Proceedings of eurographics symposium on rendering
(pp. 161–171).

Román, A., Garg, G., & Levoy, M. (2004). Interactive design of multi-
perspective images for visualizing urban landscapes. In IEEE vi-
sualization 2004 (pp. 537–544), October 2004.

Shi, M., & Zheng, J. Y. (2005). A slit scanning depth of route panorama
from stationary blur. In CVPR’05 (Vol. 1, pp. 1047–1054).

Wexler, Y., & Simakov, D. (2005). Space–time scene manifolds. In
ICCV’05 (Vol. 1, pp. 858–863).

Xiao, J., & Shah, M. (2005). Motion layer extraction in the presence of
occlusion using graph cuts. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 27(10), 1644–1659.

Yang, Q., Wang, L., & Yang, R. (2006). Real-time global stereo match-
ing using hierarchical belief propagation. In BMVC (pp. 989–
998), Edinburgh, September 2006.

Zheng, J. Y. (2000). Digital route panorama. IEEE Multimedia, 7(2),
7–10.

Zhu, Z., Riseman, E., & Hanson, A. (2004). Generalized parallel-
perspective stereo mosaics from airborne videos. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(2), 226–
237.

Zomet, A., Feldman, D., Peleg, S., & Weinshall, D. (2003). Mosaic-
ing new views: the crossed-slits projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(6), 741–754.

	Minimal Aspect Distortion (MAD) Mosaicing of Long Scenes
	Abstract
	Introduction
	Overview of Proposed Approach
	Related Work

	Graph Cuts for Depth Computation (Assuming Known Motion)
	Flexible Pixel Dissimilarity Measure for Graph Cuts
	Allowing 2D Sub-Pixel Displacements
	Handling Larger Vertical Displacements

	A Planar Representation of the Scene using Graph Cuts
	Finding Candidate Planes (Steps 1-2)
	Graph Cuts with Planar Labels (Step 3)

	Forward Warping of Planes
	Implementation and Efficiency

	Computing Ego Motion (Assuming Known Depth)
	Interleaving Computation of Depth and Motion
	Initialization: First Two Frames
	Interleaving Computation for the Entire Sequence
	Panoramic Rectification

	Minimal Aspect Distortion (MAD) Panorama
	Panorama as a Cut in the Space-Time Volume
	Defining the Cost of a Cut
	Graph Construction and Minimal Cut
	Implementation and Efficiency

	Dynamic Image Based Rendering with X-Slits
	Seamless Stitching for X-Slits

	Experimental Results
	Discussion: What Makes This Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

