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Abstract Learning models for detecting and classifying
object categories is a challenging problem in machine vi-
sion. While discriminative approaches to learning and clas-
sification have, in principle, superior performance, gen-
erative approaches provide many useful features, one of
which is the ability to naturally establish explicit corre-
spondence between model components and scene features—
this, in turn, allows for the handling of missing data
and unsupervised learning in clutter. We explore a hy-
brid generative/discriminative approach, using ‘Fisher Ker-
nels’ (Jaakola, T., et al. in Advances in neural information
processing systems, Vol. 11, pp. 487–493, 1999), which re-
tains most of the desirable properties of generative meth-
ods, while increasing the classification performance through
a discriminative setting. Our experiments, conducted on a
number of popular benchmarks, show strong performance
improvements over the corresponding generative approach.
In addition, we demonstrate how this hybrid learning para-
digm can be extended to address several outstanding chal-
lenges within computer vision including how to combine
multiple object models and learning with unlabeled data.
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1 Introduction

Detecting and classifying objects and object categories in
images is currently one of the most interesting, useful, and
difficult challenges for machine vision. Much progress has
been made during the past decade in formulating mod-
els that capture the visual and geometrical statistics of
natural objects, in designing algorithms that can quickly
match these models to images, and in developing learn-
ing techniques that can estimate these models from train-
ing images with limited supervision (Burl and Perona 1996;
Ullman et al. 2002; Weber et al. 2000; Fergus et al. 2003;
Lowe 2004; Dorko and Schmid 2005; Torralba et al. 2004;
Leibe and Schiele 2004; Holub and Perona 2005). However,
our best algorithms are not close to matching human abili-
ties. Machine vision systems are at least two orders of mag-
nitude worse than humans in several aspects including the
number of categories that can be learned and recognized,
the classification error rates, the classification speed, and
the ease and flexibility with which new categories can be
learned.

This work is motivated by the challenge of learning
to recognize categories that look similar to one another.
A number of methods have shown good performance on
dissimilar categories (for example airplanes, automobiles,
spotted cats, faces and motorcycles as in Fergus et al. 2003,
Dorko and Schmid 2005). None of these methods has been
shown to perform well on visual categories which look sim-
ilar to one another such as bicycles and motorcycles or
male and female faces. For example, while the ‘constellation
model’ Fergus et al. (2003) has error rates of a few percent
on dissimilar categories such as faces vs. airplanes and cars
vs. cats, it has error rates around 30% if it is asked to recog-
nize faces of different people (see the x axis of the plots in
Fig. 1). Why does this discrepancy exist? As we shall see,



240 Int J Comput Vis (2008) 77: 239–258

Fig. 1 A pure generative Maximum Likelihood (ML) approach will
not work well when categories are similar in appearance (right column
images of faces, each row shows a different person), especially when
few training examples are available (scatterplots on the left, x axis). We
apply discriminative techniques from Jaakkola et al. (1999) to trans-
form generative approaches for visual recognition into discriminative
classifiers which retain some of the desirable properties of generative

models and yield better performance. (Top) ML in comparison to using
combinations of hybrid models. See Sect. 6 below for details. Category
labels for these faces, from top to bottom: P1, P2, and P3. These new
face categories will be posted on the web. (Bottom) ML in comparison
to hybrid models in a semi-supervised learning paradigm in which few
examples (in this case three training examples) are present. See Sect. 5
below for details

one potential confound is the underlying generative learn-
ing algorithm. Note that code for this project is available at:
www.vision.caltech.edu/IJCV_Holub_Hybrid_Code.zip.

Learning and classification methods fall into two broad
categories (see Fig. 2). Let y be the label of the class and
x the measured data associated with that class. A gener-
ative approach will estimate the joint probability density
function p(x, y) (or, equivalently, p(x|y) and p(y)) and
will classify using p(y|x) which is obtained using Bayes’
rule. Conversely, discriminative approaches will estimate
p(y|x) (or, alternatively, a classification function y = f (x))
directly from the data. It has been argued that the discrim-
inative approach results in superior performance, i.e. why
bother learning the details for models of different classes if
we can directly learn a criteria for discriminating between
the classes (Vapnik 1998)? Indeed, it was shown that the as-
ymptotic (in the number of training examples) error of dis-
criminative methods is lower than for generative ones when
using simple learning models (Ng and Jordan 2002).

Yet, among machine vision researchers generative mod-
els remain popular (Ullman et al. 2002; Weber et al. 2000;
Fergus et al. 2003; Dorko and Schmid 2005; Leibe and
Schiele 2004; Schneiderman 2004). There are at least five
good reasons why generative approaches are an attractive
choice for visual recognition. First, generative models nat-
urally incorporate information about occlusion and missing
features. This is because generative methods allow one to es-
tablish explicit ‘correspondence’ between parts of the model
and features in the image. For every such mapping, the parts
in the model corresponding to the missing features can sim-
ply be marginalized out of the probabilistic model, leaving
us with a lower dimensional model over the observed parts
(Weber et al. 2000). Second, collecting training examples
is expensive in vision and training sets come at a premium.
Ng and Jordan (2002) demonstrated both analytically and
experimentally that in a 2-class setting the generative ap-
proach often has better performance for small numbers of
training examples, despite the asymptotic performance be-
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Fig. 2 Schematic comparison of the generative (top), discriminative
(middle), and hybrid (bottom) approaches to learning discussed in this
paper. While generative models are a natural choice for visual recog-

nition, discriminative models have been shown to give better perfor-
mance in different domains. The hybrid model captures many desirable
properties of both

ing worse. Third, it has been shown that prior knowledge
can be useful when few training examples are available, and
that prior information may be easily incorporated in a gen-
erative model (Fei-Fei et al. 2004). Fourth, we ultimately
envision systems which can learn thousands of categories;
in this regime it is unlikely that we will be able to learn dis-
criminative classifiers by considering simultaneously all the
training data. It is therefore highly desirable to design clas-
sifiers that can learn one category at a time: this is easy in
the generative setting and difficult in the discriminative set-
ting where training data for all categories must be available
at once for a decision boundary to be calculated. Fifth, it
is unclear, in general, what features to use when training a
discriminative classifier on object categories. Consider that
many popular algorithms for object recognition rely on fea-
ture detectors to find ‘interesting’ regions within an image.
Each image thus is represented as an unordered set of fea-
ture detections of variable length. How can these unordered
lists be used by a discriminative classifier?

Is it possible to get the best of both worlds and develop
approaches with the flexibility of generative learning and the
performance of discriminative methods? Jaakkola and Haus-
sler have shown that a generative model can be used in a

discriminative context by extracting Fisher Scores from the
generative model and converting them into a ‘Fisher Ker-
nel’ (Jaakkola et al. 1999) (see Fig. 2). A kernel represents
the data as a matrix of pairwise similarities which may be
used for classification by a kernel method, such as the sup-
port vector machine (SVM). The field of kernel methods is
well developed (Vapnik 1998; Shawe-Taylor and Cristianini
2004; Schoelkopf and Smola 2002) and represents the state-
of-the-art in discriminative learning. Here, we explore how
to apply these ideas to visual recognition.

We calculate Fisher Kernels that are applicable to vi-
sual recognition of object categories and explore experimen-
tally the properties of such ‘hybrid models’ on a number of
popular and challenging data-sets. Other kernel-based ap-
proaches have been suggested for object recognition, includ-
ing Vasconcelos et al. (2004) who exploit a similar para-
digm, using a Kullback–Leibler based kernel and test on the
COIL data-set. Wallraven et al. (2003) utilize a clever kernel
which implicitly compares detected features in different im-
ages, but apply their method to different sets of images than
those used in this paper.

In Sect. 2 we briefly review one class of generative mod-
els, commonly called the ‘Constellation Model’, which will
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be used in the rest of the paper. In Sect. 3 we show how
to transform a generative Constellation Model into a dis-
criminative setting by utilizing the idea of Fisher Kernels.
In Sect. 4 we compare the performance of hybrid and gen-
erative constellation models. In Sect. 5 we explore how
these hybrid models can be extended and effectively used
in circumstances where we have a mixture of labeled and
unlabeled data, i.e. ‘semi-supervised’ learning. Finally, in
Sects. 6 and 7 we show how the hybrid framework can be
used to optimally combine several generative models (for
example generative models based on different feature detec-
tors and different numbers of parts) into a single classifier.
Section 8 discusses the main results and observations of this
work.

2 Generative Models

In this section we briefly review a class of generative mod-
els which will be used in conjunction with the discrimina-
tive methods described in the next section. In principle, any
generative model that is differentiable with respect to its
parameters can be used. We chose to experiment with the
‘Constellation Model’ which was first proposed by Burl and
Perona (1996). Weber et al. (2000) showed that this model
may be learned from cluttered images in a weakly super-
vised setting in which only a class label is associated with
each image using maximum likelihood. Fergus et al. (2003)
extended the model by making it scale-invariant and incor-
porating general purpose feature detectors. We use a simpli-
fied version of Fergus’ constellation model in which we do
not explicitly model occlusion or relative scale.

2.1 The Constellation Model

The constellation model is a generative framework which
constructs probabilistic models of object classes by rep-
resenting the appearance and relative position of several
object parts (Burl and Perona 1996; Weber et al. 2000;
Fergus et al. 2003). Given a suitable training set composed
of images containing examples of objects belonging to a
given category, such models are trained by finding a set of
model parameters θMLE which maximizes the log-likelihood
of the model (Weber et al. 2000; Fergus et al. 2003). Both
appearance and shape are modeled as jointly Gaussian and
θ = {θa, θs} represent the mean and diagonal variance pa-
rameters of the shape (θs ) and appearance models (θa). To
remove dependence on location, the x-y coordinates of the
parts are measured relative to a reference part, e.g. the left-
most part. In our implementation, as suggested by Fergus
et al. (2003), appearance is represented by the first 20 PCA
components of normalized 11×11 pixel patches which were
cut out around feature detections in training images at the

scale indicated by the detectors (see next subsection). The
number of interest point detections considered in an image
is a design parameter.

For each training image Ii we obtain a set of F interest
points and their appearance descriptors. We would like to
establish correspondence, i.e. assign a unique interest point
to every model part, or component, Mj . Burl and Perona
(1996) showed that since we do not a priori know which in-
terest point belongs to which model component, we need to
introduce a ‘hidden’ hypothesis variable h which maps in-
terest points to model parts. We order the interest points in
ascending order of x-position. Note that although we model
only the diagonal components of the Gaussian, the model
parts are not independent as we enforce that each part is
mapped to a unique feature, implicitly introducing depen-
dencies. The result is a total of

(
F
M

)
hypotheses, where each

h assigns a unique interest point to each model part. We mar-
ginalize over the hypothesis variable to obtain the following
expression for the log likelihood for a particular class:

∑

i

log(p(Ii)) =
∑

i

log

(∑

h

p(Ai,h|θa)p(Xi,h|θs)

)
(1)

where {Xi} are the relative coordinates of the object and rep-
resent the shape information while {Ai} are the PCA com-
ponents described above and represent the appearance in-
formation. We assume that the shape and appearance models
are independent of one another given a hypothesis h and that
the images are I.I.D. This step is key to maximum-likelihood
model learning, and to classification, once a model is avail-
able (see details in Burl and Perona 1996; Weber et al. 2000;
Fergus et al. 2003). We note that exploring all possible hy-
potheses carries a combinatorial computational cost which
severely limits the number of parts and interest points which
can be used in the model.

For clarity we consider the makeup of a typical set of
parameters θ . Consider one part of a 3-part model. A sin-
gle part consists of parameters specifying its shape and ap-
pearance, θs and θa respectively. The shape of the part is
specified by a two dimensional mean and two dimensional
variance (we consider diagonal covariance matrices in our
model) indicating the mean and variance of the position of
the part. Each part thus has a four dimensional parameter
array specifying its location. Now consider the appearance
parameters of a part. The appearance of a part is specified
by the mean and variance of the PCA components for that
particular part. A 20 dimensional PCA representation thus
consists of a total of 40 parameters, 20 for the mean and 20
for the variance of the part.

2.2 Interest-Point Detection

The constellation model requires the detection of interest
points within an image. Numerous algorithms exist for ex-
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Fig. 3 Examples of scaled
features found by the KB (left)
and multi-scale DoG (right)
detectors on images from the
‘persons’ data-set located at
http://www.emt.tugraz.at/opelt/.
Approximately the top 50 most
salient detections are shown for
both

tracting and representing these interest points. We consid-
ered several popular interest point detectors: the entropy
based Kadir and Brady (KB) (Kadir and Brady 2001) detec-
tor, the multi-scale Difference of Gaussian (DoG) detector
(Crowley 1984), the multi-scale Hessian detector (mHes),
and the multi-scale Harris detector (mHar). Figure 3 shows
typical interest points found within images. All detectors
indicate the saliency of interest points, and only the most
salient interest points are used. The KB interest point de-
tector was used in all experiments below unless otherwise
specifically noted.

2.3 Generative Model Learning

We train our generative constellation models using the EM
algorithm (Dempster et al. 1977) as computed explicitly for
the constellation model by Weber et al. (2000). The algo-
rithm involves iteratively calculating the expected values of
the unobserved variables of the model and then maximizing
the parameters. The algorithm was terminated after 50 itera-
tions or after the log likelihood stopped increasing. A typical
3-part model optimized on 100 images with 25 detections in
each image took on the order of 20 minutes to optimize us-
ing a combination of C (mex) and Matlab code on a 2 GHz
machine.

3 Fisher Scores and Fisher Kernels

For supervised learning, such as regression and classifica-
tion, kernel methods are often the method of choice. As ar-
gued in the introduction, our interest is in combining gen-
erative models with a discriminative step for the purpose of
visual object recognition. We chose support vector machines
(SVM) (Vapnik 1998) as our kernel machine. The SVM (like
all kernel methods) process the data in the form of a kernel
matrix (or Gram matrix), a symmetric and positive definite
n × n matrix of similarities between all samples. A simple
way to construct a valid kernel matrix is by defining a set of
features, φ(xi), and to define the kernel matrix as,

Ki,j = K(xi, xj ) = φT (xi)φ(xj ). (2)

The kernel represents the similarities between samples: rel-
atively large kernel entries correspond to two samples which
are similar while small (possibly negative) entries corre-
spond to dissimilar samples. Kernels defined by inner prod-
ucts such as the one in (2) produce positive-definite kernel
matrices (Vapnik 1998).

The generative model will have its impact on the clas-
sifier through the definition of these features. We will fol-
low (Jaakkola et al. 1999) in using ‘Fisher Scores’ as our
features. Given a generative probabilistic model the ‘Fisher
Scores’ φ(xi) are defined as

φ(xi) = ∂

∂θ
logp(xi |θMLE) (3)

where θMLE is the maximum likelihood estimate of the pa-
rameters θ . By definition, θMLE is obtained by maximizing
the likelihood. A necessary condition is that the gradient of
such likelihood (or log-likelihood) is zero, which is equiva-
lent to ‘balancing’ the Fisher Scores,

∑

i

∂

∂θ
logp(xi |θMLE) =

∑

i

φ(xi) = 0. (4)

Hence, samples “pull” on the parameter values through their
Fisher Scores which can be interpreted as “forces”. At the
MLE all forces balance. Two data-items that exert similar
‘forces’ on all parameters have their feature vectors aligned
resulting in a larger positive entry in the kernel matrix.

Since it is not a priori evident that the data can be sep-
arated using a hyperplane in this feature space, it can be
beneficial to increase the flexibility of the separating sur-
face (making sure that the problem is properly regularized)
as shown in (Vapnik 1998). This is achieved by applying
non-linear kernels such as the RBF kernel or the polynomial
kernel in this new feature space, i.e. K(φ(xi),φ(xj )) with,

KRBF(xi, xj ) = exp

(
− 1

2σ 2
||φ(xi) − φ(xj )||2

)
, (5)

KPOLp (xi, xj ) = (R + φ(xi)
T φ(xj ))

p (6)

where σ represents the variance of the RBF kernel and p

represents the degree of the polynomial kernel being used.
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Fig. 4 Performance comparison of various kernels on several data-
sets. The parameters used to train and test these models are described
in the experimental section. The polynomial kernel was of degree 2.
The y-axis indicates the classification performance, note that the scale

starts at 90%. These results were averaged over 5 experiments. 100
train/test examples used. First bar in each set: Linear kernel. Second
bar: Polynomial kernel. Third bar: RBF kernel

To remove scale differences between the features we nor-
malized the features before we computed their inner prod-
uct,

φa(xi) → φa(xi)√
1
N

∑N
j=1 φ2

a(xj )

. (7)

Why do we bother going through a two-stage process
where we first train generative models for each object cat-
egory and then train another classifier based on a kernel de-
rived from those models, where we could also classify us-
ing log-likelihood ratios? The intuitive answer to this ques-
tion is that a classifier is trained to find an optimal decision
boundary, i.e. it focuses its attention to what is relevant to
the task. Here, the samples which are close to the decision
boundary carry much more information than the ones away
from the boundary. In contrast, classifying according to like-
lihood ratios simply derives the decision boundary as a by-
product from fitting models for every category. The objec-
tive of this fitting procedure is to maximize the probability
of all samples for every category and not deriving a good
decision boundary for the classification task at hand. This
intuition has been made more precise in numerous papers.
Most relevant to Fisher Kernels is the theorem in (Jaakkola
et al. 1999) stating that asymptotically (in the large data-
limit) a classifier based on the Fisher Kernel can be shown
to be at least as good (and typically better) as the corre-
sponding naive Bayesian procedure (i.e. likelihood ratios or
maximizing p(y|x)). Similar results have been obtained in
e.g. Ng and Jordan (2002) and Tsuda et al. (2003). It should
be mentioned that for small numbers of samples the naive
Bayesian procedure may act as a regularizer and avoids the
kind of over-fitting that can be observed in discriminative
approaches.

Given a kernel matrix and a set of labels {yi} for each
sample, the SVM proceeds to learn a classifier of the form,

y(x) = sign

(∑

i

αiyiK(xi, x)

)
(8)

where the coefficients {αi} are determined by solving a con-
strained quadratic program which aims to maximize the
margin between the classes. For details we refer to (Shawe-
Taylor and Cristianini 2004) and (Schoelkopf and Smola
2002). In our experiments we used the LIBSVM package
(available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

There are a number of design parameters: the free pa-
rameters in the definition of the kernel (i.e. σ in the RBF
kernel and R,p in the polynomial kernel) and some regu-
larization parameters in the optimization procedure of the
{αi}. For an SVM the regularization parameter is a constant
C determining the tolerance to misclassified samples in the
training set. Values for all design parameters were obtained
by cross-validation or by learning them on a bound of the
leave-one-out error (see Sect. 6).

In Fig. 4 we compare the performance of the various ker-
nels defined above on two data-sets. The performance is
similar, with some variability between data sets. We used
linear and RBF kernels in the following experiments as there
was no appreciable difference in the performance of the var-
ious kernels and because these kernels are popular within
the machine learning community.

3.1 Fisher Scores for the Constellation Model

In order to train an SVM we require the computation of the
Fisher Score for a model. Recall that the Fisher Score is the
derivative of log likelihood of the parameters for the model,
i.e.:

∂

∂θs

log (p(Ii |θ)) =
∑

h

p(h|Ii, θ)
∂

∂θs

logp(Xi,h|θs), (9)

∂

∂θa

log (p(Ii |θ)) =
∑

h

p(h|Ii, θ)
∂

∂θa

logp(Ai,h|θa) (10)

where both {θa, θs} consist of mean and variance parame-
ters of Gaussian appearance and shape models. Despite a
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potentially variable number of detections in each image Ii its
Fisher Score has a fixed length. This is because the hypoth-
esis h maps features to a pre-specified number of parts and
hence there is a fixed number of parameters in the model.

Most of the execution time of the algorithm is spent dur-
ing the computation of the Fisher Kernels as well as the
training of the generative models. In comparison, the SVM
training, even with extensive cross-validation, is quite short
due to the relatively small number of training images.

4 Comparing Generative and Hybrid Approaches

Our first set of experiments was designed to compare the
performance of our hybrid method with generative models
on a commonly used benchmark of 4 object categories with
diverse appearances from one another. We chose the same
categories used by Fergus et al. (2003) in order to directly
compare with their results (their results were obtained using
a more sophisticated generative Constellation Model than
the one we used).

Some details of the SVM training: Fisher Scores were
normalized to be within the range [−1,1]. We performed
10x cross-validation to obtain estimates for the optimal val-
ues of C. For the RBF kernel, which contains the additional
hyper-parameter σ , we found the optimal values of C and
σ by performing an exhaustive search over the parameters.
We varied the cross-validation search space for both para-
meters on a log base 2 scale, C ∈ 2[−7,9] and σ ∈ 2[−8,0].
We chose this range because the best results were typically
within these parameter settings.

4.1 Experiments on Caltech Data-Sets

Table 1 illustrates the performance on these data-sets.1 Im-
ages were normalized to have the same number of pixels
in the x-dimension in order to prevent the algorithm from
learning meaningful information from the absolute size of
the images. We did not crop the images. We recognize that
although these data-sets are used extensively by the vision
community, they exhibit some deficiencies. In particular
the object of interest is usually in the center of the image
and the objects are mostly in standardized poses and good
lighting conditions. In these experiments a single genera-
tive model was created of the foreground class from which
Fisher Scores were extracted for both the foreground and
background classes for training. The SVM was trained with
the Fisher Scores from the foreground and background class.
Testing was performed using an independent set of images

1The data-sets, including the background data-set used here, can be
found at: http://www.vision.caltech.edu/html-files/archive.html. The
Leopards data-set is from the Corel Data-Base.

Table 1 Performance comparison for some Caltech data-sets in a 2-
alternative task whether the test image either contains an object from
a given class, or contains no object (background class). We used 100
training and test images for each class although performance did not
increase significantly when more training images were used. The back-
ground class was the same used by Fergus (2005). All scores quoted
are the total number correct for both the target class and the back-
ground over the total number of examples from both classes. The sec-
ond column shows the performance of our hybrid discriminative algo-
rithm. The third and fourth columns show performance using only the
Shape and Appearance Fisher Scores respectively. The Fifth column is
the performance using a likelihood ratio on the underlying generative
models. The final column shows previous performances on the same
data-sets (Fergus 2005). Our underlying generative model contained 3
parts and used a maximum of 30 detected interest points per image.
Results were averaged over 5 experiments. In comparing with Fergus
(2005) note that in that study approximately twice as many training im-
ages were used, as well as a more sophisticated generative constellation
model (6 parts, scale-invariance, occlusion modeling), hence the higher
performance of (Fergus 2005) with respect to our baseline generative
constellation model (ML). On the other hand, our hybrid method mod-
els relies on the background images for SVM training while the ML
method of (Fergus 2005) does not make explicit use of the background
images. Test performance did not vary significantly between different
experiments

Category Hybrid Shape App ML Prev

Faces 91 77.7 88.9 83 89.4 (Fergus 2005)

Motorcycles 95.1 74.5 91.2 74.2 96.7 (Fergus 2005)

Airplanes 93.8 95.3 84.2 72.4 92.2 (Fergus 2005)

Leopards 93 71.8 91.3 68.1 88 (Fergus 2005)

from the foreground and background class by extracting
their Fisher Scores from the foreground generative model
and classifying them using the SVM. We refer to these ex-
periments as ‘class vs. background’ experiments, as they in-
volve a discrimination task between one foreground class
and one background class.

In addition to class vs. background experiments, we con-
ducted classification experiments using multiple object cat-
egories. First a generative model was constructed for all
classes of interest. Fisher Scores for both train and test im-
ages were obtained by concatenating the Fisher Scores from
each model. Only the training images were used to cre-
ate both the SVM classifier and the generative distribution.
Since an SVM is inherently a two-class classifier we train
the multi-class SVM classifier in a ‘one-vs-one’ manner. For
each pair of classes a distinct classifier was trained. A test
image was assigned to the category containing the largest
number of votes among the trained classifiers. ‘One-vs-one’
classification requires that N(N−1)

2 classifiers be created and
used during classification. ‘One-vs-one’ clearly introduces a
large number of classifiers which must be evaluated during
run-time. However, we prefer it to a ‘one-vs-all’ strategy as
‘one-vs-all’ is not as amenable to unbalanced data-sets and
the potential large computational cost is not as evident for
small numbers of training examples. All other parameters
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Fig. 5 Localization of objects within images using the generative con-
stellation model. Each unique colored circle represents a different part
of the model. This is a 4-part model. The positions of the circles rep-
resent the hypothesis, h, with the highest likelihood. The generative

framework approximately localizes the position of each object. We
note that the images shown here do not exhibit excessive amounts of
clutter

Table 2 Confusion table for 4 Caltech data-sets in a 4-way classifi-
cation experiment. The main diagonal contains the percent correct for
each category. Perfect performance would be indicated by 100 s along
the main diagonal. We use the same classes as used in (Fergus et al.
2003) which utilizes a purely generative constellation model and re-
sulted in performances of 92.5, 90.0, 96.4, and 90.2 across the main
diagonal for a 4-way discrimination task for an average performance of
92% while we achieve an average performance of 96%. When perform-
ing classification using only the Shape and Appearance Fisher Scores
we achieve an average performance (average across the main diago-
nal of the confusion table) of 72.6 and 94.8. 100 training and testing
images were used in our experiments. Averaged over 3 experiments.
Test performance did not vary significantly between different experi-
ments

True Class ⇒ Motor Leopards Faces Airplanes

Motorcycles 96.7 7.3 1.3 0.3

Leopards 1.3 90.7 0.7 0

Faces 1.3 0 97 0.3

Airplanes 0.7 2 1 99.3

for training were kept the same as above. Table 2 illustrates a
confusion table for 4 Caltech Data-Sets. The discriminative
method again outperforms its generative counterpart (Fergus
et al. 2003) despite using a much simpler underlying gener-
ative model.

There are several interesting points of note. First, the
hybrid method works well even on dissimilar categories. In
fact it performs significantly better than the corresponding
generative ML method and slightly better than a more so-
phisticated ML method. Second: the classification results
in Table 2 are comparable with the best current results in
the literature. It is fair to say that the Caltech-4 data-set
is easy (see Figs. 5 and 6) and may not be the best data-

set to use when comparing algorithms. Further results on
more challenging data-sets, among them the ‘People’ and
‘Bikes’ Graz data-sets,2 were reported by us in (Holub et al.
2005) and the technique performed well in these cases as
well. Three, Experiments conducted using only the Shape
and Appearance Fisher Scores mostly indicate that the com-
bination of the two is more powerful than either in isolation.
Interestingly, by comparing the shape-only and appearance-
only performance one can see that the relative importance
of these two terms varies with the category. In particular we
notice that the Leopard data-set, which exhibits stereotyped
appearance information but large articulations in shape, per-
forms best when using only appearance information while
airplanes, which exhibits fairly uniform shape information,
yields good performance when using only shape informa-
tion.

The hybrid approach uses an underlying generative con-
stellation model to generate Fisher Scores which are in turn
used for classification. This underlying model can be used to
localize objects within an image by selecting the hypothesis
with the highest likelihood (the same technique was demon-
strated to localize objects by in Fergus et al. (2003)). Fig-
ure 5 demonstrates the localization ability of our implemen-
tation of the constellation model on several different cate-
gories.

4.2 Background Classes

In this section we explore the effect of a particular “back-
ground” training set on learning. Consider the detection
tasks described above (Fig. 1) in which we build a hybrid

2Available at http://www.emt.tugraz.at/ opelt/.
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Fig. 6 Examples of background images: (top) Caltech 1 is a collec-
tion of indoor and outdoor digital photographs taken on the Caltech
campus, (middle) Caltech 2 is a collection of images obtained from
the Google image search engine by typing ‘things’ as a search string,

(bottom) Graz is a collection of outdoor and indoor images, some of
which focus on specific objects. There are noticeable differences in the
image statistics from the different background classes

classifier which detects whether or not an object is present
in an image. In this setting, the algorithm must be trained us-
ing both a ‘positive’ or foreground training set and a negative
or ‘background’ training set. In principle the background set
should represent any images that does not contain the ob-
ject of interest. This set of images has a very broad statis-
tical variation which may not be well represented by a lim-
ited training set as used in our experiments. If the statistics
of the background data-set are not appropriately chosen, we
run the risk of over-fitting to those background images used
for training.

In order to further explore this potential confound, we
performed experiments using several common data-sets
used as background images to determine how well back-
ground data-sets generalized to one another. We considered
3 standard sets of background images: (1) the Caltech back-
ground data-set used in (Fergus et al. 2003) (Caltech1), (2)
the Caltech background data-set used (Fei-Fei et al. 2004)
(Caltech2), (3) the Graz data-set used in (Opelt et al. 2004)
(Graz). A random sample of images from the three sets is
shown in Fig. 6. We performed experiments by first generat-
ing a model for one foreground class. This generative model
was then used to create Fisher Scores for the foreground
class and a particular background class and an SVM classi-

fier was trained using these scores. We tested the classifier
on images from all three background classes.

Results for these experiments are summarized in Table 3.
This table illustrates that the statistics of a particular back-
ground data-set can influence the ability of the classifier
to generalize to new sets. These results should be seen as
a caveat when using discriminative learning for detection
tasks as the statistics of the background images play a cru-
cial role in generalization, especially when relatively few
background examples are used. Even if one has access to
a large number of background images it is in principle, dif-
ficult, to obtain a set of images which model the distribution
of any arbitrary background. Furthermore, some discrimi-
native methods, such as SVMs, are not readily amenable
to training with unbalanced data-sets, making the choice of
background images to use during training even more prob-
lematic.

5 Semi-Supervised Learning

In computer vision it is often easy to obtain unlabeled im-
ages while labeled images often require a significant invest-
ment of resources. In this section we explore how to leverage
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Fig. 7 Schematic overview of the semi-supervised learning algo-
rithm employed. Semi-supervised learning employs both labeled and
unlabeled data. Note that only unlabeled data is used to create the gen-

erative model but that Fisher Scores are extracted from the generative
model using labeled data

Table 3 Generalization of different background statistics: Top,
Airplane vs. BG experiments. Bottom, Leopards vs. BG experiments.
The top row indicates the background data-set trained with. The rows
indicate the test set used. The columns indicate the performance of the
algorithms. The bold scores indicate the performance on the test exam-
ples from the same background class which was trained on, these tend
to be the highest performing test sets. We trained and tested with 100
images for each foreground and background category. Results were av-
eraged over 2 experiments. The mHar detector was used

Trained BG ⇒ Caltech1 Caltech2 Graz

Caltech1 93 86.5 82

Caltech2 83 90.5 78

Graz 83.5 88 91

Caltech1 92 82 83.5

Caltech2 83 92.5 87

Graz 85 85 91.5

unlabeled and labeled images within our hybrid generative-
discriminative framework described above. Using labeled
and unlabeled data is often referred to as semi-supervised
learning in the machine learning community. In particu-
lar we show how semi-supervised learning can be used to
learn classifiers with far fewer training examples than the
corresponding supervised framework. Figure 7 illustrates a
schematic of the proposed semi-supervised learning algo-
rithm.

Many interesting methods have been proposed for semi-
supervised learning (see e.g. Seeger 2002 for an approach
relevant to Fisher Kernels). We decided to implement a rel-
atively simple idea that attempts to learn the kernel using
the available unlabeled data. In the context of Fisher Kernels
this boils down to learning a probabilistic model on the unla-
beled data-set. We subsequently extract Fisher Scores based

on this model, but evaluate it on the labeled data. These
Fisher Scores are combined into a kernel matrix and provide
input to the SVM. To see why this is a sensible approach
we consider the task of classifying images of faces of two
different people. The Fisher Scores represent the derivatives
of the log-likelihood and hence the tendency of a particular
sample to change the model. If the underlying model is one
of a completely unrelated class of objects (say leopards),
then we expect any face image to roughly change the model
in a similar fashion, so the Fisher Scores for different faces
are expected to be similar. If however, the underlying model
is an average face model, then we expect the changes to the
model for person A and person B to be different, resulting
in different Fisher Scores and hence small kernel entries.
So clearly, a good kernel should be based on a probabilistic
model for the class of objects we are trying to classify.

In the following sections will investigate a number of is-
sues: (1) does the method we propose work at all, (2) what is
the effect of using different sets of unlabeled data, (3) how
does the performance depend on the number of unlabeled
examples and (4) how does the performance depend on the
number of labeled (training) examples.

5.1 Caltech Faces-Easy Categories

We employ a similar experimental paradigm as described
above in Sect. 4. However, we consider situations when
there is a wealth of unlabeled data available which will be
used to construct the model from which we extract Fisher
Scores. In order to be clear on our terminology we refer to
the ‘unlabeled training set’ as the set of unlabeled data used
to generate the classifier and the ‘labeled training set’ as the
set of labeled data used to generate the classifier.

The Caltech Faces-Easy (see Fig. 8) consists of about 400
images of human faces. It is composed of 20 or more pho-
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Fig. 8 Features detected by the Kadir and Brady detector on image of
(Top) the Odyssey text and (Bottom) the Faces-Easy data-set. Note that
the Faces-Easy data-set is equivalent to the Faces data-set used in the

experiments above except that the Faces-Easy data-set contains faces
which are more cropped. Also note that the features found in the two
sets of images have drastically different appearance statistics

tographs of 19 individuals, while the remaining 40 or so im-
ages contain fewer exemplars. Thus we can divide the entire
face category into smaller categories corresponding to indi-
viduals.

A linear kernel was used in all experiments below. Us-
ing an exponential kernel is difficult due to the inability to
accurately tune the scale parameter σ : there are not enough
exemplars to perform cross-validation.

5.2 Results

We compared performance using various different sets of
unlabeled training images to create the generative model,
where each set of images was more or less related to the set
of labeled training images. We considered the following sets
of unlabeled training images: (1) Faces-Easy data-set. Note
that our unlabeled training set contained images from all in-
dividuals except those used for the labeled training set. (2)
the Caltech 1 Background Images (see Table 3 above), (3)
the Leopards data-set, (4) Images of printed pages from a
copy of Homer’s ‘Odyssey’. Examples of the features found
for classes (1) and (4) are shown in Fig. 8. A generative
model trained on background will result in broad distrib-
utions, while generative models trained on specific classes
will have a more distinct distribution reflecting the statistics
of the unlabeled training images.

First a model was trained using images from the unla-
beled training data-sets. Next, 2 individuals from the Faces-
Easy set were selected at random to train the classifier.
Fisher Scores were extracted from the model. We did not in-
clude any images used for training or testing in the unlabeled

data-set. Median and 25th/75th quantiles were computed
over 20 experiments by selecting to individuals at random.

Results are shown in Fig. 9. Several interesting points can
be made: (1) The nature of the unlabeled training data-set is
critical: using a data-set unrelated to the classification prob-
lem at hand, e.g. the ‘The Odyssey’ or ‘Leopards’ data-sets
in the context of face classification, results in the worst per-
formance. Using a very general data-set, e.g. the Caltech 1
Background (BG1) data-set, results in better performance
than using an unrelated data-set. This may be due to the
broad distribution which results from training on the back-
ground data-set, which, although not as beneficial as using
the images from the same class, is better than using a gener-
ative model from a completely different class. Finally, using
a data-set which describes the distribution of the images in-
volved in the classification problem well, e.g. using the re-
maining face images from “Easy-Faces” to classify the faces
of two held-out individuals, results in the best performance.
(2) Discrimination performance increases as we add more
unlabeled training examples. This is particularly true for the
faces data-set, in which we notice a large increase in per-
formance from 10 to 100 prior examples. The same quali-
tative effect is observed for the BG1 data-set. We observed
that with few training examples the BG1 unlabeled images
creates overfitted models with small variances, resulting in
comparable performance to using the ‘Odyssey’ or ‘Leop-
ards’ data-sets. As more training examples are added, the
model becomes more general, and its utility as a prior im-
proves.

A reasonable measure for how appropriate a kernel is for
a particular classification task is the “kernel-alignment” pro-
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Fig. 9 (Left) Performance on the 2-way faces classification problem
as we vary the number of labeled training examples per class. Number
of unlabeled examples was fixed at 100. (Right) Classification perfor-
mance as a function of the number of unlabeled examples. 5 labeled
training examples per class were used to train the SVM classifier. In
both plots we show the median and 25th/75th quantiles computed over
20 experiments. Each line represents a different unlabeled data-set
except for the cyan line which shows the maximum likelihood perfor-

mance on the labeled training set only (i.e. it did not use any unlabeled
data and classified by comparing the likelihood scores, the fluctuations
in this line are due to using randomized training/test sets). Note that
the nature of the unlabeled data-set has an important impact on the
classification performance. Experiments using 5 training examples on
the left plot correspond to the experiments using 100 unlabeled exam-
ples on the right plot

posed in (Shawe-Taylor and Cristianini 2004),

A(yyT ,K) = yT Ky

N
√

tr(KT K)
(11)

where N is the number of training cases and y is a vector
of +1 and −1 indicating the class of each data-case.3 Fig-
ures 10 and 11 illustrate that training using more suitable
sets of unlabeled data results in more appropriate kernels.

6 Combining Multiple Generative Models

In the previous section we showed how to leverage unla-
beled data within our hybrid framework. In this section we
show how the hybrid framework can be used to combine
multiple generative models into a single classifier. Why is
this useful? Consider that visual data is heterogeneous in
nature. Different ‘front-ends’ (feature detectors, feature de-
scriptors) work best on different types of data. For instance,
the techniques used for optical character recognition (OCR)
vary greatly from those used to detect cars. Also, it is clear
that some features should be described with ‘brightness’

3Why did we not choose the perfect kernel according to this metric,
namely K = yyT ? The reason is that this kernel would overfit on the
training data and exhibit poor generalization performance. The align-
ment measure is therefore only useful provided we do not overfit,
which we would not expect given the fact that we learn the kernel on a
separate, unlabeled data-set.

templates, others with ‘texture’ descriptors, still others with
parameterized edges or curves. It would be useful to remain
initially agnostic as to which front-end is most useful and
allow the learning algorithm to decide which to use.

In the previous section we learned the kernel on unla-
beled training data under the assumption that very few la-
beled training data were available. However, it is also pos-
sible to tune the kernel based on the labeled training exam-
ples, provided the labeled data-set is sufficiently large. In
this setting, one has to be careful not to “overfit” the ker-
nel on the training examples and achieve poor generalization
performance. A standard approach to determine regulariza-
tion and kernel parameters is by cross-validation. Unfortu-
nately, when the number of parameters is large this method
becomes infeasible. An alternative approach that has been
proposed in the literature is to optimize the kernel on ap-
proximations or bounds of the test-error. The approach we
will follow here was described in Chapelle et al. (2002)
(see also Opper and Winther 2000 and Jaakkola and Hauss-
ler 1999) which derive gradients for the span bound of the
leave-one-out error. Other authors, e.g. Gold et al. (2005)
offer an alternate solution to this problem.

Consider the choices we face when modeling a particular
object category using the Constellation Model. Which front-
end interest point detector should we use? How many parts
should the model contain? Should one model the geometry
and appearance of a part? Each of these choices leads to a
different model and hence to a different set of Fisher Scores.
Instead of choosing a particular type of model, one could ar-
gue to create multiple models, and incorporate information
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Fig. 10 Kernel matrices computed using different sets of unlabeled
training data. Each model underlying a kernel was trained on 200
unlabeled data-cases. A kernel was computed as φT (xi)φ(xj ) with
normalized Fisher Scores and averaged over 20 experiments. Diagonal
entries are zeroed out to improve resolution. When the Faces data-set
was used as an unlabeled set we can easily discern a block-structure
where the images in the same class are similar to each but dissimilar to

the images of the other class (images in the same class correspond to
first 10 entries and second 10 entries respectively and brighter colors
indicate higher similarity between the data-points). Note that the block
structure is not evident when a dissimilar set of unlabeled training ex-
amples is used, i.e. the ‘Odyssey’ unlabeled data-set. Test performance
and alignment values are also indicated

Fig. 11 Visualization of Fisher Scores extracted from models created
using different sets of unlabeled training data. Each plot was the re-
sult of learning with a different set of unlabeled training data, namely
‘Faces’ (Left) and ‘Odyssey’ (Right). The circle and triangles are two
different individuals for which Fisher Scores were extracted from the
generative model. Note that none of these images were in the set of
unlabeled training data used to create the ‘Faces’ generative model.
Distances in feature space were computed as dij = ‖φ(xi) − φ(xj )‖,

where φ is the normalized Fisher Score. These were input to the MDS
procedure which embeds the data in a 2-D Euclidean space while min-
imizing distance distortion. One can clearly see that the model learned
on the Faces data (left) results in an embedding which is linearly sep-
arable (even in 2 dimensions), while the embedding obtained from the
Odyssey data-set (right) is not linearly separable (different classes are
represented by circles and triangles). This indicates that using ‘Faces’
as an unlabeled training set will result in a more robust classifier

from all these models into a single Fisher Score by concate-
nating the Fisher Scores from each individual model. How-
ever, this is an unsatisfactory procedure because we do not
know how to weight the different contributions, which may
operate at different scales. Hence, a natural idea is to weight

the Fisher Scores of each component model. Taking this one
step further, one could decide to attach a different weight
to each individual dimension of the entire feature vector,
not just to each individual component model. This choice of
parametrization is problem dependent: too many parameters
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Fig. 12 Overview of proposed visual category recognition algorithm which automatically weights the importance of different models

may still lead to overfitting and may be too computationally
expensive.

In this section we explore the potential of learning the
weights for the various contributions to the kernel. This has
lead to interesting insights; for instance that a certain type
of detector is much better to build a face model than another
type of detector. In some sense, by learning the optimal com-
bination of kernels we are partially relieved from the task to
pick the best components to model a certain object class.
Instead we let the data decide which components are most
important for the classification task. This information could
subsequently be used to remove irrelevant components, thus
improving the computational efficiency of the resulting clas-
sifier.

6.1 Leave-One-Out Span Bound

Our proposed method consists of three steps which are illus-
trated in Fig. 12: (1) Train an ensemble of generative models
separately for each class, (2) extract Fisher Scores to con-
struct Fisher Kernels for all the models separately, (3) train
an SVM classifier and “learn the kernel” by weighting the
different kernels. Finding the weights is achieved by mini-
mizing a bound on the leave-one-out error (Chapelle et al.
2002). Next, we will provide details for these steps.

The general form of the kernel that we consider is,

KRBF(Ii, Ij ) = exp

(
−1

2

∑

M
wM‖φM(Ii) − φM(Ij )‖2

)

(12)

where we have introduced separate weights wM for each
model. To tune the weights wM and the regularization con-
stant C in the SVM, we adopt the method proposed in
Chapelle et al. (2002). In this method a smoothed version

of the “span-bound” of the leave-one-out (LOO) error4 is
minimized,

T (w,C) = 1

N

N∑

n=1

σT (αnS
2
n − 1) with

S2
n = 1

[(KSV + Diag(η/α))−1]nn

− η/αn

where σT (x) = 1/(1 + e−x/H ) is the sigmoid function, H is
the temperature (set to H = 100), η is a smoothing parame-
ter (set to η = 0.1) and KSV the kernel evaluated at the sup-
port vectors. The parameters α are the dual weights in a 2-
norm soft margin SVM. The 2-norm SVM is convenient be-
cause the regularization parameter C can be considered as a
parameter of the kernel function, alongside the weights wM
(hence the notation θ = ({wM},C) in the following). We
invite the reader to explore Chapelle et al. (2002) for more
details and a more complete explanation of this procedure.

The chief advantage of this smoothed span bound is that
it can be efficiently minimized using gradient descent. The
gradients can be written as,

dT (θ)

dθ
= ∂T (θ)

∂KSV

∂KSV

∂θ
+ ∂T (θ)

∂α

∂α

∂θ
. (13)

While the first partial derivative is straightforward, the sec-
ond requires some more thought because the dual weights
α are the solution of the 2-norm SVM. For more details
on how to compute it we refer to Chapelle et al. (2002).
Discontinuities in this derivative are expected when data-
cases jump in or out of the support vector set. However, the
gradient descent with line search procedure works well in
practice. Note that for each gradient step we need to solve

4We show the case without bias term for simplicity, but bias was in-
cluded in our experiments.
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Fig. 13 Determining which model parameters are most useful for a
particular classification task. Higher weights indicate more important
features. Fisher Scores are extracted from a 3 part diagonal covariance
model with 10 dimensional appearance model of the foreground class
using the KB detector. 100 training examples were used. Position is
conditioned on location of first model part so the shape model is only
optimized over 2 parts. M/V indicates mean/variance, S/A indicates
Shape/Appearance and 1/2/3 indicates the part within a model. Each

group has 2 or 10 bars corresponding the number of dimensions. E.g.
“VA2” indicates a group of 10 variance parameters for the appearance
model of part 2. (Top) Leopards vs. Background classification task.
Early coefficients in the appearance model are the most useful dimen-
sions for classification. (Bottom) Faces vs. Background classification
task. The Shape model appears to be more useful for classification.
The consistent detection of facial features by the KB detector makes
the shape model relatively more important

a QP for the SVM. However, this procedure is much more
efficient than cross-validation which would need to check a
number of grid-points exponential in the number of parame-
ters, which is at least a dozen in our experiments.

7 Experiments with Combinations of Kernels

We tested our system which weights different models on nu-
merous object categories. Each image within a category is
associated with a class label, however the objects are not
segmented within an image. We used some of the classes
from previous experiments and collected an additional set of
classes consisting of 200 images of 3 different faces taken
against varying backgrounds and lighting conditions. Ex-
amples of the face images are shown in Fig. 1. For the 2-
part models up to 100 detected interest points were used,
and for the 4-part models up to 20 interest points. Typi-
cally 100 training images and up to 250 testing images were
used.

Training a classifier proceeds as follows: First, learn a
suite of generative models for each class using the train-
ing data only. In case we classify against background we
only train models on the foreground class. Next, extract
Fisher Scores from all models and train weights wM by
minimizing the span bound. The weighted scores are used
to construct a single kernel KRBF which is used to train
a 2-norm SVM, still only using training data. The ker-
nel and dual weights α for the support vectors are then
used in the usual way to predict the class label of test
cases.

7.1 Feature Selection

The generative models contain numerous parameters from
which Fisher Scores are extracted and it is unclear, in
general, which components of the model(s) are important
for classification tasks. Figure 13 illustrates the resulting
weights after minimizing the LOO bound. We observe
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Table 4 The effect of weighting and removing features on perfor-
mance. Unweighted: performance using XVal on a single weight for all
dimensions and a slack parameter. Weighted: performance after mini-
mizing the LOO-span bound on the weights of each model. 10%/20%:
performance using only the top 10% and 20% of the relevant dimen-

sions. −10%: performance using the worst 10%. Others: the perfor-
mance of previous constellation model algorithms. Note that Fergus
et al. (2003) uses 6-part models including occlusion and typically 2–4
times more training examples

Unweighted Weighted 10% 20% −10% Others

leopards vs. BG 91.3 94.3 89 90 62 88 (Fergus 2005)

P1 vs. P3 86 89.8 82.2 81.1 67 –

Table 5 The effect of weighting and removing models on perfor-
mance. Unweighted/Weighted/Others: same as Table 4. 1/2: the per-
formance using only the best model/performance using the first and

second best model. −1: performance using the worst model. 100 train-
ing images were used

Unweighted Weighted 1 2 −1 Others

motorcycles vs. BG 92.6 92.6 77.2 89.6 72 96.7 (Fergus 2005)

leopards vs. BG 93.4 94.8 90.5 93.7 69.1 88 (Fergus 2005)

airplanes vs. BG 89.8 91.4 80.6 87.2 65.4 93.3 (Fergus 2005)

P2 vs. P3 83.3 92.4 92.7 93.0 67.9 –

Table 6 Performance on discriminating between faces in the Peo-
ple Face data-set. KB/mHar/mHes/DoG: performance using Appear-
ance/Shape models created using only the given detector. Unweighted:
performance using models of all detectors with a single weight.

Weighted: performance after LOO optimization of the weights for the
models. Notice the relatively poor performance using only the KB or
mHes on these classification tasks. 50 training images used, 2-part, 20
PCA coefficient models

KB mHar mHes DoG Unweighted Weighted

P1 vs P2 76.6 82.8 72.3 61 88.2 92.8

P1 vs P3 64.3 85.2 73.6 69.1 89.7 93.6

P2 vs P3 74.6 82.4 81.1 64.7 90.1 92.8

that the relative weight of features vary for each classifi-
cation task, thereby giving us a deeper understanding of
the importance of these model components for a particular
task. Table 4 illustrates the effects on performance as sub-
sets of ‘good’ and ‘bad’ features are removed. We observe
that the weights obtained from the LOO procedure are good
indicators of generalization ability of a particular feature.
Parameter selection for the “unweighted” procedure was
done using 10 fold cross validation (XVal) by varying both
C and a single weight for all the models W in log steps from
[−9 : 3 : 9].

7.2 Model Selection

We have argued above that selecting for individual features
becomes computationally difficult and subject to over-fitting
when the number of LOO optimized parameters is too high.
We address this issue by assuming each model has the same
weight for each of its extracted fisher scores (i.e. the weights

are tied across features within a model). We apply the LOO
Span Bound described above to appropriately weight the
models for maximum generalization performance. We gen-
erate separate models based on: (1) Shape and Appearance,
(2) 2/4 model parts, (3) 4 different interest point detectors.
This results in 16 models for each class. Figure 15 shows
the evolution of the weights and the corresponding change
in test error on a typical classification task.

Figure 14 illustrates that the LOO procedure selects dif-
ferent combinations of models depending on the particular
classification task at hand. These optimized combinations of
models yield an increase in classification performance over
the XVal procedure on the unweighted models (see Table 5
and Table 6).

In addition, we study the effect of training on a subset
of the models based on their optimized weights from the
LOO procedure (see Fig. 15 Left, and Table 5). We notice
that training the Xval procedure with only the best mod-
els results in good performance, while training using only
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the models with poor weights results in low classification
performance. This procedure can be used to select the best
models for a particular classification task, allowing for com-
putational savings during detection.

7.3 Integrating Unlabeled Data and
Kernel-Combination—the Caltech 101

We next performed an experiment using our hybrid model
which integrated both the use of unlabeled data in a semi-
supervised learning paradigm as well as combining multiple
models into a single classifier.

The Caltech 101 object category data-set5 consists of 101
object categories with varying numbers of examples in each
category (from about 30 to over 1000). The challenge of this
data-set is to learn representations for many different object
classes using a limited number of training examples. The
variability of this data-set is mostly evident between differ-
ent categories of objects rather than within a single category.
Objects within a particular category are often somewhat ho-
mogeneous in both appearance and pose.

For our experiments we used the following experimen-
tal paradigm. First we created a broad underlying genera-
tive model using 5 randomly selected training images from
all 101 classes. In the parlance of Sect. 5, this set of im-
ages corresponds to our set of unlabeled trained examples.
Generative models from this set of unlabeled training exam-
ples were created using interest points detected from three
different detectors, KB, mHess, mHar. Fisher Scores were
then extracted from the generative models for all classes
within the Caltech 101. Fisher Scores from each genera-
tive model were concatenated to form a single long vector
to be used in the SVM classifier. To train our SVM classi-
fier we used 15 training examples and up to 30 test exam-
ples. We used the same cross-validation procedure to find
the hyper-parameters as described in the multi-class experi-
ments above.

Figure 16 illustrates our results. These results show that
utilizing the hybrid approach yields substantial improve-
ments in classification performance over the generative ap-
proach and that additional performance gains are realized
when generative models created using different underly-
ing feature detectors are combined to form a single classi-
fier. These experiments illustrate the utility in using a semi-
supervised approach as well as combining kernels in im-
proving classification performance.

8 Discussion and Conclusions

We have explored a method for obtaining discriminative
classifiers from generative models of visual categories. It

5Available at http://www.vision.caltech.edu/html-files/archive.html.

Fig. 16 Performance on the Caltech 101 object category data-set when
different numbers of parts and interest points are used. Each set of
columns indicate a different number of parts and interest points used,
i.e. 33/3 indicates that a maximum of 33 interest points were detected in
each image and that a 3 part model was used. Performance is measured
by first calculating the percent of correctly classified points in each
class and then taking the average over all classes (this corresponds to
the average of the main diagonal of the confusion table). First column
in each set: pure generative approach using interest points from the KB
interest point detector. I.e. a generative model is created for all 101 cat-
egories and test examples are assigned to the generative model with the
highest posterior probability. Second column: hybrid approach where
Fisher Scores were extracted from a generative model made using the
KB interest point detector. See text for more details. Third column: hy-
brid approach when three (KB, mHar, mHess) different interest point
detectors are used and a generative model is created for each detec-
tor. Fisher Scores are concatenated into a single vector. Fei-Fei et al.
(2004) managed 16% using a constellation model with 3 parts and inte-
grating prior information into their model. For a similar 3-part constel-
lation model with no prior information we achieve 14.3% using only
the generative models, 26.1% using our hybrid approach, and 35.7%
using our multiple model hybrid approach. 15 training examples were
used for all experiments

works in two steps: first train generative models, then from
those generative models calculate Fisher Kernels and use
them for classification. This method achieves the best of
both the generative and discriminative worlds: for genera-
tive approaches it is robust to occlusion and clutter, it may
be trained from few examples, it benefits from prior knowl-
edge. Additionally, the generative part of the model may be
trained incrementally. Its discriminative nature results in su-
perior classification performance.

Our experiments in Sect. 4 show that the performance of
our hybrid approach is not inferior to that of a traditional
generative constellation model. Rather, performance is sig-
nificantly better there and is in line with the current results in
the literature. The advantage of the hybrid approach is par-
ticularly evident when the categories to be classified are very
similar, such as the faces of different people. In addition, we
controlled for possible overfitting to background statistics
and found that this may be an issue.
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Section 5 shows that our hybrid architecture lends it-
self readily to incorporating unlabeled examples. This is
achieved by training generative models on large sets of un-
labeled pictures which may contain relevant information.
This process provides considerable performance improve-
ment when learning specific categories (faces in our exper-
iments) with very few training examples. As one would ex-
pect, we find that these results vary with the statistics of
the images used to construct the generative model. Figure 9
shows that learning the statistics unrelated categories such
as Text or Leopards will not help in distinguishing between
Faces, while the most useful generative model has the same
statistics as the Faces data-set.

In Sect. 6 we show that multiple models may be read-
ily combined within our hybrid method. Our experiments in
Sect. 7 suggest that the system is able to determine automat-
ically which models provide the most valuable information
for a given classification task. This indicates that a higher
level of automation has been achieved: we do not need to
ask an expert vision engineer to craft the best recognition
strategy for a given task; rather, we can let our hybrid system
self-tune to use whatever information is most valuable. Fi-
nally, we illustrate that combining both our semi-supervised
learning approach and the ability to combine multiple mod-
els yields strong performance on the Caltech 101 object cat-
egory data-set and that this performance is far superior to
that of the corresponding generative approach.
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