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Abstract Central catadioptric cameras are imaging devices
that use mirrors to enhance the field of view while pre-
serving a single effective viewpoint. Lines and spheres in
space are all projected into conics in the central catadiop-
tric image planes, and such conics are called line images
and sphere images, respectively. We discovered that there
exists an imaginary conic in the central catadioptric image
planes, defined as the modified image of the absolute conic
(MIAC), and by utilizing the MIAC, the novel identical pro-
jective geometric properties of line images and sphere im-
ages may be exploited: Each line image or each sphere im-
age is double-contact with the MIAC, which is an analogy
of the discovery in pinhole camera that the image of the
absolute conic (IAC) is double-contact with sphere images.
Note that the IAC also exists in the central catadioptric im-
age plane, but it does not have the double-contact properties
with line images or sphere images. This is the main reason
to propose the MIAC. From these geometric properties with
the MIAC, two linear calibration methods for central cata-
dioptric cameras using sphere images as well as using line
images are proposed in the same framework. Note that there
are many linear approaches to central catadioptric camera
calibration using line images. It seems that to use the prop-
erties that line images are tangent to the MIAC only leads to
an alternative geometric construction for calibration. How-
ever, for sphere images, there are only some nonlinear cal-
ibration methods in literature. Therefore, to propose linear
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methods for sphere images may be the main contribution of
this paper. Our new algorithms have been tested in extensive
experiments with respect to noise sensitivity.
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1 Introduction

Catadioptric cameras are imaging systems consisting of re-
fracting lenses (dioptrics) and reflecting mirrors (catoptrics)
as defined by Hecht and Zajac (1997). Some representa-
tive implementations of catadioptric imaging systems are
described in Nayar (1988); Yagi and Kawato (1990); Hong
et al. (1991); Bogner (1995); Nalwa (1996); Svoboda et
al. (1998); Yagi and Yachida (2004); Swaminathan et al.
(2006). Catadioptric systems with respect to a single ef-
fective viewpoint are thoroughly investigated by Baker and
Nayar (1998), and which satisfy the single viewpoint con-
straint are called central catadioptric cameras. The reason to
desire a single viewpoint is that it can generate geometri-
cally correct perspective images from the images captured
by the central catadioptric cameras. Since existing vision al-
gorithms primarily utilize the single viewpoint model, i.e.,
the well-known pinhole camera model, it is not difficult to
extend these algorithms directly for calibrated central cata-
dioptric cameras.

This paper addresses calibration issues in central cata-
dioptric cameras. Previous approaches may be classified into
three categories: using control points with known world co-
ordinates (Aliaga 2001), self-calibration (Kang 2000), and
using line images or sphere images (Geyer and Daniilidis
1999, 2002; Barreto and Araujo 2001; Ying and Hu 2004;
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Barreto and Araujo 2005). The motivation of this paper is to
find linear calibration methods for central catadioptric cam-
eras using sphere images as well as line images in the same
framework. We draw inspiration from the study on the pin-
hole camera calibration using sphere images (Agrawal and
Davis 2003; Teramoto and Xu 2002; Ying and Zha 2005,
2006), which will be introduced later.

1.1 Related Work on Central Catadioptric Camera
Calibration Using Line Images or Sphere Images

This kind of methods only uses the images of lines or
spheres in the scene, without knowledge of any metric in-
formation. Geyer and Daniilidis (1999) used images of two
sets of parallel lines to find the intrinsic parameters as well
as the orientation of the plane containing the two parallel
line sets. Barreto and Araujo (2001) presented a two-step
method: Firstly, the principal point is determined using the
intersections of three catadioptric line images. Secondly, the
recovered principal point is used to determine the image of
the absolute conic from these line images, and finally the
intrinsic parameters are recovered by means of Cholesky
factorization. Geyer and Daniilidis (2002) proposed another
calibration method for a catadioptric camera with a par-
abolic mirror using the projective properties of the images
of three lines. Barreto and Araujo (2005) proposed a geo-
metric construction method using the geometric properties
of line images for any central catadioptric camera which
is generalized previous results for paracatadioptric cameras.
They proved that three line images are enough to compute
the mirror and the intrinsic parameters. They also showed
that the hyperbolic system can be calibrated using only two
line images. Recently, Ying and Hu (2004) proved that a
line image can provide three invariants whereas a sphere im-
age can only provide two. From these invariants, constraint
equations for the intrinsic parameters of catadioptric cam-
era are derived. In general, two line images or three sphere
images are sufficient to achieve catadioptric camera cali-
bration. One important observation in Ying and Hu (2004)
is that the method based on sphere images is more robust
and has higher accuracy than that based on line images. The
main underlying reason is that, the projection of a line (usu-
ally a line segment in real scene) is only a small arc of a
conic (e.g. about one-third of an ellipse) but the projection
of a sphere is usually a closed ellipse, and conic fitting using
points lying on a portion of a conic is an error-prone process.
However, the calibration methods proposed by Ying and Hu
(2004) employ nonlinear optimization method and requires
a good initial estimation to start the minimization. Most re-
cently, Barreto and Araujo (2006) proposed a very efficient
conic fitting method for line images under paracatadioptric
cameras to obtain more accurate estimations. However, for
the hyperbolic case, the problem of line image fitting is still
open.

1.2 Related Work on Pinhole Camera Calibration Using
Sphere Images

The image of the absolute conic (IAC) plays a central role
in camera calibration. Teramoto and Xu (2002) first discov-
ered the algebraic relation between the sphere image and the
IAC under a pinhole camera, and then provided an efficient
algorithm to solve for the camera parameters. However, in
their approach the minimization is accomplished by means
of a general-purpose nonlinear minimization and required a
good initial estimation to start the minimization. Agrawal
and Davis (2003) utilized the dual representation instead,
i.e., the algebraic relation between the dual form of a sphere
image and the dual image of the absolute conic (DIAC),
then employed semi-definite programming (SDP) to solve
for the intrinsic parameters without requiring initial estima-
tions. Base on the main principles derived in Teramoto and
Xu (2002) and Agrawal and Davis (2003), we (Ying and Zha
2005, 2006) further discovered that each sphere image is
tangent to the IAC at two double-contact image points, and
some linear calibration methods are derived from this ob-
servation. Zhang et al. (2007) introduced a novel approach
for solving the problem of camera calibration from spheres
by exploiting the relationship between the dual images of
spheres and the dual image of the absolute conic, it is shown
that the common pole and polar with regard to the conic im-
ages of two spheres are also the pole and polar with regard
to the IAC. This provides two constraints for estimating the
IAC and, hence, allows a camera to be calibrated from an
image of at least three spheres.

1.3 Contributions of This Paper

Based on the discovery in pinhole that a sphere image is
double contact with the IAC (Ying and Zha 2005, 2006), we
further reveal that there also exists a conic with purely imag-
inary points in the central catadioptric image planes analogy
to the IAC in pinhole, called the modified image of the ab-
solute conic (MIAC, its definition is described in the main
text), which is double contact with each line image or each
sphere image under central catadioptric cameras. Note that
the IAC also exists in the central catadioptric image plane,
but the IAC is no longer double-contact with line images
or sphere images under central catadioptric cameras. It has
four intersections (real and imaginary) in general with each
line image or each sphere image. This is the main reason
to propose the MIAC for central catadioptric cameras. Fur-
thermore, the methods for pinhole camera calibration us-
ing sphere images proposed in Ying and Zha (2005, 2006)
are extended to central catadioptric camera calibration us-
ing line images or sphere images. Note that the central cata-
dioptric camera with planar mirror is equivalent to a pinhole
camera, i.e., the pinhole camera may be treated as a special
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case of central catadioptric cameras. Therefore, this paper
may be considered as an intuitive extension from pinhole to
central catadioptric. However, in fact, to prove the feasibil-
ity of this extension is not easy as demonstrated in the main
text.

The main contributions of this paper are emphasized as
follows:

1. The MIAC is firstly discovered and introduced for central
catadioptric camera calibration by us, which is an anal-
ogy of the IAC for pinhole camera in some respects. In-
depth analyses of the relation between the MIAC and the
IAC are presented.

2. Some novel geometric properties are discovered that
each line image and each sphere image is double-contact
with the MIAC. Note that to find these properties is not
trivial. It is not only an intuitive guess but also requires
rigorous proofs.

3. The double-contact theorem is employed to interpret the
relations among the MIAC and line images or sphere im-
ages. In addition, a new geometric approach is proposed
to determine the chord of contact between the MIAC and
a line image or a sphere image, which is a very important
part and only algebraic approach is given in previous cal-
ibration algorithms (Agrawal and Davis 2003; Ying and
Zha 2005, 2006).

4. Two new linear calibration methods are proposed while
dealing with line images and sphere images in a unified
framework. Note that there are many linear approaches
to central catadioptric camera calibration using line im-
ages. It seems that to use the properties that line images
are tangent to the MIAC only leads to an alternative geo-
metric construction for calibration. However, for sphere
images, there are only some nonlinear calibration meth-
ods in literature.

This paper is organized as follows: Sect. 2 briefly intro-
duces some notations and basic principles. The novel identi-
cal projective geometric properties of line images and sphere
images are proposed in Sect. 3 and Sect. 4. Two new calibra-
tion algorithms are derived from these properties as shown
in Sect. 5. Experimental results are demonstrated in Sect. 6.
Finally, Sect. 7 presents some concluding remarks.

2 Imaging Models and Equations of Central
Catadioptric Line Images and Sphere Images

2.1 Pinhole Camera Model

Given a 3D point M = [X Y Z 1]T and its image m =
[u v 1]T , both in the homogeneous coordinates, the rela-
tionship between 3D world coordinates and 2D image coor-
dinates may be written in matrix form as,

μm = PM, (1)

where P is a 3 × 4 projection matrix describing the perspec-
tive projection process. μ is an unknown scale factor. The
projection matrix may be decomposed as:

P = K[R|t], (2)

where

K =
⎡
⎣

fx s u0

0 fy v0

0 0 1

⎤
⎦ . (3)

Here the upper triangular matrix K is the matrix of the in-
trinsic parameters, and (R, t) denote a rigid transformation
which indicate the orientation and position of the camera
with respect to the world coordinate system.

2.2 A Generalized Image Formation Model for Central
Catadioptric Cameras

Geyer and Daniilidis (2001) proposed a generalized im-
age formation model for central catadioptric cameras, and
proved that the central catadioptric image formation is
equivalent to a two-step mapping via a sphere (see Fig. 1):

Step 1: A point in 3D space is projected to a point on a
unit sphere centered at the single effective viewpoint O . The
unit sphere is called the viewing sphere.

Step 2: The point on the viewing sphere is perspectively
projected to a point on the image plane Π from another point
OC . The image plane Π is perpendicular to the line deter-
mined by the single viewpoint O and OC .

This step can be considered as taking image of the view-
ing sphere using a virtual camera whose optical center is
located in OC and whose optical axis coincides with the
line determined by O and OC . We denote the distance
l = |OOC |, and the distance l corresponding to different
types of mirrors is shown in Table 1.

If the intrinsic matrix of the virtual camera is:

KC =
⎡
⎣

fx s u0

0 fy v0

0 0 1

⎤
⎦ , (4)

then from (1) and (2), we have,

μmC = PCMC, (5)

and

PC = KC[I|0], (6)

Table 1 Distance l corresponding to different types of mirrors

Ellipsoidal Paraboloidal Hyperboloidal Planar

0 < l < 1 l = 1 0 < l < 1 l = 0
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Fig. 1 A line image CL and a
sphere image CS under the
central catadioptric imaging
model

where MC is a point on the viewing sphere represented in
the virtual camera coordinate system, and mC is an image
point represented in the catadioptric image coordinate sys-
tem.

2.3 Equations of Line Images and Sphere Images

For a space sphere viewed by a central catadioptric camera,
it is projected into a small circle S on the viewing sphere
in the first step (see Fig. 1). The equation of the plane con-
taining the small circle S in the world coordinate system (its
origin is located in the center of the viewing sphere O) is:

nxXW + nyYW + nzZW + d0 = 0, (7)

where (nx ny nz)
T is the unit normal vector and |d0| is the

distance from the origin O to the plane. Similarly, the im-
age of a space line on the viewing sphere is a great circle L

(see Fig. 1), which lies on a plane (nx ny nz 0)T passing
through the origin O . Obviously, a great circle can be con-
sidered as a special case of a small circle when the distance
from the origin to the plane is zero. Therefore, there exists a
unified framework to represent the projections of a line and
a sphere on the viewing sphere. Consequently, the equations
for a sphere derived from (7) can be changed into the equa-
tions for a line by setting d0 = 0.

The projection center OC and the small circle S form
a cone (it may be not a right cone) and the equation for
the cone in the virtual camera coordinate system is:

QS =

⎡
⎢⎢⎢⎣

(l2 − 1)n2
x + (d0 − l · nz)

2 (l2 − 1)nxny (ld0 − nz)nx 0

(l2 − 1)nxny (l2 − 1)n2
y + (d0 − l · nz)

2 (ld0 − nz)ny 0

(ld0 − nz)nx (ld0 − nz)ny (d2
0 − n2

z) 0

0 0 0 0

⎤
⎥⎥⎥⎦ . (8)

Then a point MC = [XC YC ZC 1]T on the cone QS in the
virtual camera coordinate system satisfies:

MT
CQSMC = 0, (9)

or

M̄T
CQ̄SM̄C = 0, (10)

where M̄C = [XC YC ZC]T are the inhomogeneous coordi-
nates of MC , and

Q̄S =
⎡
⎢⎣

(l2 − 1)n2
x + (d0 − l · nz)

2 (l2 − 1)nxny (ld0 − nz)nx

(l2 − 1)nxny (l2 − 1)n2
y + (d0 − l · nz)

2 (ld0 − nz)ny

(ld0 − nz)nx (ld0 − nz)ny (d2
0 − n2

z)

⎤
⎥⎦ . (11)
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From (5), the catadioptric image point of MC satisfies:

μmC = PCMC = KC[I|0]MC = KCM̄C. (12)

Since KC is invertible, we obtain,

M̄C = μK−1
C mC. (13)

Substituting (13) into (10), we have,

mT
CK−T

C Q̄CK−1
C mC = 0, (14)

or

λCS = K−T
C Q̄SK−1

C , (15)

where λ is an unknown scale factor. CS is the sphere image.
By setting d0 = 0 in (15), we obtain the quadratic form

for a line image:

λCL = K−T
C Q̄LK−1

C , (16)

where

Q̄L =
⎡
⎢⎣

(l2 − 1)n2
x + l2n2

z (l2 − 1)nxny −nznx

(l2 − 1)nxny (l2 − 1)n2
y + l2n2

z −nzny

−nznx −nzny −n2
z

⎤
⎥⎦ .

(17)

Since a line image can be seen as a special case of a sphere
image (i.e., d0 = 0), in the rest paper, we use C to denote
both line images and sphere images.

3 Identical Algebraic and Geometric Properties of
a Line Image or a Sphere Image

3.1 The IAC and the DIAC

The absolute conic �∞ is a conic with purely imaginary
points on the plane at infinity π∞ = [0 0 0 1]T , and its ma-
trix form is (Hartley and Zisserman 2000, p. 63):

�∞ =
⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ . (18)

The mapping between π∞ and its perspective image un-
der the virtual camera is given by the planar homography

H = KCR. Since the absolute conic �∞ is on π∞, one may
compute the image of the absolute conic (IAC) under H as:

ωC = H−T �∞H−1 = (KCR)−T I(KCR)−1 = K−T
C K−1

C .

(19)

We may define the dual image of the absolute conic (DIAC)
as:

ω∗
C = KCKT

C. (20)

3.2 The MIAC and the DMIAC

In this section, we assume 0 ≤ l < 1, and discussions on
l = 1 corresponding to a paracatadioptric camera will be
given in Sect. 4.4.

Definition 1 An intrinsic matrix defined as

K̃C =
⎡
⎢⎣

fx/
√

1 − l2 s/
√

1 − l2 u0

0 fy/
√

1 − l2 v0

0 0 1

⎤
⎥⎦ , (21)

is called a modified intrinsic matrix.

Obviously, from (4) and (21) we know K̃C and KC sat-
isfy,

K̃C = KC

⎡
⎢⎣

1/
√

1 − l2 0 0

0 1/
√

1 − l2 0

0 0 1

⎤
⎥⎦ . (22)

The modified image of the absolute conic (MIAC) satisfies,

ω̃C = H̃
−T

�∞H̃
−1 = (K̃CR)−T �∞(K̃CR)−1

= K̃−T
C K̃−1

C . (23)

We may define the dual of the modified image of the ab-
solute conic (DMIAC) as:

ω̃∗
C = K̃CK̃T

C. (24)

3.3 Algebraic Properties Related to the MIAC

Expanding the right side of (15) using (some supplemental
derivations are shown in Appendix 1)

Q̄S = (d0 − l · nz)
2

(1 − l2)

⎡
⎢⎣

1 − l2 0 0

0 1 − l2 0

0 0 1

⎤
⎥⎦ −

⎡
⎢⎣

(1 − l2)n2
x (1 − l2)nxny −(ld0 − nz)nx

(1 − l2)nxny (1 − l2)n2
y −(ld0 − nz)ny

−(ld0 − nz)nx −(ld0 − nz)ny (ld0 − nz)
2/(1 − l2)

⎤
⎥⎦ , (25)
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we obtain,

λC = ω̃C − vvT , (26)

where ω̃C is the MIAC, and

v = 1 − l2

d0 − l · nz

K̃−T
C

⎡
⎣

nx

ny

−(l · d0 − nz)/(1 − l2)

⎤
⎦ . (27)

3.4 Algebraic Properties Related to the DMIAC

Inverse both side of (15), and use (some supplemental
derivations are shown in Appendix 2)

Q̄
−1
S =

⎡
⎢⎣

n2
x − 1 + d2

0 nxny (l · d0 − nz)nx

nxny n2
y − 1 + d2

0 (l · d0 − nz)ny

(l · d0 − nz)nx (l · d0 − nz)ny (1 − l2)(−1 + d2
0 ) + (l · d0 − nz)

2

⎤
⎥⎦

= (−1 + d2
0 )

⎡
⎣

1 0 0

0 1 0

0 0 (1 − l2)

⎤
⎦ +

⎡
⎢⎣

n2
x nxny (l · d0 − nz)nx

nxny n2
y (l · d0 − nz)ny

(l · d0 − nz)nx (l · d0 − nz)ny (l · d0 − nz)
2

⎤
⎥⎦ (28)

after some manipulations, we obtain,

λ′C∗ = ω̃∗
C − v′v′T , (29)

where λ′ is an unknown scale factor, and C∗ is the inversion
of the conic C, i.e., the dual conic. ω̃∗

C is the DMIAC, and

v′ = 1√
(1 − d2

0 )(1 − l2)

K̃C

⎡
⎣

nx

ny

l · d0 − nz

⎤
⎦ . (30)

From (26) and (29), it is not difficult to find that the two
equations have the same mathematical form, no matter
whether adopted the dual representation or not. In the rest
of paper, we only discuss the geometric interpretation for
ω̃C and determining ω̃C using the double-contact theorem,
since ω̃∗

C may be interpreted and determined in the same
way.

3.5 Geometric Properties Related to the MIAC

Equation (26) can be rearranged as:

λC − ω̃C = −vvT . (31)

Since the rank of the matrix −vvT is one, the rank of the
matrix λC−ω̃C is one too. Consider the pencil of two conics
S1 and S2,S1 +μS2 represents a conic which passes through
all the common points of S1 and S2 (Semple and Kneebone
1952, p. 156). Since two coincident lines (i.e., a repeated
line) can be seen as a degenerate conic with rank 1, from the
properties of a pencil of two conics described in (Semple and
Kneebone 1952, pp. 158–161), we know that C is tangent to
ω̃C at two image points, i.e., two double-contact points, and

the chord of contact passing through the two tangent points
satisfies (see Fig. 2):

lD ∝ v, (32)

where ∝ indicates equality up to a non-zero scale factor.
Note that (32) is derived from (31). Similar results can be
obtained for C∗ and ω̃∗

C .
From the discussion above, we obtain:

Proposition 1 Each line image or each sphere image is tan-
gent to the modified image of the absolute conic (MIAC) at
two double-contact image points.

Proposition 2 Each dual of line image or each dual of
sphere image is tangent to the dual of the modified image
of the absolute conic (DMIAC) at two double-contact image
points.

3.6 Geometric Relation between the IAC and the MIAC

From (19), (23) and (22), we know the algebraic relation
between the IAC ωC and the MIAC ω̃C . Now we discuss on
the geometric relation between the IAC and the MIAC.

Proposition 3 The IAC and the MIAC are concentric, and
centered at the principal point in the central catadioptric
image.

Proof The center of a conic is defined as the pole of the line
at infinity l∞ = (0,0,1)T with respect to the conic. Let O ′
denote the center of the IAC ωC , since l∞ and O ′ satisfy the
pole-polar relation with respect to ωC , then we have,

l∞ ∝ ωCO ′. (33)
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Fig. 2 Geometric relations
among the MIAC ω̃C , the IAC
ωC , and a line image or a sphere
image C

Since ωC is invertible and using (24), we have

O ′ ∝ ω−1
C l∞ ∝ ω∗

C l∞ ∝ KCKT
C l∞ ∝ (u0, v0,1)T ∝ OP .

(34)

Therefore, the center of the IAC ωC is the principal point
OP . Similarly, we may obtain that OP is also the center of
the MIAC ω̃C . �

The geometric relations between the IAC ωC and the
MIAC ω̃C are illustrated in Fig. 2. From Fig. 2, we know
that for a line image or a sphere image C, it is double-contact
with the MIAC. These properties are analogy of those in
pinhole that the IAC is double-contact with each sphere im-
age (Ying and Zha 2005, 2006). However, the IAC in the
central catadioptric image plane has four intersection points
(real and imaginary) with a line image or a sphere image C.
One of the common chords of the IAC and C, l′D , shown in
Fig. 2, is the polar of the projection of the center of a circle
(the circle may be a great circle or a small circle correspond-
ing the line image or the sphere image on the viewing sphere
as shown in Fig. 1) with respect to C. The common chord
of the MIAC and C, lD , shown in Fig. 2, is usually differ-
ent from l′D , therefore, the pole of the lD with respect to C
is usually not the projection of the center of the circle. In
case of l = 0, i.e., the pinhole camera, from (19), (22) and
(23), we know that here the IAC and the MIAC are coin-
cide, so are lD and l′D . From discussions above, we know
that the double contact properties with the IAC is not veri-
fied for central catadioptric systems mainly because of the
re-projection from the viewing sphere to the image plane.
The image of a sphere (cone) in the first step cut the view-
ing sphere in a planar circle that is then re-projected from a
novel projection center. It shows that the matrix of equation
(22) (that seems a change in focal length) “re-establishes”
the double contact properties.

4 Identical Algebraic and Geometric Properties for
Three Line Images or Three Sphere Images Using the
Double-Contact Theorem

4.1 Geometric Properties from the Double-Contact
Theorem

From discussions in Sect. 3.5, we know that three line im-
ages or three sphere images C1,C2 and C3 are all double-
contact with the MIAC ω̃C as shown in Fig. 3. The chords
of contact for C1,C2 and C3 are denoted as lD1, lD2 and
lD3, respectively. L1 and M1 are a pair of opposite common
chords of C2 and C3,L2 and M2 are a pair of opposite com-
mon chords of C1 and C3,L3 and M3 are a pair of oppo-
site common chords of C1 and C2. Now, we first introduce
the double-contact theorem and the converse of the double-
contact theorem proposed by Evelyn et al. (1974), then de-
rive some algebraic and geometric properties of three line
images and three sphere images from these theorems.

The double-contact theorem If C1, C2 and C3 are three
conics having the property that there is a point X (not on
any of the conics) lying on a common chord of each pair of
the three conics (the chords in question being distinct), then
there exists a conic ω̃C which has double contact with each
of C1, C2 and C3 (Evelyn et al. 1974, p. 18).

Note “a point X (not on any of the conics) lying on a com-
mon chord of each pair of the three conics” means that the
three common chords (L1,L2 and L3 shown as solid lines
in Fig. 3) where X lies are concurrent.

Proof Since L1,L2 and L3 be concurrent as shown in
Fig. 3, and they may be some homogeneous vectors, it is not
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Fig. 3 Geometry for three line
images or three sphere images
C1,C2,C3 (shown in solid
lines), and the MIAC ω̃C

(shown in dashed lines). C1,C2
and C3 are all double-contact
with ω̃C.lD1, lD2 and lD3
(shown in dashed lines) are the
chords of contact for C1,C2 and
C3, respectively. L1,M1 are a
pair of opposite common chords
of C2 and C3,L2,M2 are a pair
of opposite common chords of
C1 and C3,L3,M3 are a pair of
opposite common chords of C1
and C2. These six chords are
shown in solid lines, and they
form a complete quadrangle,
which can be obtained using the
double-contact theorem and the
converse of the double-contact
theorem. Note that L1,L2 and
L3 are concurrent

difficult to choose the scale factors of these homogeneous
vectors and make them satisfy,

L1 + L2 + L3 ≡ 0. (35)

Note that now these scale factors are fixed, and absorbed by
these vectors, i.e., they are not shown here. Since L1 and
M1 are a pair of opposite common chords of C2 and C3, we
have,

C2 − C3 ≡ L1M1. (36)

Note that we also choose the scale factors of M1,C2 and C3

to make (36) identical, and no scale factor are shown here.
Similarly, for C3 and C1, we have,

C3 − C1 ≡ L2M2. (37)

Similarly, for C1 and C2, we have,

C1 − C2 ≡ L3M3. (38)

If we eliminate C3 between the identities (36) and (37), we
obtain,

C1 − C2 ≡ −L1M1 − L2M2. (39)

Now from (38) and (39), we obtain the identity,

L1M1 + L2M2 + L3M3 ≡ 0. (40)

If we use (35) to eliminate L3 in (40), this reduces to

L2(M2 − M3) ≡ L1(M3 − M1). (41)

Since L1,L2 are distinct (non-proportional) linear expres-
sions, the last identity (41) shows that there must exist a
constant k such that,

M2 − M3 ≡ kL1, (42)

and

M3 − M1 ≡ kL2. (43)

Similarly, these imply a third similar relation,

M1 − M2 ≡ kL3. (44)

At this point, we may notice that (42) demonstrates the con-
currence of L1,M2 and M3, and (43) and (44) have similar
interpretations (see Fig. 3 for details).

Now we notice the identity

4kC1 + (M2 + M3 − M1)
2

≡ 4kC2 + (M3 + M1 − M2)
2 (45)

≡ 4kC3 + (M1 + M2 − M3)
2,

where the notation, the square of a 3-vector x, means
x2 = xxT . The equality of the first two terms, for example is
equivalent to

4k(C1 − C2) ≡ (M3 + M1 − M2)
2 − (M2 + M3 − M1)

2

≡ 4M3(M1 − M2), (46)

which is a simple consequence of (38) and (44); and the sec-
ond equality is similarly proved. If, therefore, we use ω̃C to
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denote any one of the three identical expressions (46), we
will find that the conic ω̃C has double contact with each of
C1,C2 and C3. The reasons are as follows: By comparing
(46) with (26), we may obtain that the chords of contact
satisfy:

lD1 ∝ M2 + M3 − M1, (47)

lD2 ∝ M3 + M1 − M2, (48)

lD3 ∝ M1 + M2 − M3, (49)

corresponding to C1,C2 and C3, respectively. Therefore, we
have,

ω̃C ∝ 4kC1 + (M2 + M3 − M1)
2

≡ 4kC2 + (M3 + M1 − M2)
2 (50)

≡ 4kC3 + (M1 + M2 − M3)
2,

where the notation, the square of a 3-vector x, means
x2 = xxT , and k is a scale factor which can be determined
from L1,L2,L3,M1,M2 and M3. Note that though Li and
Mi , (i = 1,2,3) may be some homogeneous vectors, here
we choose the scale factors of these homogeneous vectors
to satisfy L1 +L2 +L3 ≡ 0, and L1M1 +L2M2 +L3M3 ≡ 0
(see Evelyn et al. 1974, for details). �

Furthermore, we find that each chord of contact (shown
as dashed lines in Fig. 3) passes through two intersection
points between the opposite sides of the complete quadran-
gle. This gives a geometric construction method to deter-
mine the chords of contact lDi (i = 1,2,3), i.e., vi in (31).
Note that Agrawal and Davis (2003) only gave an algebraic
method to solve for vi and the solution for vi is a very im-
portant part in the previous calibration algorithms (Agrawal
and Davis 2003; Ying and Zha, 2005, 2006), but no geomet-
ric interpretation was given in these papers.

The converse of the double-contact theorem If three con-
ics C1, C2, C3 all have double contact with another conic
ω̃C , then each two of C1, C2 and C3 have a “distinguished”
pair of opposite common chords, and the three such pairs of
common chords being the pairs of opposite sides of a com-
plete quadrangle (Evelyn et al. 1974, p. 19).

The proof of this theorem is omitted here. Therefore,
from the converse of the double-contact theorem, we know
that L1, M1, L2, M2, L3, M3 form a complete quadrangle
(shown as solid lines in Fig. 3).

4.2 Interpretation for Sphere Images

Here we assume 0 ≤ l < 1, and discussions on l = 1 cor-
responding to a paracatadioptric camera will be given in

Sect. 4.4. From Proposition 1, we know that each sphere
image is tangent to the MIAC at two double-contact image
points. The MIAC has only purely imaginary points, but
it shares the properties of any conic, such as the double-
contact theorem. Therefore, three sphere images and the
MIAC may be interpreted by the double-contact theorem.
An example of three sphere images is shown in the middle
of Fig. 4(a). Three pairs of common chords of each two of
the three sphere images are drawn in Fig. 4(b). Though the
intersection points of each two of these three sphere images
are all imaginary points, the common chords of each two
may be real lines shown as in Fig. 4(b). The MIAC is not
shown in Fig. 4 since it cannot be drawn in the real plane.
Note that the concurrent point of three common chords may
be not located in the principal point (see Fig. 4(a)).

4.3 Interpretation for Line Images

Here we assume 0 < l < 1, whereas the line image under
l = 0 corresponding to a pinhole camera is a degenerate case
and discussions on l = 1 corresponding to a paracatadiop-
tric camera will be given in Sect. 4.4. Since a line image
is a special case of a sphere image, from the discussions in
Sect. 4.2, we may easily obtain that three line images and
the IMAC satisfy the double-contact theorem. Here we give
another very intuitive interpretation.

From discussions in Barreto and Araujo (2001), we
know, for three line images, a common chord of each pair
of the three line images C1,C2 and C3, should pass through
the principal point OP (See Fig. 5). It is not difficult to find
that these satisfy the condition of the double-contact theo-
rem. This interpretation is very intuitive. Note that the other
opposite common chords have no real intersection points
with the three line images and are not shown in Fig. 5. An-
other important fact should be emphasized is that from the
three common chords passing through the principal point,
we may only obtain that, for these three line images, there
exist a conic which has double contact with each of three
line images, but, we cannot obtain that the conic is invari-
ant when the three line images are changed. From Proposi-
tion 1, we can obtain that the conic is invariant, which is the
IMAC.

4.4 Interpretation for Paracatadioptric Camera

As we know, line images and sphere images are both cir-
cles under paracatadioptric cameras, i.e., l = 1, if the skew
is zero and the aspect ratio is unitary. Similar to line images
under 0 < l < 1 in Sect. 4.3, for three paracatadioptric line
images, a common chord of each pair of the three line im-
ages C1,C2 and C3, should pass through the principal point
OP (See Fig. 6).
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Fig. 4 A simulated image 800 × 600 containing three sphere images
is shown in the middle of (a). Though the intersection points of each
two of these three sphere images are all imaginary points, the common
chords of each two may be real lines. Note that only three common
chords are visible in (a). (b) Obtained by zooming out on (a). Now

three pairs of opposite common chords of each two of these three
sphere images are visible as shown in solid lines. We may find that
these six chords form a complete quadrangle. The three chords of con-
tact are shown as dashed lines

Fig. 5 Three line images from a central catadioptric camera with a
hyperbolic/elliptical mirror

The three-conics theorem If three conics pass through two
given points, then the lines joining the other two intersec-
tions of each pair of the conics are concurrent (Evelyn et al.
1974, p. 11).

If the two given points are taken to be the circular points
at infinity, we obtain the familiar theorem that the radical
axes of three circles, taken by pairs, are concurrent (Evelyn
et al. 1974, p. 15). The concurrent point is called the radical

Fig. 6 Three line images under a central paracatadioptric camera

center. Note that for line images, the radical center is located
in the principal point, but for sphere images, the radical cen-
ter may be not (see Fig. 7).

Obviously, three paracatadioptric line or sphere images
satisfy the double-contact theorem. However, it should be
noted that, here the conic which each line image and each
sphere image is double-contact with is degenerated (as an
envelope) into a point-pair (Evelyn et al. 1974, p. 22; Hart-
ley and Zisserman 2000, p. 32), i.e., the circular points.
That means all paracatadioptric line and sphere images pass
through two invariant points (a degenerate conic), the circu-
lar points in the image plane.
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Fig. 7 Three sphere images under a central paracatadioptric camera

5 Calibration

5.1 A Counting Argument

Since it requires knowing some results presented in Ying
and Hu (2004), one may skip this section if not very famil-
iar with that paper. For the convenience of discussions, the
camera intrinsic matrix KC defined in (4) is rewritten and
decomposed into the product of two matrices:

KC =
⎡
⎣

fx s u0

0 fy v0

0 0 1

⎤
⎦ =

⎡
⎣

r · fe s u0

0 fe v0

0 0 1

⎤
⎦

=
⎡
⎣

r s′ u0

0 1 v0

0 0 1

⎤
⎦ ·

⎡
⎣

fe 0 0

0 fe 0

0 0 1

⎤
⎦ . (51)

Now we discuss how many constrains on the intrinsic pa-
rameters r , s′, u0, v0, fe and the distance l (defined in
Sect. 2.2) may be provided by three sphere images (dis-
cussions on three line images will be given later). For
one sphere image, it provides two invariants (Ying and Hu
2004):

d(bd − ae) − e(be − cd) = 0, (52)

b(bd − ae)f 2
e − e(bf − de)(l2 − 1) = 0, (53)

where a, b, c, d, e, f are the coefficients in the metric pro-
jection of a sphere image (the definition of the metric projec-
tion can be seen in Ying and Hu 2004). Given three sphere
images, we may obtain three equations on r, s′, u0 and v0

from (52) (Ying and Hu 2004), and other two equations on
r, s′, u0 and v0 can be obtained from (53). That means only
one equation on fe and l can be provided by three sphere
images. The reasons are as follows:

Equation (53) can be rewritten as:

f 2
e

l2 − 1
= e(bf − de)

b(bd − ae)
. (54)

Therefore, for three sphere images, eliminating f 2
e /(l2 − 1)

in the three equations from (53), then two equations on
r, s′, u0 and v0 are obtained. For central catadioptric cam-
eras, l is usually known. If l is unknown, we cannot obtain
fe and l separately only from three or more sphere images
if any other information is not given.

For one line image, it provides three invariants (Ying and
Hu 2004):

d(bd − ae) − e(be − cd) = 0, (55)

bf + de(l2 − 1) = 0, (56)

d(bd − ae)f 2
e + f (bf − de) = 0, (57)

where a, b, c, d, e, f are the coefficients in the metric pro-
jection of a sphere image (Ying and Hu 2004). Given three
line images, we may obtain three equations on r, s′, u0 and
v0 from (55) (Ying and Hu 2004), and other four more equa-
tions on r, s′, u0 and v0 can be obtained from (56) and (57).
That means one equation on fe and one equation on l can
be obtained from three line images. Therefore, we may de-
termine fe and l separately only from three line images.

One easy way to solve the ambiguous in three sphere
images is to use the significant characteristic of an actual
central catadioptric image whose boundary is usually an el-
lipse. After obtaining r, s′, u0 and v0, we may transform this
boundary ellipse into a circle. If the FOV is know in ad-
vance, then we have,

rb(l + cos(ϕFOV/2)) = fe sin(ϕFOV/2), (58)

where ϕFOV is the angle of the FOV, and rb is the radius of
the boundary circle. Therefore, fe and l can be solved with
this additional equation.

5.2 Determining the MIAC with the Double-Contact Points

For each line image or each sphere image C, its correspond-
ing line lD ∝ v can be determined (How to find v up to an
unknown scale factor has been given in Agrawal and Davis
(2003), i.e., ‖v‖ is yet unknown.) Therefore, the two inter-
section points of the obtained line lD and the original conic
C, i.e., mI and mJ , can be obtained (see Fig. 2). From dis-
cussion in Sect. 3, we know that the two intersection points
mI and mJ also lie on the MIAC ω̃C . Therefore, six points
on ω̃C can be obtained from three line images or three sphere
images. Since five points define a conic, the six points are
sufficient to estimate ω̃C . As we know, the MIAC should
be positive definite. The linear methods may fail in the case
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where the computed MIAC is not positive definite. How-
ever, this did not occur in our experiments, except in the
case where the noises are large. After obtaining ω̃C , it is not
difficult to determine v, i.e., ‖v‖ from (31).

5.3 The Calibration Algorithm by Finding the
Double-Contact Points

The complete calibration algorithm by finding the double-
contact points consists of the following steps:

1. Fit conic curves, then obtain Ci .
2. Find lDi ∝ vi , then obtain the intersection points of Ci

and lDi , then determine ω̃C .
3. If ω̃C is not positive definite, then stop.
4. Determine K̃C by using the Cholesky factorization

of ω̃C . Then obtain KC from K̃C using (22).
5. Obtain vi , then solve for the extrinsic parameters of the

camera. (See Agrawal and Davis 2003; Teramoto and Xu
2002 for details.)

5.4 Determining the MIAC Using the Double-Contact
Theorem

Given three line or three sphere images Ci (i = 1,2,3), from
(50), we may determine the MIAC ω̃C as:

ω̃C ∝ 4kC1 + (M2 + M3 − M1)
2 + 4kC2

+ (M3 + M1 − M2)
2 + 4kC3 + (M1 + M2 − M3)

2.

(59)

As we know, the MIAC ω̃C should be positive definite. The
linear methods may fail in the case where the computed
MIAC ω̃C is not positive definite. However, this did not oc-
cur in our experiments, except in the case where the noises
are large. After obtaining ω̃C , it is not difficult to determine
vi from (31).

5.5 The Calibration Algorithm Using the Double-Contact
Theorem

The complete calibration algorithm using the double-contact
theorem consists of the following steps:

1. Fit conic curves, then obtain Ci .
2. Determine ω̃C using the double-contact theorem.
3. If ω̃C is not positive definite, then stop.
4. Determine K̃C by using the Cholesky factorization of

ω̃C . Then obtain KC from K̃C using (22).
5. Obtain vi , then solve for the extrinsic parameters of the

camera. (See Agrawal and Davis 2003; Teramoto and Xu
2002 for details.)

Fig. 8 Geometry for the degenerate case of the two linear calibration
methods proposed in this paper

5.6 Singularities

Like almost any algorithm, these two calibration algorithms
have singularities. In practice, it is important to be aware of
the singularities in order to obtain reliable results by avoid-
ing them.

As stated in Sect. 3.5, each line image and each sphere
image provides two double-contact points on the MIAC.
However, if two line images or two sphere images are
double-contact with the MIAC at the same two points, there
are only two constrains on the MIAC obtained from the two
line images or two sphere images, not four in general cases.
For two line images or two sphere images, Ci and Cj with
the same double-contact points are shown in Fig. 8. Obvi-
ously, they should have the same chord of contact, lD . From
(32) and (27), we know,

lD ∝ v ∝ K̃−T
C

⎡
⎣

nx

ny

−(l · d0 − nz)/(1 − l2)

⎤
⎦ . (60)

Let nx,ny, nz, d0 corresponding to Ci and n̄x , n̄y , n̄z, d̄0

corresponding to Cj (note that if Ci and Cj are two line
images, then d0 = 0 and d̄0 = 0), if they satisfy,

⎡
⎣

nx

ny

−(l · d0 − nz)/(1 − l2)

⎤
⎦ ∝

⎡
⎣

n̄x

n̄y

−(l · d̄0 − n̄z)/(1 − l2)

⎤
⎦ ,

(61)

then Ci and Cj have the same chord of contact, lD , i.e.,
have the same double-contact points with the MIAC. In this
degenerate case, the two common chords of the two con-
ics are coincident, not distinct, however, the double-contact
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theorem requires that the common chords must be distinct.
Therefore, this case is also degenerate if the double-contact
theorem is used. From discussions above, we have,

Proposition 4 For three line images or three sphere images,
if two of them satisfy (61), then the two linear calibration
methods proposed in this paper are both degenerate.

6 Experiments

We perform a number of experiments, both simulated and
real, to test our algorithms with respect to noise sensitivity,
and make comparisons with the following algorithms:

• DCP: By finding the double-contact points with the
MIAC.

• DCT: Using the double-contact theorem related to the
MIAC.

• Orth: Using the orthogonal constraints (Zhang et al.
2007) related to the MIAC.

• SDP: Employing semi-definite programming (Agrawal
and Davis 2003) with the representation of the MIAC.

• GI: Using geometric invariants with Levenberg–Mar-
quardt algorithm.

Note that for DCP, DCT, Orth and SDP, there also exist
the calibration methods with the DMIAC correspondingly.
Due to the lack of space, there are not discussed here. In
the real experiments, we use a perspective camera with a
hyperbolic mirror, designed by the Center for Machine Per-
ception, Czech Technical University, its field of view (FOV)
is 217.2 degree, and the parameter of the hyperbolic mirror
is l = 0.966. Here we assume that the parameter l is known
in advance. Due to lack of space, we are only able to demon-
strate the experimental results using sphere images, and ex-
periments with line images are not shown here.

6.1 Calibration with Simulated Data

The simulated catadioptric camera has the following para-
meters: fx = 450, fy = 450, s = 0, u0 = 400, v0 = 300
and l = 0.966. The resolution of the simulated image is
800 × 600. We generate an image containing three sphere
images uniformly distributed within the image as shown in
the middle of Fig. 4(a). On each sphere image we choose
100 points. Gaussian noise with zero-mean and σ standard
deviation is added to these image points. We vary the noise
level σ from 0 to 2 pixels. The conic fitting algorithm pre-
sented in Fitzgibbon et al. (1999) is used here. For each
noise level, we perform 1,000 independent trials, and the
mean values and standard deviations of these recovered pa-
rameters are computed over each run. The estimated re-
sults of these experiments are shown in Fig. 9. Since the

performances of fx and fy,u0 and v0 are both very simi-
lar, the estimated results for fy and v0 are not shown here.
The results from DCP are selected as the initial values for
GI used in Levenberg–Marquardt algorithm. In fact, there
are only very small differences among the estimated results
from DCP, DCT, Orth and SDP, whereas the results from
GI are better. We compare the runtimes of these methods
using MATLAB implementations of all algorithms on a 1.7
GHz Pentium IV processor. Note that real-time performance
is not expected for any of the algorithms under MATLAB,
and our only goal is to provide comparison. All results are
averaged over 1,000 trials and recorded in Table 2. Since
SDP is a convex optimization problem and has polyno-
mial worst-case complexity, and Levenberg–Marquardt al-
gorithm is a nonlinear least squares problem, the runtimes
of GI, SDP are about ten times slower than that using DCP,
DCT and Orth.

6.2 Calibration with Real Data

The test sphere for the real experiments is a billiard ball. The
ball was placed in front of a white screen. We took images
of the ball using the catadioptric camera. Three sphere im-
ages are taken for the calibration purpose. One of the three
images is shown in Fig. 10. The resolution of these images
is 800 × 600. Edges were extracted using Canny’s edge de-
tector and the ellipses were obtained using a least squares
ellipse fitting algorithm (Fitzgibbon et al. 1999). In order to
obtain unbiased results, these sphere images should be uni-
formly distributed within the image. The calibration results
with real data are listed in Table 3. From Table 3, one may
find that the calibration results using these methods are sim-
ilar to one another.

Table 2 Runtimes (in seconds) for the seven algorithms

DCT GEO Orth SDP GI

Runtime 0.076 0.093 0.057 1.598 0.482

Table 3 Calibration results with real data

fx fy s u0 v0

DCT 216.7 220.3 5.6 401.5 261.7

DCP 216.3 220.5 5.3 407.0 271.4

Orth 216.4 220.3 4.4 407.1 272.2

SDP 215.6 219.8 5.3 408.2 269.6

GI 216.1 220.4 4.7 408.8 270.2
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Fig. 9 The estimated results of simulated experiments. See text for details
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Fig. 10 A sphere image used in the real experiments

7 Conclusions

Our main contribution is to propose the MIAC for central
catadioptric cameras. By utilizing the MIAC, the identi-
cal projective geometric properties of central catadioptric
line images and sphere images are discovered: Each line
image and each sphere image is tangent to the MIAC at
two double-contact image point. Furthermore, the double-
contact theorem is employed to interpret the relation be-
tween the MIAC and line images or sphere images. These
discoveries can be considered as extensions from pinhole
to central catadioptric. But to prove the feasibility of these
extensions is not easy and non-trivial. This is not an intu-
itive guess but requires rigorous proofs. In-depth analyses
of the relation between the MIAC and the IAC are also pre-
sented.

These discovered properties provide new insights into
the fundamental properties of line images and sphere im-
ages, especially from the aspect of their providing con-
straints on the camera parameters. Two new linear calibra-
tion approaches using line images or sphere images are de-
rived from these properties. Though many linear calibration
methods are proposed for central catadioptric camera using
line images, there are only some nonlinear calibration ap-

proaches to sphere images. Till now, only the methods based
on the MIAC may be employed for linearly calibrating cata-
dioptric camera using sphere images and line images in a
unified framework.

The relation between the MIAC and line images or sphere
images under paracatadioptric cameras may be interpreted
by using the special case of the double-contact theorem
where the MIAC is degenerated into the circular points in
the paracatadioptric image plane. We also give another very
intuitive interpretation for three line images using the prop-
erties that a common chord of each pair of these three line
images passing through the principal point, which satisfies
the sufficient condition of the double-contact theorem. In ad-
dition, a new geometric approach is proposed to determine
the chord of contact between the MIAC and a line image or
a sphere image, which is a very important part in previous
calibration algorithms.

Only three line images or three sphere images are re-
quired, and the intrinsic parameters are recovered linearly
without making assumptions, such as, zero-skew or uni-
tary aspect ratio. Extensive experiments on simulated and
real data were performed and shown that our calibration
method is an order of magnitude faster than previous non-
linear methods. A counting argument is given in details on
how many constraints provided by three line images or three
sphere images. Although we have studied singularities of
the proposed algorithms, more thorough investigations may
need to be pursued. Our future work is to explore more prop-
erties of the MIAC.
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Appendix 1

We would like to give some supplemental derivations for
Sect. 3.3. Q̄S can be decomposed as,

Q̄S =
⎡
⎢⎣

(l2 − 1)n2
x + (d0 − l · nz)

2 (l2 − 1)nxny (ld0 − nz)nx

(l2 − 1)nxny (l2 − 1)n2
y + (d0 − l · nz)

2 (ld0 − nz)ny

(ld0 − nz)nx (ld0 − nz)ny (d2
0 − n2

z)

⎤
⎥⎦

=
⎡
⎢⎣

(d0 − l · nz)
2 0 0

0 (d0 − l · nz)
2 0

0 0 (d0−l·nz)
2

(1−l2)

⎤
⎥⎦ +

⎡
⎢⎣

(l2 − 1)n2
x (l2 − 1)nxny (ld0 − nz)nx

(l2 − 1)nxny (l2 − 1)n2
y (ld0 − nz)ny

(ld0 − nz)nx (ld0 − nz)ny (ld0 − nz)
2/(l2 − 1)

⎤
⎥⎦ . (62)
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Then, the first term on the right hand side of (62) is further
decomposed as,

⎡
⎢⎣

(d0 − l · nz)
2 0 0

0 (d0 − l · nz)
2 0

0 0 (d0−l·nz)
2

(1−l2)

⎤
⎥⎦

= (d0 − l · nz)
2

(1 − l2)

⎡
⎣

1 − l2 0 0

0 1 − l2 0

0 0 1

⎤
⎦ (63)

and the last term on the right hand side of (62) is further
decomposed as,

⎡
⎢⎣

(1 − l2)n2
x (1 − l2)nxny −(ld0 − nz)nx

(1 − l2)nxny (1 − l2)n2
y −(ld0 − nz)ny

−(ld0 − nz)nx −(ld0 − nz)ny (ld0 − nz)
2/(1 − l2)

⎤
⎥⎦

=
⎡
⎢⎣

√
1 − l2nx√
1 − l2ny

−(ld0 − nz)/
√

1 − l2

⎤
⎥⎦

× [
√

1 − l2nx

√
1 − l2ny −(ld0 − nz)/

√
1 − l2 ]

= (1 − l2)

⎡
⎣

nx

ny

−(ld0 − nz)/(1 − l2)

⎤
⎦

× [nx ny −(ld0 − nz)/(1 − l2) ] . (64)

Appendix 2

We would like to give some supplemental derivations for
Sect. 3.4. Firstly we derive Q̄−1

S from Q̄S defined in (11),
and then show the decomposition of Q̄−1

S in details. As we
know,

Q̄−1
S ∝ Q̄∗

S ∝
⎡
⎣

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎦ , (65)

where Q̄∗
S is the adjoint of matrix Q̄S . Note that Q̄∗

S is a
symmetric matrix. Therefore, from (11), we have,

a11 = ((l2 − 1)n2
y + (d0 − l · nz)

2)(d2
0 − n2

z)

− (ld0 − nz)ny(ld0 − nz)ny

= (l · nz − d0)
2(n2

x − 1 + d2
0 ),

a22 = ((l2 − 1)n2
y + (d0 − l · nz)

2)(d2
0 − n2

z)

− (ld0 − nz)ny(ld0 − nz)ny

= (l · nz − d0)
2(n2

x − 1 + d2
0 ),

a33 = ((l2 − 1)n2
y + (d0 − l · nz)

2)((l2 − 1)n2
y

+ (d0 − l · nz)
2) − (l2 − 1)nxny(l

2 − 1)nxny (66)

= (l · nz − d0)
2((1 − l2)(−1 + d2

0 ) + (l · d0 − nz)
2),

a12 = −(l2 − 1)nxny(d
2
0 − n2

z) + (ld0 − nz)ny(ld0 − nz)nx

= (l · nz − d0)
2nxny.

a13 = (l2 − 1)nxny(ld0 − nz)ny

− ((l2 − 1)n2
y + (d0 − l · nz)

2)(ld0 − nz)nx

= (l · nz − d0)
2(ld0 − nz)nx,

a23 = (l2 − 1)nxny(ld0 − nz)nx

− ((l2 − 1)n2
x + (d0 − l · nz)

2)(ld0 − nz)ny

= (l · nz − d0)
2(ld0 − nz)ny.

After eliminating (l ·nz −d0)
2 from aij , we may obtain (28),

note that, the last term on the right hand side of (28) can be
further decomposed as,

⎡
⎢⎣

n2
x nxny (l · d0 − nz)nx

nxny n2
y (l · d0 − nz)ny

(l · d0 − nz)nx (l · d0 − nz)ny (l · d0 − nz)
2

⎤
⎥⎦

=
⎡
⎣

nx

ny

l · d0 − nz

⎤
⎦ [nx ny l · d0 − nz ] . (67)
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