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Abstract We consider the task of 3-d depth estimation
from a single still image. We take a supervised learning ap-
proach to this problem, in which we begin by collecting a
training set of monocular images (of unstructured indoor
and outdoor environments which include forests, sidewalks,
trees, buildings, etc.) and their corresponding ground-truth
depthmaps. Then, we apply supervised learning to predict
the value of the depthmap as a function of the image. Depth
estimation is a challenging problem, since local features
alone are insufficient to estimate depth at a point, and one
needs to consider the global context of the image. Our
model uses a hierarchical, multiscale Markov Random Field
(MRF) that incorporates multiscale local- and global-image
features, and models the depths and the relation between
depths at different points in the image. We show that, even
on unstructured scenes, our algorithm is frequently able to
recover fairly accurate depthmaps. We further propose a
model that incorporates both monocular cues and stereo (tri-
angulation) cues, to obtain significantly more accurate depth
estimates than is possible using either monocular or stereo
cues alone.
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1 Introduction

Recovering 3-d depth from images is a basic problem in
computer vision, and has important applications in robot-
ics, scene understanding and 3-d reconstruction. Most work
on visual 3-d reconstruction has focused on binocular vi-
sion (stereopsis) (Scharstein and Szeliski 2002) and on
other algorithms that require multiple images, such as struc-
ture from motion (Forsyth and Ponce 2003) and depth
from defocus (Das and Ahuja 1995). These algorithms con-
sider only the geometric (triangulation) differences. Beyond
stereo/triangulation cues, there are also numerous monocu-
lar cues—such as texture variations and gradients, defocus,
color/haze, etc.—that contain useful and important depth in-
formation. Even though humans perceive depth by seam-
lessly combining many of these stereo and monocular cues,
most work on depth estimation has focused on stereovision.

Depth estimation from a single still image is a difficult
task, since depth typically remains ambiguous given only
local image features. Thus, our algorithms must take into ac-
count the global structure of the image, as well as use prior
knowledge about the scene. We also view depth estimation
as a small but crucial step towards the larger goal of image
understanding, in that it will help in tasks such as under-
standing the spatial layout of a scene, finding walkable ar-
eas in a scene, detecting objects, etc. In this paper, we apply
supervised learning to the problem of estimating depthmaps
(Fig. 1b) from a single still image (Fig. 1a) of a variety of
unstructured environments, both indoor and outdoor, con-
taining forests, sidewalks, buildings, people, bushes, etc.

Our approach is based on modeling depths and relation-
ships between depths at multiple spatial scales using a hi-
erarchical, multiscale Markov Random Field (MRF). Tak-
ing a supervised learning approach to the problem of depth
estimation, we used a 3-d scanner to collect training data,



54 Int J Comput Vis (2008) 76: 53–69

Fig. 1 a A single still image, and b the corresponding (ground-truth)
depthmap. Colors in the depthmap indicate estimated distances from
the camera

which comprised a large set of images and their correspond-
ing ground-truth depthmaps. (This data has been made pub-
lically available on the Internet.) Using this training set, we
model the conditional distribution of the depths given the
monocular image features. Though learning in our MRF
model is approximate, MAP inference is tractable via lin-
ear programming.

We further consider how monocular cues from a single
image can be incorporated into a stereo system. We be-
lieve that monocular cues and (purely geometric) stereo cues
give largely orthogonal, and therefore complementary, types
of information about depth. We show that combining both
monocular and stereo cues gives better depth estimates than
is obtained with either alone.

We also apply these ideas to autonomous obstacle avoid-
ance. Using a simplified version of our algorithm, we drive
a small remote-controlled car at high speeds through various
unstructured outdoor environments containing both man-
made and natural obstacles.

This paper is organized as follows. Section 2 gives an
overview of various methods used for 3-d depth reconstruc-
tion. Section 3 describes some of the visual cues used by
humans for depth perception, and Sect. 4 describes the im-
age features used to capture monocular cues. We describe
our probabilistic model in Sect. 5. In Sect. 6.1, we describe
our setup for collecting aligned image and laser data. The
results of depth prediction on single images are presented
in Sect. 6.2. Section 6.2 also describes the use of a sim-
plified version of our algorithm in driving a small remote-
controlled car autonomously. We describe how we incorpo-
rate monocular and stereo cues into our model in Sect. 7.
Finally, we conclude in Sect. 8.

2 Related Work

Although our work mainly focuses on depth estimation from
a single still image, there are many other 3-d reconstruc-

tion techniques, such as: explicit measurements with laser
or radar sensors (Quartulli and Datcu 2001), using two (or
more than two) images (Scharstein and Szeliski 2002), and
using video sequences (Cornelis et al. 2006). Among the
vision-based approaches, most work has focused on stere-
ovision (see Scharstein and Szeliski 2002 for a review),
and on other algorithms that require multiple images, such
as optical flow (Barron et al. 1994), structure from motion
(Forsyth and Ponce 2003) and depth from defocus (Das
and Ahuja 1995). Frueh and Zakhor (2003) constructed 3d
city models by merging ground-based and airborne views.
A large class of algorithms reconstruct the 3-d shape of
known objects, such as human bodies, from images and
laser data (Thrun and Wegbreit 2005; Anguelov et al. 2005).
Structured lighting (Scharstein and Szeliski 2003) offers an-
other method for depth reconstruction.

There are some algorithms that can perform depth recon-
struction from single images in very specific settings. Nagai
et al. (2002) performed surface reconstruction from single
images for known, fixed, objects such as hands and faces.
Methods such as shape from shading (Zhang et al. 1999;
Maki et al. 2002) and shape from texture (Lindeberg and
Garding 1993; Malik and Rosenholtz 1997; Malik and Per-
ona 1990) generally assume uniform color and/or texture,1

and hence would perform very poorly on the complex, un-
constrained, highly textured images that we consider. Hertz-
mann and Seitz (2005) reconstructed high quality 3-d mod-
els from several images, but they required that the images
also contain “assistant” objects of known shapes next to the
target object. Torresani and Hertzmann (2004) worked on re-
constructing non-rigid surface shapes from video sequences.
Torralba and Oliva (2002) studied the Fourier spectrum of
the images to compute the mean depth of a scene. Michels
et al. (2005) used supervised learning to estimate 1-d dis-
tances to obstacles, for the application of autonomously
driving a small car. Delage et al. (2005, 2006) generated 3-d
models of indoor environments containing only walls and
floor, from single monocular images. Single view metrol-
ogy (Criminisi et al. 2000) assumes that vanishing lines and
points are known in a scene, and calculates angles between
parallel lines to infer 3-d structure from Manhattan images.

We presented a method for learning depths from a sin-
gle image in (Saxena et al. 2005) and extended our method
to improve stereo vision using monocular cues in (Saxena
et al. 2007). In work that is contemporary to ours, Hoiem
et al. (2005a, 2005b) built a simple “pop-up” type 3-d model
from an image by classifying the image into ground, vertical
and sky. Their method, which assumes a simple “ground-
vertical” structure of the world, fails on many environments

1Also, most of these algorithms assume Lambertian surfaces, which
means the appearance of the surface does not change with viewpoint.
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that do not satisfy this assumption and also does not give ac-
curate metric depthmaps. Building on these concepts of sin-
gle image 3-d reconstruction, Hoiem et al. (2006) and Sud-
derth et al. (2006) integrated learning-based object recogni-
tion with 3-d scene representations. Saxena et al. (2006b)
extended these ideas to create 3-d models that are both visu-
ally pleasing as well as quantitatively accurate.

Our approach draws on a large number of ideas from
computer vision such as feature computation and multiscale
representation of images. A variety of image features and
representations have been used by other authors, such as
Gabor filters (Nestares et al. 1998), wavelets (Strang and
Nguyen 1997), SIFT features (Mortensen et al. 2005), etc.
Many of these image features are used for purposes such as
recognizing objects (Murphy et al. 2003; Serre et al. 2005),
faces (Zhao et al. 2003), facial expressions (Saxena et al.
2004), grasps (Saxena et al. 2006a); image segmentation
(Konishi and Yuille 2000), computing the visual gist of a
scene (Oliva and Torralba 2006) and computing sparse rep-
resentations of natural images (Olshausen and Field 1997).
Stereo and monocular image features have been used to-
gether for object recognition and image segmentation (Kol-
mogorov et al. 2006).

Our approach is based on learning a Markov Random
Field (MRF) model. MRFs are a workhorse of machine
learning, and have been successfully applied to numer-
ous problems in which local features were insufficient and
more contextual information had to be used. Examples in-
clude image denoising (Moldovan et al. 2006), stereo vi-
sion and image segmentation (Scharstein and Szeliski 2002),
text segmentation (Lafferty et al. 2001), object classification
(Murphy et al. 2003), and image labeling (He et al. 2004).
For the application of identifying man-made structures in
natural images, Kumar and Hebert used a discriminative ran-
dom fields algorithm (Kumar and Hebert 2003). Since MRF
learning is intractable in general, most of these models are
trained using pseudo-likelihood; sometimes the models’ pa-
rameters are also hand-tuned.

3 Visual Cues for Depth Perception

Humans use numerous visual cues to perceive depth. Such
cues are typically grouped into four distinct categories:
monocular, stereo, motion parallax, and focus cues (Loomis
2001; Schwartz 1999). Humans combine these cues to un-
derstand the 3-d structure of the world (Welchman et al.
2005; Porrill et al. 1999; Wu et al. 2004; Loomis 2001). Be-
low, we describe these cues in more detail. Our probabilistic
model will attempt to capture a number of monocular cues
(Sect. 5), as well as stereo triangulation cues (Sect. 7).

3.1 Monocular Cues

Humans use monocular cues such as texture variations, tex-
ture gradients, interposition, occlusion, known object sizes,
light and shading, haze, defocus, etc. (Bulthoff et al. 1998)
For example, many objects’ texture will look different at dif-
ferent distances from the viewer. Texture gradients, which
capture the distribution of the direction of edges, also help
to indicate depth (Malik and Perona 1990). For example,
a tiled floor with parallel lines will appear to have tilted lines
in an image. The distant patches will have larger variations
in the line orientations, and nearby patches with almost par-
allel lines will have smaller variations in line orientations.
Similarly, a grass field when viewed at different distances
will have different texture gradient distributions. Haze is an-
other depth cue, and is caused by atmospheric light scatter-
ing (Narasimhan and Nayar 2003).

Many monocular cues are “contextual information”, in
the sense that they are global properties of an image and
cannot be inferred from small image patches. For example,
occlusion cannot be determined if we look at just a small
portion of an occluded object. Although local information
such as the texture and color of a patch can give some in-
formation about its depth, this is usually insufficient to ac-
curately determine its absolute depth. For another example,
if we take a patch of a clear blue sky, it is difficult to tell if
this patch is infinitely far away (sky), or if it is part of a blue
object. Due to ambiguities like these, one needs to look at
the overall organization of the image to determine depths.

3.2 Stereo Cues

Each eye receives a slightly different view of the world and
stereo vision combines the two views to perceive 3-d depth
(Wandell 1995). An object is projected onto different lo-
cations on the two retinae (cameras in the case of a stereo
system), depending on the distance of the object. The reti-
nal (stereo) disparity varies with object distance, and is in-
versely proportional to the distance of the object. Disparity
is typically not an effective cue for estimating small depth
variations of objects that are far away.

3.3 Motion Parallax and Focus Cues

As an observer moves, closer objects appear to move more
than further objects. By observing this phenomenon, called
motion parallax, one can estimate the relative distances in
a scene (Wexler et al. 2001). Humans have the ability to
change the focal lengths of the eye lenses by controlling
the curvature of lens, thus helping them to focus on ob-
jects at different distances. The focus, or accommodation,
cue refers to the ability to estimate the distance of an object
from known eye lens configuration and the sharpness of the
image of the object (Harkness 1977).
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Fig. 2 The convolutional filters used for texture energies and gradients. The first nine are 3 × 3 Laws’ masks. The last six are the oriented edge
detectors spaced at 30° intervals. The nine Laws’ masks are used to perform local averaging, edge detection and spot detection

Fig. 3 The absolute depth
feature vector for a patch, which
includes features from its
immediate neighbors and its
more distant neighbors (at larger
scales). The relative depth
features for each patch use
histograms of the filter outputs

4 Feature Vector

In our approach, we divide the image into small rectangular
patches, and estimate a single depth value for each patch.
We use two types of features: absolute depth features—used
to estimate the absolute depth at a particular patch—and
relative features, which we use to estimate relative depths
(magnitude of the difference in depth between two patches).
These features try to capture two processes in the human
visual system: local feature processing (absolute features),
such as that the sky is far away; and continuity features
(relative features), a process by which humans understand
whether two adjacent patches are physically connected in
3-d and thus have similar depths.2

We chose features that capture three types of local cues:
texture variations, texture gradients, and color. Texture in-
formation is mostly contained within the image intensity
channel (Wandell 1995),3 so we apply Laws’ masks (Davies
1997; Michels et al. 2005) to this channel to compute the
texture energy (Fig. 2). Haze is reflected in the low fre-
quency information in the color channels, and we capture
this by applying a local averaging filter (the first Laws’
mask) to the color channels. Lastly, to compute an estimate

2If two neighboring patches of an image display similar features, hu-
mans would often perceive them to be parts of the same object, and
therefore to have similar depth values.
3We represent each image in YCbCr color space, where Y is the inten-
sity channel, and Cb and Cr are the color channels.

of texture gradient that is robust to noise, we convolve the
intensity channel with six oriented edge filters (shown in
Fig. 2).

One can envision including more features to capture other
cues. For example, to model atmospheric effects such as fog
and haze, features computed from the physics of light scat-
tering (Narasimhan and Nayar 2003) could also be included.
Similarly, one can also include features based on surface-
shading (Maki et al. 2002).

4.1 Features for Absolute Depth

We first compute summary statistics of a patch i in the im-
age I (x, y) as follows. We use the output of each of the 17
(9 Laws’ masks, 2 color channels and 6 texture gradients) fil-
ters Fn, n = 1, . . . ,17 as: Ei(n) = ∑

(x,y)∈patch(i) |I ∗ Fn|k ,
where k ∈ {1,2} give the sum absolute energy and sum
squared energy respectively.4 This gives us an initial feature
vector of dimension 34.

To estimate the absolute depth at a patch, local image
features centered on the patch are insufficient, and one has
to use more global properties of the image. We attempt to
capture this information by using image features extracted
at multiple spatial scales (image resolutions).5 (See Fig. 3.)

4Our experiments using k ∈ {1,2,4} did not improve performance no-
ticeably.
5The patches at each spatial scale are arranged in a grid of equally sized
non-overlapping regions that cover the entire image. We use 3 scales
in our experiments.
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Objects at different depths exhibit very different behaviors
at different resolutions, and using multiscale features allows
us to capture these variations (Willsky 2002). For exam-
ple, blue sky may appear similar at different scales, but tex-
tured grass would not. In addition to capturing more global
information, computing features at multiple spatial scales
also helps to account for different relative sizes of objects.
A closer object appears larger in the image, and hence will
be captured in the larger scale features. The same object
when far away will be small and hence be captured in the
small scale features. Features capturing the scale at which
an object appears may therefore give strong indicators of
depth.

To capture additional global features (e.g. occlusion re-
lationships), the features used to predict the depth of a par-
ticular patch are computed from that patch as well as the
four neighboring patches. This is repeated at each of the
three scales, so that the feature vector at a patch includes
features of its immediate neighbors, its neighbors at a larger
spatial scale (thus capturing image features that are slightly
further away in the image plane), and again its neighbors
at an even larger spatial scale; this is illustrated in Fig. 3.
Lastly, many structures (such as trees and buildings) found
in outdoor scenes show vertical structure, in the sense that
they are vertically connected to themselves (things cannot
hang in empty air). Thus, we also add to the features of a
patch additional summary features of the column it lies in.

For each patch, after including features from itself and
its 4 neighbors at 3 scales, and summary features for its 4
column patches, our absolute depth feature vector x is 19 ∗
34 = 646 dimensional.

4.2 Features for Relative Depth

We use a different feature vector to learn the dependencies
between two neighboring patches. Specifically, we compute
a 10-bin histogram of each of the 17 filter outputs |I ∗ Fn|,
giving us a total of 170 features yis for each patch i at
scale s. These features are used to estimate how the depths
at two different locations are related. We believe that learn-
ing these estimates requires less global information than pre-
dicting absolute depth, but more detail from the individual
patches. For example, given two adjacent patches of a dis-
tinctive, unique, color and texture, we may be able to safely
conclude that they are part of the same object, and thus that
their depths are close, even without more global features.
Hence, our relative depth features yijs for two neighboring
patches i and j at scale s will be the differences between
their histograms, i.e., yijs = yis − yjs .

5 Probabilistic Model

Since local images features are by themselves usually in-
sufficient for estimating depth, the model needs to reason

more globally about the spatial structure of the scene. We
capture the spatial structure of the image by modeling the
relationships between depths in different parts of the image.
Although the depth of a particular patch depends on the fea-
tures of the patch, it is also related to the depths of other
parts of the image. For example, the depths of two adja-
cent patches lying in the same building will be highly corre-
lated. We will use a hierarchical multiscale Markov Random
Field (MRF) to model the relationship between the depth of
a patch and the depths of its neighboring patches (Fig. 4). In
addition to the interactions with the immediately neighbor-
ing patches, there are sometimes also strong interactions be-
tween the depths of patches which are not immediate neigh-
bors. For example, consider the depths of patches that lie
on a large building. All of these patches will be at similar
depths, even if there are small discontinuities (such as a win-
dow on the wall of a building). However, when viewed at the
smallest scale, some adjacent patches are difficult to recog-
nize as parts of the same object. Thus, we will also model
interactions between depths at multiple spatial scales.

5.1 Gaussian Model

Our first model will be a jointly Gaussian Markov Random
Field (MRF) as shown in (1).

PG(d|X; θ, σ )

= 1

ZG

exp

(

−
M∑

i=1

(di(1) − xT
i θr )

2

2σ 2
1r

−
3∑

s=1

M∑

i=1

∑

j∈Ns(i)

(di(s) − dj (s))
2

2σ 2
2rs

)

, (1)

To capture the multiscale depth relations, we will model the
depths di(s) for multiple scales s = 1,2,3. In our experi-

Fig. 4 The multiscale MRF model for modeling relation between fea-
tures and depths, relation between depths at same scale, and relation
between depths at different scales. (Only 2 out of 3 scales, and a subset
of the edges, are shown)
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ments, we enforce a hard constraint that depths at a higher
scale are the average of the depths at the lower scale.6 More
formally, we define di(s + 1) = (1/5)

∑
j∈Ns(i)∪{i} dj (s).

Here, Ns(i) are the 4 neighbors of patch i at scale s.7

In (1), M is the total number of patches in the image (at
the lowest scale); Z is the normalization constant for the
model; xi is the absolute depth feature vector for patch i;
and θ and σ are parameters of the model. In detail, we use
different parameters (θr , σ1r , σ2r ) for each row r in the im-
age, because the images we consider are taken from a hori-
zontally mounted camera, and thus different rows of the im-
age have different statistical properties. For example, a blue
patch might represent sky if it is in upper part of image, and
might be more likely to be water if in the lower part of the
image.

Our model is a conditionally trained MRF, in that its
model of the depths d is always conditioned on the image
features X; i.e., it models only P(d|X). We first estimate
the parameters θr in (1) by maximizing the conditional log
likelihood �(d) = logP(d|X; θr) of the training data. Since
the model is a multivariate Gaussian, the maximum likeli-
hood estimate of parameters θr is obtained by solving a lin-
ear least squares problem.

The first term in the exponent above models depth as a
function of multiscale features of a single patch i. The sec-
ond term in the exponent places a soft “constraint” on the
depths to be smooth. If the variance term σ 2

2rs is a fixed
constant, the effect of this term is that it tends to smooth
depth estimates across nearby patches. However, in practice
the dependencies between patches are not the same every-
where, and our expected value for (di − dj )

2 may depend
on the features of the local patches.

Therefore, to improve accuracy we extend the model to
capture the “variance” term σ 2

2rs in the denominator of the
second term as a linear function of the patches i and j ’s rel-
ative depth features yijs (discussed in Sect. 4.2). We model
the variance as σ 2

2rs = uT
rs |yijs |. This helps determine which

neighboring patches are likely to have similar depths; for
example, the “smoothing” effect is much stronger if neigh-
boring patches are similar. This idea is applied at multiple
scales, so that we learn different σ 2

2rs for the different scales
s (and rows r of the image). The parameters urs are learned
to fit σ 2

2rs to the expected value of (di(s) − dj (s))
2, with

a constraint that urs ≥ 0 (to keep the estimated σ 2
2rs non-

negative), using a quadratic program (QP).

6One can instead have soft constraints relating the depths at higher
scale to depths at lower scale. One can also envision putting more con-
straints in the MRF, such as that points lying on a long straight edge in
an image should lie on a straight line in the 3-d model, etc.
7Our experiments using 8-connected neighbors instead of 4-connected
neighbors yielded minor improvements in accuracy at the cost of a
much longer inference time.

Similar to our discussion on σ 2
2rs , we also learn the vari-

ance parameter σ 2
1r = vT

r xi as a linear function of the fea-
tures. Since the absolute depth features xi are non-negative,
the estimated σ 2

1r is also non-negative. The parameters vr

are chosen to fit σ 2
1r to the expected value of (di(r)−θT

r xi)
2,

subject to vr ≥ 0. This σ 2
1r term gives a measure of the un-

certainty in the first term, and depends on the features. This
is motivated by the observation that in some cases, depth
cannot be reliably estimated from the local features. In this
case, one has to rely more on neighboring patches’ depths,
as modeled by the second term in the exponent.

After learning the parameters, given a new test-set image
we can find the MAP estimate of the depths by maximizing
(1) in terms of d . Since (1) is Gaussian, logP(d|X; θ, σ )

is quadratic in d , and thus its maximum is easily found in
closed form (taking at most 1–2 seconds per image). More
details are given in Appendix 1.

5.2 Laplacian Model

We now present a second model (see (2)) that uses Lapla-
cians instead of Gaussians to model the posterior distribu-
tion of the depths.

PL(d|X; θ,λ)

= 1

ZL

exp

(

−
M∑

i=1

|di(1) − xT
i θr |

λ1r

−
3∑

s=1

M∑

i=1

∑

j∈Ns(i)

|di(s) − dj (s)|
λ2rs

)

. (2)

Our motivation for doing so is three-fold. First, a histogram
of the relative depths (di −dj ) is empirically closer to Lapla-
cian than Gaussian (Fig. 5, see (Huang et al. 2000) for more
details on depth statistics), which strongly suggests that it
is better modeled as one.8 Second, the Laplacian distribu-
tion has heavier tails, and is therefore more robust to out-
liers in the image features and to errors in the training-set
depthmaps (collected with a laser scanner; see Sect. 6.1).
Third, the Gaussian model was generally unable to give
depthmaps with sharp edges; in contrast, Laplacians tend to
model sharp transitions/outliers better.

This model is parametrized by θr (similar to (1)) and by
λ1r and λ2rs , the Laplacian spread parameters. Maximum-
likelihood parameter estimation for the Laplacian model is
not tractable (since the partition function depends on θr ).
However, by analogy to the Gaussian case, we approximate

8Although the Laplacian distribution fits the log-histogram of multi-
scale relative depths reasonably well, there is an unmodeled peak near
zero. A more recent model (Saxena et al. 2006b) attempts to model
this peak, which arises due to the fact that the neighboring depths at
the finest scale frequently lie on the same object.
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Fig. 5 The log-histogram of relative depths. Empirically, the distribu-
tion of relative depths is closer to Laplacian than Gaussian

this by solving a linear system of equations Xrθr ≈ dr to
minimize L1 (instead of L2) error, i.e., minθr ||dr −Xrθr ||1.
Here Xr is the matrix of absolute depth features. Following
the Gaussian model, we also learn the Laplacian spread pa-
rameters in the denominator in the same way, except that the
instead of estimating the expected values of (di − dj )

2 and
(di(r)−θT

r xi)
2, we estimate the expected values of |di −dj |

and |di(r) − θT
r xi |, as a linear function of urs and vr re-

spectively. This is done using a Linear Program (LP), with
urs ≥ 0 and vr ≥ 0.

Even though maximum likelihood (ML) parameter esti-
mation for θr is intractable in the Laplacian model, given
a new test-set image, MAP inference for the depths d is
tractable and convex. Details on solving the inference prob-
lem as a Linear Program (LP) are given in Appendix 2.

Remark We can also extend these models to combine
Gaussian and Laplacian terms in the exponent, for exam-
ple by using a L2 norm term for absolute depth, and a L1

norm term for the interaction terms. MAP inference remains
tractable in this setting, and can be solved using convex op-
timization as a QP (quadratic program).

6 Experiments

6.1 Data Collection

We used a 3-d laser scanner to collect images and their cor-
responding depthmaps (Fig. 7). The scanner uses a laser de-
vice (SICK LMS-291) which gives depth readings in a verti-
cal column, with a 1.0◦ resolution. To collect readings along
the other axis (left to right), the SICK laser was mounted
on a panning motor. The motor rotates after each vertical
scan to collect laser readings for another vertical column,
with a 0.5◦ horizontal angular resolution. We reconstruct
the depthmap using the vertical laser scans, the motor read-
ings and known relative position and pose of the laser de-
vice and the camera. We also collected data of stereo pairs
with corresponding depthmaps (Sect. 7), by mounting the

laser range finding equipment on a LAGR (Learning Ap-
plied to Ground Robotics) robot (Fig. 8). The LAGR vehicle
is equipped with sensors, an onboard computer, and Point
Grey Research Bumblebee stereo cameras, mounted with a
baseline distance of 11.7 cm (Saxena et al. 2007).

We collected a total of 425 image+depthmap pairs, with
an image resolution of 1704 × 2272 and a depthmap resolu-
tion of 86 × 107. In the experimental results reported here,
75% of the images/depthmaps were used for training, and
the remaining 25% for hold-out testing. The images com-
prise a wide variety of scenes including natural environ-
ments (forests, trees, bushes, etc.), man-made environments
(buildings, roads, sidewalks, trees, grass, etc.), and purely
indoor environments (corridors, etc.). Due to limitations of
the laser, the depthmaps had a maximum range of 81m (the
maximum range of the laser scanner), and had minor ad-
ditional errors due to reflections, missing laser scans, and
mobile objects. Prior to running our learning algorithms, we
transformed all the depths to a log scale so as to emphasize
multiplicative rather than additive errors in training. Data
used in the experiments is available at: http://ai.stanford.edu/
~asaxena/learningdepth/.

6.2 Results

We tested our model on real-world test-set images of forests
(containing trees, bushes, etc.), campus areas (buildings,
people, and trees), and indoor scenes (such as corridors).

Table 1 shows the test-set results with different feature
combinations of scales, summary statistics, and neighbors,
on three classes of environments: forest, campus, and indoor.
The Baseline model is trained without any features, and pre-
dicts the mean value of depth in the training depthmaps. We
see that multiscale and column features improve the algo-
rithm’s performance. Including features from neighboring
patches, which help capture more global information, re-
duces the error from 0.162 orders of magnitude to 0.133 or-
ders of magnitude.9 We also note that the Laplacian model
performs better than the Gaussian one, reducing error to
0.084 orders of magnitude for indoor scenes, and 0.132
orders of magnitude when averaged over all scenes. Em-
pirically, the Laplacian model does indeed give depthmaps
with significantly sharper boundaries (as in our discussion
in Sect. 5.2; also see Fig. 6).

Figure 9 shows that modeling the spatial relationships in
the depths is important. Depths estimated without using the
second term in the exponent of (2), i.e., depths predicted us-
ing only image features with row-sensitive parameters θr ,

9Errors are on a log10 scale. Thus, an error of ε means a multiplicative
error of 10ε in actual depth. E.g., 100.132 = 1.355, which thus repre-
sents an 35.5% multiplicative error.
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Fig. 6 Results for a varied set of environments, showing a original image, b ground truth depthmap, c predicted depthmap by Gaussian model,
d predicted depthmap by Laplacian model. (Best viewed in color)
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Fig. 7 The 3-d scanner used for collecting images and the correspond-
ing depthmaps

are very noisy (Fig. 9d).10 Modeling the relations between
the neighboring depths at multiple scales through the sec-
ond term in the exponent of (2) also gave better depthmaps
(Fig. 9e). Finally, Fig. 9c shows the model’s “prior” on
depths; the depthmap shown reflects our model’s use of
image-row sensitive parameters. In our experiments, we also
found that many features/cues were given large weights;
therefore, a model trained with only a few cues (e.g., the
top 50 chosen by a feature selection method) was not able to
predict reasonable depths.

Our algorithm works well in a varied set of environments,
as shown in Fig. 6 (last column). A number of vision al-
gorithms based on “ground finding” (e.g., Gini and Marchi
2002) appear to perform poorly when there are discontinu-
ities or significant luminance variations caused by shadows,

10This algorithm gave an overall error of 0.181, compared to our full
model’s error of 0.132.

Fig. 8 The custom built 3-d scanner for collecting depthmaps with
stereo image pairs, mounted on the LAGR robot

or when there are significant changes in the ground texture.
In contrast, our algorithm appears to be robust to luminance
variations, such as shadows (Fig. 6, 4th row) and camera ex-
posure (Fig. 6, 2nd and 5th rows).

Some of the errors of the algorithm can be attributed to
errors or limitations of the training set. For example, the
maximum value of the depths in the training and test set
is 81 m; therefore, far-away objects are all mapped to the
distance of 81 m. Further, laser readings are often incorrect
for reflective/transparent objects such as glass; therefore, our
algorithm also often estimates depths of such objects in-
correctly. Quantitatively, our algorithm appears to incur the
largest errors on images which contain very irregular trees,
in which most of the 3-d structure in the image is dominated
by the shapes of the leaves and branches. However, arguably
even human-level performance would be poor on these im-
ages.

We note that monocular cues rely on prior knowledge,
learned from the training set, about the environment. This is
because monocular 3-d reconstruction is an inherently am-
biguous problem. Thus, the monocular cues may not gener-
alize well to images very different from ones in the training
set, such as underwater images or aerial photos.

To test the generalization capability of the algorithm,
we also estimated depthmaps of images downloaded from
the Internet (images for which camera parameters are not
known).11 The model (using monocular cues only) was able

11Since we do not have ground-truth depthmaps for images down-
loaded from the Internet, we are unable to give a quantitative com-
parisons on these images. Further, in the extreme case of orthogonal
cameras or very wide angle perspective cameras, our algorithm would
need to be modified to take into account the field of view of the camera.
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Table 1 Effect of multiscale and column features on accuracy. The average absolute errors (RMS errors gave very similar trends) are on a log
scale (base 10). H1 and H2 represent summary statistics for k = 1,2. S1, S2 and S3 represent the 3 scales. C represents the column features.
Baseline is trained with only the bias term (no features)

Feature All Forest Campus Indoor

Baseline 0.295 0.283 0.343 0.228

Gaussian (S1, S2, S3, H1,H2, no neighbors) 0.162 0.159 0.166 0.165

Gaussian (S1, H1,H2) 0.171 0.164 0.189 0.173

Gaussian (S1, S2, H1,H2) 0.155 0.151 0.164 0.157

Gaussian (S1, S2, S3, H1,H2) 0.144 0.144 0.143 0.144

Gaussian (S1, S2, S3, C, H1) 0.139 0.140 0.141 0.122

Gaussian (S1, S2, S3, C, H1,H2) 0.133 0.135 0.132 0.124

Laplacian 0.132 0.133 0.142 0.084

Fig. 9 a original image, b ground truth depthmap, c “prior” depthmap (trained with no features), d features only (no MRF relations), e Full
Laplacian model. (Best viewed in color)

to produce reasonable depthmaps on most of the images
(Fig. 10). Informally, our algorithm appears to predict the
relative depths quite well (i.e., their relative distances to the
camera);12 even for scenes very different from the training
set, such as a sunflower field, an oil-painting scene, moun-
tains and lakes, a city skyline photographed from sea, a city
during snowfall, etc.

Car Driving Experiments Michels et al. (2005) used a
simplified version of the monocular depth estimation algo-
rithm to drive a remote-controlled car (Fig. 11a). The al-
gorithm predicts (1-d) depths from single still images, cap-
tured from a web-camera with 320 × 240 pixel resolution.
The learning algorithm can be trained on either real cam-
era images labeled with ground-truth ranges to the closest
obstacle in each direction, or on a training set consisting of
synthetic graphics images. The resulting algorithm, trained
on a combination of real and synthetic data, was able to
learn monocular visual cues that accurately estimate the rel-
ative depths of obstacles in a scene (Fig. 11b). We tested
the algorithm by driving the car at four different locations,

12For most applications such as object recognition using knowledge
of depths, robotic navigation, or 3-d reconstruction, relative depths
are sufficient. The depths could be rescaled to give accurate absolute
depths, if the camera parameters are known or are estimated.

ranging from man-made environments with concrete tiles
and trees, to uneven ground in a forest environment with
rocks, trees and bushes where the car is almost never further
than 1 m from the nearest obstacle. The mean time before
crash ranged from 19 to more than 200 seconds, depend-
ing on the density of the obstacles (Michels et al. 2005).
The unstructured testing sites were limited to areas where
no training or development images were taken. Videos of
the algorithm driving the car autonomously are available at:
http://ai.stanford.edu/~asaxena/rccar.

7 Improving Performance of Stereovision using
Monocular Cues

Consider the problem of estimating depth from two images
taken from a pair of stereo cameras (Fig. 12). The most
common approach for doing so is stereopsis (stereovision),
in which depths are estimated by triangulation using the
two images. Over the past few decades, researchers have
developed very good stereovision systems (see Scharstein
and Szeliski 2002 for a review). Although these systems
work well in many environments, stereovision is fundamen-
tally limited by the baseline distance between the two cam-
eras. Specifically, their depth estimates tend to be inaccurate
when the distances considered are large (because even very
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Fig. 10 Typical examples of the predicted depthmaps for images downloaded from the Internet. (Best viewed in color)

Fig. 11 a The remote-controlled car driven autonomously in various
cluttered unconstrained environments, using our algorithm. b A view
from the car, with the chosen steering direction indicated by the red
square; the estimated distances to obstacles in the different directions
are shown by the bar graph below the image

small triangulation/angle estimation errors translate to very
large errors in distances). Further, stereovision also tends to
fail for textureless regions of images where correspondences
cannot be reliably found.

On the other hand, humans perceive depth by seamlessly
combining monocular cues with stereo cues. We believe

that monocular cues and (purely geometric) stereo cues give
largely orthogonal, and therefore complementary, types of
information about depth. Stereo cues are based on the dif-
ference between two images and do not depend on the con-
tent of the image. Even if the images are entirely random, it
would still generate a pattern of disparities (e.g., random dot
stereograms, Bulthoff et al. 1998). On the other hand, depth
estimates from monocular cues are entirely based on the evi-
dence about the environment presented in a single image. In
this section, we investigate how monocular cues can be in-
tegrated with any reasonable stereo system, to obtain better
depth estimates than the stereo system alone.

7.1 Disparity from Stereo Correspondence

Depth estimation using stereovision from two images (taken
from two cameras separated by a baseline distance) involves
three steps: First, establish correspondences between the two
images. Then, calculate the relative displacements (called
“disparity”) between the features in each image. Finally, de-
termine the 3-d depth of the feature relative to the cameras,
using knowledge of the camera geometry.
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Fig. 12 Two images taken from
a stereo pair of cameras, and the
depthmap calculated by a stereo
system

Stereo correspondences give reliable estimates of dispar-
ity, except when large portions of the image are featureless
(i.e., correspondences cannot be found). Further, for a given
baseline distance between cameras, the accuracy decreases
as the depth values increase. In the limit of very distant
objects, there is no observable disparity, and depth estima-
tion generally fails. Empirically, depth estimates from stereo
tend to become unreliable when the depth exceeds a certain
distance.

Our stereo system finds good feature correspondences
between the two images by rejecting pixels with little tex-
ture, or where the correspondence is otherwise ambiguous.
More formally, we reject any feature where the best match
is not significantly better than all other matches within the
search window. We use the sum-of-absolute-differences cor-
relation as the metric score to find correspondences (Forsyth
and Ponce 2003). Our cameras (and algorithm) allow sub-
pixel interpolation accuracy of 0.2 pixels of disparity. Even
though we use a fairly basic implementation of stereopsis,
the ideas in this paper can just as readily be applied together
with other, perhaps better, stereo systems.

7.2 Modeling Uncertainty in Stereo

The errors in disparity are often modeled as either Gaussian
(Das and Ahuja 1995) or via some other, heavier-tailed dis-
tribution (e.g., Szeliski 1990). Specifically, the errors in dis-
parity have two main causes: (a) Assuming unique/perfect
correspondence, the disparity has a small error due to image
noise (including aliasing/pixelization), which is well mod-
eled by a Gaussian. (b) Occasional errors in correspondence
cause larger errors, which results in a heavy-tailed distribu-
tion for disparity (Szeliski 1990).

If the standard deviation is σg in computing disparity g

from stereo images (because of image noise, etc.), then the
standard deviation of the depths13 will be σd,stereo ≈ σg/g.
For our stereo system, we have that σg is about 0.2 pix-

13Using the delta rule from statistics: Var(f (x)) ≈ (f ′(x))2Var(x), de-
rived from a second order Taylor series approximation of f (x). The
depth d is related to disparity g as d = log(C/g), with camera parame-
ters determining C.

els;14 this is then used to estimate σd,stereo. Note therefore
that σd,stereo is a function of the estimated depth, and specif-
ically, it captures the fact that variance in depth estimates is
larger for distant objects than for closer ones.

7.3 Probabilistic Model

We use our Markov Random Field (MRF) model, which
models relations between depths at different points in the
image, to incorporate both monocular and stereo cues.
Therefore, the depth of a particular patch depends on the
monocular features of the patch, on the stereo disparity, and
is also related to the depths of other parts of the image.
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In our Gaussian and Laplacian MRFs (see (3) and (4)),
we now have an additional term di,stereo, which is the depth
estimate obtained from disparity.15 This term models the re-

14One can also envisage obtaining a better estimate of σg as a func-
tion of a match metric used during stereo correspondence (Brown et al.
2003), such as normalized sum of squared differences; or learning σg

as a function of disparity/texture based features.
15In this work, we directly use di,stereo as the stereo cue. In (Saxena
et al. 2006c), we use a library of features created from stereo depths as
the cues for identifying a grasp point on objects.
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lation between the depth and the estimate from stereo dispar-
ity. The other terms in the models are similar to (1) and (2)
in Sect. 5.

7.4 Results on Stereo

For these experiments, we collected 257 stereo pairs +
depthmaps in a wide-variety of outdoor and indoor envi-
ronments, with an image resolution of 1024 × 768 and a
depthmap resolution of 67 × 54. We used 75% of the im-
ages/depthmaps for training, and the remaining 25% for
hold-out testing.

We quantitatively compare the following classes of algo-
rithms that use monocular and stereo cues in different ways:

(i) Baseline: This model, trained without any features,
predicts the mean value of depth in the training depth-
maps.

(ii) Stereo: Raw stereo depth estimates, with the missing
values set to the mean value of depth in the training
depthmaps.

(iii) Stereo (smooth): This method performs interpolation
and region filling; using the Laplacian model without
the second term in the exponent in (4), and also without
using monocular cues to estimate λ2 as a function of the
image.

(iv) Mono (Gaussian): Depth estimates using only monoc-
ular cues, without the first term in the exponent of the
Gaussian model in (3).

(v) Mono (Lap): Depth estimates using only monocular
cues, without the first term in the exponent of the
Laplacian model in (4).

(vi) Stereo+Mono: Depth estimates using the full model.

Table 2 shows that although the model is able to pre-
dict depths using monocular cues only (“Mono”), the per-
formance is significantly improved when we combine both
mono and stereo cues. The algorithm is able to estimate
depths with an error of 0.074 orders of magnitude, (i.e.,
18.6% of multiplicative error because 100.074 = 1.186)
which represents a significant improvement over stereo
(smooth) performance of 0.088.

Figure 13 shows that the model is able to predict
depthmaps (column 5) in a variety of environments. It also
demonstrates how the model takes the best estimates from
both stereo and monocular cues to estimate more accurate
depthmaps. For example, in row 6 (Fig. 13), the depthmap
generated by stereo (column 3) is very inaccurate; however,
the monocular-only model predicts depths fairly accurately
(column 4). The combined model uses both sets of cues to
produce a better depthmap (column 5). In row 3, stereo cues
give a better estimate than monocular ones. We again see
that our combined MRF model, which uses both monocu-
lar and stereo cues, gives an accurate depthmap (column 5)

Table 2 The average errors (RMS errors gave very similar trends) for
various cues and models, on a log scale (base 10)

Algorithm All Campus Forest Indoor

Baseline 0.341 0.351 0.344 0.307

Stereo 0.138 0.143 0.113 0.182

Stereo (smooth) 0.088 0.091 0.080 0.099

Mono (Gaussian) 0.093 0.095 0.085 0.108

Mono (Lap) 0.090 0.091 0.082 0.105

Stereo+Mono 0.074 0.077 0.069 0.079

(Lap)

correcting some mistakes of stereo, such as some far-away
regions that stereo predicted as close.

In Fig. 14, we study the behavior of the algorithm as a
function of the 3-d distance from the camera. At small dis-
tances, the algorithm relies more on stereo cues, which are
more accurate than the monocular cues in this regime. How-
ever, at larger distances, the performance of stereo degrades,
and the algorithm relies more on monocular cues. Since our
algorithm models uncertainties in both stereo and monoc-
ular cues, it is able to combine stereo and monocular cues
effectively.

We note that monocular cues rely on prior knowledge,
learned from the training set, about the environment. This is
because monocular 3-d reconstruction is an inherently am-
biguous problem. In contrast, the stereopsis cues we used
are purely geometric, and therefore should work well even
on images taken from very different environments. For ex-
ample, the monocular algorithm fails sometimes to predict
correct depths for objects which are only partially visible in
the image (e.g., Fig. 13, row 2: tree on the left). For a point
lying on such an object, most of the point’s neighbors lie
outside the image; hence the relations between neighboring
depths are less effective here than for objects lying in the
middle of an image. However, in many of these cases, the
stereo cues still allow an accurate depthmap to be estimated
(row 2, column 5).

8 Conclusions

Over the last few decades, stereo and other “triangula-
tion” cues have been successfully applied to many impor-
tant problems, including robot navigation, building 3-d mod-
els of urban environments, and object recognition. Unlike
triangulation-based algorithms such as stereopsis and struc-
ture from motion, we have developed a class of algorithms
that exploit a largely orthogonal set of monocular cues. We
presented a hierarchical, multiscale Markov Random Field
(MRF) learning model that uses such cues to estimate depth
from a single still image. These monocular cues can not only
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Fig. 13 Results for a varied set of environments, showing one image
of the stereo pairs (column 1), ground truth depthmap collected from
3-d laser scanner (column 2), depths calculated by stereo (column 3),
depths predicted by using monocular cues only (column 4), depths pre-

dicted by using both monocular and stereo cues (column 5). The bottom
row shows the color scale for representation of depths. Closest points
are 1.2 m, and farthest are 81 m. (Best viewed in color)
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Fig. 14 The average errors (on a log scale, base 10) as a function of
the distance from the camera

be combined with triangulation ones, but also scale better
than most triangulation-based cues to depth estimation at
large distances. Although our work has been limited to depth
estimation, we believe that these monocular depth and shape
cues also hold rich promise for many other applications in
vision.
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Appendix 1: MAP Inference for Gaussian Model

We can rewrite (1) as a standard multivariate Gaussian,

PG(d|X; θ, σ )

= 1

ZG

exp

(

−1

2
(d − Xaθr)

T Σ−1
a (d − Xaθr)

)

(5)

where Xa = (Σ−1
1 + QT Σ−1

2 Q)−1Σ−1
1 X, with Σ1 and Σ2

representing the matrices of the variances σ 2
1,i and σ 2

2,i in the

first and second terms in the exponent of (1) respectively.16

Q is a matrix such that rows of Qd give the differences of
the depths in the neighboring patches at multiple scales (as
in the second term in the exponent of (1)). Our MAP esti-
mate of the depths is, therefore, d∗ = Xaθr .

During learning, we iterate between learning θ and esti-
mating σ . Empirically, σ1 	 σ2, and Xa is very close to X;
therefore, the algorithm converges after 2–3 iterations.

16Note that if the variances at each point in the image are constant,
then Xa = (I + σ 2

1 /σ 2
2 QT Q)−1X. I.e., Xa is essentially a smoothed

version of X.

Appendix 2: MAP Inference for Laplacian Model

Exact MAP inference of the depths d ∈ R
M can be obtained

by maximizing logP(d|X; θ,λ) in terms of d (see (2)).
More formally,

d∗ = arg max
d

logP(d|X; θ,λ)

= arg min
d

cT
1 |d − Xθr | + cT

2 |Qd|

where, c1 ∈ R
M with c1,i = 1/λ1,i , and c2 ∈ R

6M with
c2,i = 1/λ2,i . Our features are given by X ∈ R

Mxk and the
learned parameters are θr ∈ R

k , which give a naive estimate
d̃ = Xθr ∈ R

M of the depths. Q is a matrix such that rows
of Qd give the differences of the depths in the neighbor-
ing patches at multiple scales (as in the second term in the
exponent of (2)).

We add auxiliary variables ξ1 and ξ2 to pose the problem
as a Linear Program (LP):

d∗ = arg min
d,ξ1,ξ2

cT
1 ξ1 + cT

2 ξ2

s.t. −ξ1 ≤ d − d̃ ≤ ξ1

−ξ2 ≤ Qd ≤ ξ2.

In our experiments, MAP inference takes about 7–8 seconds
for an image.
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