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Abstract Systems utilizing multiple sensors are required
in many domains. In this paper, we specifically concern
ourselves with applications where dynamic objects appear
randomly and the system is employed to obtain some user-
specified characteristics of such objects. For such systems,
we deal with the tasks of determining measures for eval-
uating their performance and of determining good sensor
configurations that would maximize such measures for bet-
ter system performance.

We introduce a constraint in sensor planning that has
not been addressed earlier: visibility in the presence of ran-
dom occluding objects. occlusion causes random loss of
object capture from certain necessitates the use of other sen-
sors that have visibility of this object. Two techniques are
developed to analyze such visibility constraints: a proba-
bilistic approach to determine “average” visibility rates and
a deterministic approach to address worst-case scenarios.
Apart from this constraint, other important constraints to
be considered include image resolution, field of view, cap-
ture orientation, and algorithmic constraints such as stereo
matching and background appearance. Integration of such
constraints is performed via the development of a proba-
bilistic framework that allows one to reason about different

Most of this work was done while A. Mittal was with Real-Time
Vision and Modeling Department, Siemens Corporate Research,
Princeton, NJ 08540.

A. Mittal (�)
Department of Computer Science and Engineering, Indian
Institute of Technology Madras, Chennai 600036, India
e-mail: amittal@cse.iitm.ernet.in

L.S. Davis
Computer Science Department, University of Maryland, College
Park, MD 20742, USA
e-mail: lsd@cs.umd.edu

occlusion events and integrates different multi-view capture
and visibility constraints in a natural way. Integration of the
thus obtained capture quality measure across the region of
interest yields a measure for the effectiveness of a sensor
configuration and maximization of such measure yields sen-
sor configurations that are best suited for a given scenario.

The approach can be customized for use in many multi-
sensor applications and our contribution is especially sig-
nificant for those that involve randomly occurring objects
capable of occluding each other. These include security sys-
tems for surveillance in public places, industrial automation
and traffic monitoring. Several examples illustrate such ver-
satility by application of our approach to a diverse set of
different and sometimes multiple system objectives.

Keywords Sensor planning · Surveillance · Camera
networks · Camera placement · Multi-camera vision

1 Introduction

Systems utilizing multiple visual sensors are required in
many applications. In this paper, we consider applications
where such sensors are employed to obtain information
about dynamic objects that appear randomly in a moni-
tored region. We assume that the probability distributions
of the occurrence of such objects along with probability dis-
tributions of object characteristics such as appearance and
geometry are known a priori. Also known are the character-
istics of the static parts of the scene consisting of geometric
and appearance models. Given such information, we address
the task of determining quality measures for evaluating the
performance of a vision system and of determining sensor
configurations that would maximize such a quality measure.
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Such analysis is applicable to several domains including
surveillance and monitoring, industrial automation, trans-
portation and automotive, and medical solutions. A common
objective is to monitor a large area by having the sensors
look at different parts of the scene; a typical system goal is
to track each object within and across views (camera hand-
off) as it moves through the scene (Kettnaker and Zabih
1999; Cai and Aggarwal 1999; Collins et al. 2001). An-
other objective is to utilize multiple closely-spaced cameras
for the purpose of accurate stereo matching and recon-
struction (Darrell et al. 1998, 2001; Krumm et al. 2000).
Such reconstructions can then be fused across the views
in 3D space. A sensor configuration might be chosen that
sacrifices matching accuracy for better visibility by uti-
lizing widely separated cameras (Mittal and Davis 2002,
2003). Such an approach might be appropriate in more
crowded scenes. Another alternative (Grimson et al. 1998;
Kelly et al. 1995; Khan et al. 2001; Khan and Shah 2003)
is to not match information directly across the views, but to
merge the detections observed by multiple sensors in a con-
sistent manner. These systems have different requirements
and constraints. Here, we formulate a generic framework
that incorporates a variety of such constraints with proba-
bilistic visibility constraints that arise due to occlusion from
other objects. Such framework enables analytical evaluation
of the performance of a given vision system given the task
requirement and maximization of such performance via bet-
ter sensor placement.

1.1 Prior Work

Sensor planning has been studied extensively. Following
(Maver and Bajcsy 1993) and (Tarabanis et al. 1995a), these
methods can be classified based on the amount of infor-
mation available about the scene: (1) No information is
available, (2) A set of models for the objects that can oc-
cur in the scene are available, and (3) Complete geometric
information is available.

1.1.1 Scene Reconstruction

The first set of methods, which may be called scene recon-
struction or next view planning, attempt to build a model
of the scene incrementally by successively sensing the un-
known world from effective sensor configurations using
the information acquired about the world up to this point
(Miura and Ikeuchi 1995; Ye and Tsotsos 1999; Pito 1999;
Cook et al. 1996; Roy et al. 2001; Maver and Bajcsy 1993;
Lehel et al. 1999; Kutulakos and Dyer 1994; Armstrong
and Antonis 2000; Krishnan and Ahuja 1996; Cameron and
Durrant-Whyte 1990; Hager and Mintz 1991). The sensors
are controlled based on several criteria such as occlusion,
ability to view the largest unexplored region, ability to per-
form good stereo matching etc.

1.1.2 Model-Based Object Recognition

The second set of methods assume knowledge about the ob-
jects that can be present in the scene. The task, then, is to
develop sensing strategies for model-based object recogni-
tion and localization (Grimson 1986; Hutchinson and Kak
1989; Kim et al. 1985; Magee and Nathan 1987; Deinzer et
al. 2003; Roy et al. 2004). Sensing strategies are chosen that
are most appropriate for identifying an object or its pose.
Typically, such methods involve three steps: (1) Generation
of the hypothesis remaining after an observation, (2) Eval-
uation of such hypothesis to generate information about the
occluded parts of the scene, and (3) Determination of the
next sensing configuration that best reduces the ambiguity
about the object. Such a hypothesize-and-verify paradigm
involves an expensive search in the sensor parameter space,
and a discrete approximation of this space is typically em-
ployed. One such method is that of aspect graphs (Gigus
et al. 1991; Petitjean et al. 1992; Gigus and Malik 1990;
Cameron and Durrant-Whyte 1990; Hutchinson and Kak
1989) that capture the set of features of an object visible
from a given viewpoint, grouping together viewpoints that
have the same aspect into equivalence classes.

1.1.3 Scene Coverage

Methods that are directly related to ours are those that as-
sume that complete geometric information is available and
determine the location of static sensors so as to obtain the
best views of a scene. This problem was originally posed
and has been extensively considered in the computational
geometry literature as the “art-gallery problem” (O’Rourke
1987; Shermer 1992; Urrutia 1997; Aggarwal 1984): Find
the minimum set of points G in a Polygon P such that every
point of P is visible from some point of G. Here, a sim-
ple definition of visibility is defined such that two points
are called visible if the straight line segment between them
lies entirely inside the polygon. Even this simpler problem
was shown to be NP-hard by Lee and Lin (1986). However,
Chvátal (1975) showed that the number of points of G will
never exceed �n/3� for a simple polygon of n sides. Sev-
eral researchers have demonstrated geometric combinatorial
methods to obtain a “good” approximate solution to the
problem (Ghosh 1987; Chin and Ntafos 1988). Furthermore,
several extensions of this problem have been considered in
the literature that generalize the problem for different types
of guards and visibility definitions (Edelsbrunner et al. 1984;
Culberson and Reckhow 1989; Kay and Guay 1970; Lingas
1982; Masek 1978; O’Rourke 1982). The reader is referred
to (Shermer 1992) and (O’Rourke 1987) for surveys of work
done in this field.

Several recent papers have incorporated additional sen-
sor constraints such as incidence angle and range into the
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problem and reduce the resultant sensor planning problem
to the well-known set-cover problem (González-Banos and
Latombe 2001; Danner and Kavraki 2000; Gonzalez-Banos
et al. 1998; Gonzalez-Banos and Latombe 1998): select a
group of sets from a given collection of sets such that the
union of such group equals a given set X. Such a set cover
problem is again NP-hard and it is also well-known that the
general version of the set cover problem cannot be approx-
imated with a ratio better than logn, where n is the size of
the covered set X (Slavik 1997). However, for sets systems
with a finite so-called VC-dimension d , polynomial time so-
lutions exist that yield a set of size at most O(d · c · log c),
where c is the size of the optimal set. González-Banos and
Latombe (2001) use such results from VC-dimensionality in
order to obtain a polynomial time algorithm for obtaining a
sensor set of size at most O(c · log(n+h) · log(c log(n+h))),
where n is the number of sides of a polygon, and h is the
number of holes in it. Recent work by Isler et al. (2004) de-
termines the VC-dimensionality of several set systems that
are formed by utilizing different visibility and space (2D vs.
3D) assumptions. Such analysis can then be used to deter-
mine efficient approximation algorithms for these particular
problems.

Several researchers (Cowan and Kovesi 1988; Stamos
and Allen 1998; Reed and Allen 2000; Tarabanis et al. 1996;
Maver and Bajcsy 1993; Yi et al. 1995; Spletzer and Taylor
2001; Wixson 1994; Abrams et al. 1999) have studied and
incorporated more complex constraints based on several fac-
tors not limited to (1) resolution, (2) focus, (3) field of view,
(4) visibility, (5) view angle, and (6) prohibited regions. The
set of possible sensor configurations satisfying all such con-
straints for all the features in the scene is then determined.
There are several different strategies for determining sensor
parameter values. Several systems take a generate-and-test
approach (Sakane et al. 1987, 1992; Yi et al. 1995), in which
sensor configurations are generated and then evaluated with
respect to the task constraints. order Another set of meth-
ods take a synthesis approach (Anderson 1982; Tarabanis et
al. 1991, 1995b, 1996; Cowan 1988; Cowan and Bergman
1989; Cowan and Kovesi 1988; Stamos and Allen 1998),
in which the task constraints are analytically analyzed, and
the sensor parameter values that satisfy such analytical rela-
tionships are then determined. Sensor simulation is another
approach utilized by some systems (Ikeuchi and Robert
1991; Raczkowsky and Mittenbuehler 1989). Such systems
simulate the observed view given the description of objects,
sensors and light sources and evaluate the task constraints
in such views. Finally, there has been work that utilizes
the expert systems paradigm, where expert knowledge of
viewing and illumination techniques is used to provide ad-
vice about appropriate sensor configurations (Kitamura et
al. 1990; Novini 1988). The reader is referred to the survey
paper by (Tarabanis et al. 1995a) for further details.

Another related set of methods (Kang et al. 2000; Stuer-
zlinger 1999; Durand et al. 1997) has focused on finding
good sensor positions for capturing a static scene from desir-
able viewpoints assuming that some geometric information
about the scene is available. Bordering on the field of graph-
ics, the main contribution of such methods is to develop
efficient methods for determining the view of the scene from
different viewpoints. The reader is referred to (Durand 1999)
for a survey of such visibility problems that arise in different
fields.

1.2 Motivation and Contributions

In addition to the “static” constraints that have been an-
alyzed previously in the literature, there are additional
constraints that arise when random occluding objects are
present. Such constraints are essential to analyze since sys-
tem performance is a function of object visibility. In people
detection and tracking, for instance, handling occlusion typ-
ically requires the construction of motion models during
visibility that can then be utilized to interpolate the miss-
ing object trajectories (MacCormick and Blake 2000; Zhao
et al. 2001). However, if objects are occluded for a signifi-
cant amount of time, the motion models become unreliable
and the tracking has to be reinitialized. Using appearance
models and temporal constraints, it might be possible to
match these tracks and identify common objects (Khan and
Shah 2003; Zhao and Nevatia 2004; Isard and MacCormick
2001). The accuracy of such a labeling, however, is again a
function of the frequency and duration of the occlusion and
deteriorates significantly with the increase in such duration.
Thus, it is important to analyze such occlusion caused by
other objects and the effect of such occlusion on system per-
formance. The first part of the paper focuses on developing
methods for the analysis of such visibility constraints aris-
ing due to the presence of random obstacles. Two types of
methods are considered—probabilistic and worst-case (de-
terministic). The probabilistic approach analyzes visibility
constraints for the “average” case, while the deterministic
approach analyses worst-case scenarios.

System performance also depends on a number of other
constraints such as image resolution, field of view and static
obstacles as well as more complex algorithmic constraints
such as stereo matching and background appearance. In-
tegration of such constraints with probabilistic visibility
constraints is considered in the next part of the paper. Most
of the existing work has focused on allowing only specifi-
cation of hard constraints, where any particular constraint
has a binary decision regarding its satisfaction at a given
location. In reality, many constraints are soft, in the sense
that certain locations are better captured compared to others.
Furthermore, a trade-off is typically involved between dif-
ferent requirements. For instance, a reduction in the distance
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from the camera enhances resolution but might increase the
viewing angle from the camera and cause difficulties in
stereo matching. The relative importance of different trade-
offs and the function integrating the different constraints is
task-specific and needs to be specified according to the par-
ticular application. In this paper, we propose the use of such
a function that specifies the quality of the object capture at a
particular location from a given set of cameras provided that
the object is visible from all of them. Then, a probabilis-
tic framework is developed that allows one to reason about
different occlusion events and integrates multi-view capture
and visibility constraints in a natural way.

Integration of the capture quality measure across the re-
gion of interest yields a measure of the effectiveness of a
given sensor configuration for the whole region. Then, the
sensor planning problem can be formulated as the optimiza-
tion of such a measure over the space of possible sensor
configurations. Since exact optimization of such a criteria is
an NP-hard problem, we propose methods that yield “good”
configurations in a reasonable amount of time and are able
to improve upon such solutions over time.

The above general method for sensor planning can be
applied to many different systems in domains such as sur-
veillance, traffic monitoring and industrial automation. Cus-
tomization of the method for a given system requirement is
performed by specification of the capture quality function
that incorporates the different constraints specific to the sys-
tem objective. The results section of the paper demonstrates
the flexibility of the proposed approach in addressing several
different system requirements.

The paper is organized as follows. Section 2 develops
the theoretical framework for estimating the probability of
visibility of an object at a given location in a scene for a
certain configuration of sensors. Section 3 introduces some
deterministic tools to analyze worst-case visibility scenar-
ios. Section 4 describes the integration of static constraints
with probabilistic visibility constraints to develop and then
minimize a cost function in order to perform sensor planning
in diverse environments. Section 5 concludes with model
validation and planning experiments for a diverse set of syn-
thetic and real scenes.

2 Probabilistic Visibility Analysis

In this section, we develop tools for evaluating the probabil-
ity of visibility of an object from a given set of sensors in the
presence of random occluding objects. Since this probabil-
ity varies across space, it is estimated as a function of object
position.

Since the particular application domain might contain ei-
ther two or three dimensions, we consider the general case
of an m dimensional space. Assume that we have a region

R⊂ R
m of “volume” A observed by n sensors [Fig. 1] (The

area of R if m = 2, and its volume if m = 3). Let Ei be the
event that a target object O at location L ∈R in angular ori-
entation θ is visible from sensor i. The definition of such
“visibility” can be defined according to the application (e.g.
visibility of only a part of the object might be sufficient) and
will be illustrated with an example subsequently. We will
develop tools to estimate the following probabilities:

P(Ei ), i = 1, . . . , n,

P (Ei ∩ Ej ), i, j = 1, . . . , n,
...

P

(⋂
i

Ei

)
.

(1)

Although the reason for such estimation will become fully
clear later, one can motivate it by the following observation:
The probability that O is visible from at least one sensor
may be expressed mathematically as the union P(

⋃n
i=1 Ei )

of such events, which may be expanded using the inclusion-
exclusion principle as:

P

(⋃
i

Ei

)
=

∑
∀i

P (Ei ) −
∑
i<j

P (Ei ∩ Ej ) + · · ·

+ (−1)n+1P

(⋂
i

Ei

)
. (2)

It is much easier to compute the terms on the RHS (right
hand side) than the one on the LHS. The computation of
such “intersection” terms is considered next.

In order to develop the analysis, we start with the case
of a fixed number of objects in the scene. This will later be
extended to the more general case of variable object densi-
ties. For ease of modeling, we assume that all objects are
identical.

2.1 Fixed Number of Objects

Assume that there are a fixed number, k, of objects in the
scene located randomly and uniformly in region R. We first
estimate P(Ei ), which is the probability that O is visible
from sensor i. Such visibility may be obstructed by the pres-
ence of another object in a certain “region of occlusion”
denoted by Ro

i [Fig. 1]. Such a region of occlusion is de-
pendent on the application as well as on the size and shape
of the occluding object. For instance, requiring that all of an
object be visible will yield a different region of occlusion
than the requirement that only the object center is visible.
In any case, given such a region, denote the volume of Ro

i

by Ao
i . Then, we need to estimate the probability that none

of the k objects is present in this region of occlusion Ro
i .

Since there are k objects in the scene located independently
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(a) (b)

Fig. 1 Scene Geometry for (a) 3D case, (b) 2.5D case, where the sensors have finite heights

of each other, the probability that none of them is present in

the region of occlusion is (1 − Ao
i

A
)k . Thus:

P(Ei ) =
(

1 − Ao
i

A

)k

. (3)

However, this neglects the fact that two objects cannot
overlap each other. In order to incorporate this condition,
observe that the (j + 1)-th object has a possible volume of
only A − jAob available to it, where Aob is the volume of
an occluding object.1 Thus, (3) can be refined as

P(Ei ) =
k−1∏
j=0

(
1 − Ao

i

A − jAob

)
. (4)

This analysis can be generalized to other terms in (1). The
probability that the object is visible from all of the sensors
in a specified set (i1, i2, . . . , im) can be written as:

P

( ⋂
i∈(i1,i2,...,im)

Ei

)
=

k−1∏
j=0

(
1 − Ao

(i1,i2,...,im)

A − jAob

)
(5)

where Ao
(i1,...,im) is the volume of the combined region of

occlusion Ro
(i1,...,im) for the sensor set (i1, . . . , im) formed

by the “geometric” union of the regions of occlusion Ro
ip

for the sensors in this set, i.e. Ro
(i1,...,im) = ⋃m

p=1 Ro
ip

.

2.2 Uniform Object Density

A fixed assumption on the number of objects in a region is
very restrictive. A more realistic assumption is that the ob-
jects have a certain density of occupancy. First, we consider

1The prohibited volume is in fact larger. For example, for circular 2D
objects, another object cannot be placed anywhere within a circle of
radius 2r (rather than r) without intersecting the object. For simplicity,
we redefine Aob as the volume “covered” by the object. This is the vol-
ume of the prohibited region and in the 2D case, may be approximated
as four times the actual area of the object.

the case of uniform object density in the region. This will
then be extended to the more general case of non-uniform
object density. The uniform density case can be treated as a
generalization of the “k objects” case introduced in the pre-
vious section. To this end, we increase k and the volume A

proportionately such that

k = λA (6)

where a constant object density λ is assumed. Equation (5)
can then be written as

P

( ⋂
i∈(i1,...,im)

Ei

)
= lim

k→∞

k−1∏
j=0

(
1 − Ao

(i1,...,im)

k/λ − jAob

)
. (7)

Defining

a = 1

λAo
(i1,...,im)

, b = Aob

Ao
(i1,...,im)

(8)

we obtain

P

( ⋂
i∈(i1,...,im)

Ei

)
= lim

k→∞

k−1∏
j=0

(
1 − 1

ka − jb

)
. (9)

Denoting this limit by L and taking the logarithm of both
sides yields:

lnL = lim
k→∞

k−1∑
j=0

ln

(
1 − 1

ka − jb

)
.

This sum may be approximated via an integral:

lnL ≈ lim
k→∞

∫ k

0
ln

(
1 − 1

ka − xb

)
dx.

Such integration may be performed using the method of “in-
tegration by parts”. Then, one obtains:

lnL ≈ lim
k→∞

(
(ka − xb)

b
ln(ka − xb)
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− (ka − xb − 1)

b
ln(ka − xb − 1)

)∣∣∣∣
k

0
.

After some calculations, one obtains:

L ≈ lim
k→∞

(
1 − 1

k(a − b)

)−k(a−b)/b(
1 − 1

ka

)k(a/b)

×
(

k(a − b) − 1

ka − 1

)1/b

.

Using some results on limits including the identity
limx→∞(1 + 1

x
)x = e, we get:

L = P

( ⋂
i∈(i1,...,im)

Ei

)
≈

(
1 − b

a

)1/b

= (1 − λAob)
(Ao

(i1,...,im)
/Aob). (10)

For obtaining this result, we approximated the sum via an in-
tegral. Using analysis very similar to the one presented here,
it is not too difficult to show that the error in this approxi-
mation satisfies

e ≤
∫ k

0

(
ln

(
1 − 1

ka − xb

)

− ln

(
1 − 1

ka − (x − 1)b

))
dx → 0 as k → ∞.

We note at this point that the result obtained here is more
accurate than the result presented in our earlier paper (Mit-
tal and Davis 2004). However, for most cases where it can
be safely assumed that a � b, it can be shown that the re-
sult in (Mittal and Davis 2004) is a close approximation to
the current result. We also note in passing that the problem
is related to the M/D/1/1 queuing model used in Queuing
Theory (Kleinrock 1975).

So far, we assumed that all objects are identical. We now
extend the analysis to the case of probabilistically varying
shapes. We first note that in (7), the term jAob simply adds
the contribution from the past j objects. Thus, more pre-
cisely, this term is equal to

∑j
i A

j

ob. With sufficiently large
j , which is the case when k → ∞, one may approximate
this term by jA

avg
ob . Then, the only variable left in this term is

Ao
(i1,...,im). Such a region of occlusion is a function of the size

of the occluding objects and given the size distribution of
such objects, one may estimate the probability distribution
pAo( ) of Ao

(i1,...,im). Then, the average visibility probability
may be computed as:

P

( ⋂
i∈(i1,...,im)

Ei

)
=

∫ ∞

0
(1 − λA

avg
ob )

(Ao
(i1,...,im)

/A
avg
ob )

×pAo(Ao
(i1,...,im))dAo

(i1,...,im). (11)

In order to illustrate the computation of the density function
pAo( ), consider the case of cylindrical objects with radius
r . In this case, the area of occlusion may be shown to be
equal to

∑
i 2rdi , where di ’s are the distances of occlusion

from the object (see Fig. 2 and Sect. 2.4 for more details).
Then, if the radii of the objects are normally distributed:
r ∼ N(μr,σr), the distribution of the area of occlusion is
also normally distributed with mean

∑
i 2μrdi and variance∑

i 4σ 2
r d2

i . Using such a distribution function for Ao
(i1,...,im),

one may compute the probability in (11).

2.3 Non-uniform Object Density

In general, the object density (λ) is a function of location.
For example, the object density near a door might be higher.
Moreover, the presence of an object at a location can influ-
ence the object density nearby since objects can appear in
groups. We can integrate both of these object density fac-
tors with the help of a conditional density function λ(xc|xO)

that might be available to us. This density function gives the
density at location xc given that visibility is being calculated
at location xO . Thus, this function captures the effect that
the presence of the object at location xO has on the density
nearby.2

In order to develop the formulation for the case of non-
uniform density, we note that the (j + 1)-th object has a
region available to it that is R minus the region occupied
by the j previous objects. This object is located in this
“available” region according to the density function λ( ).
The probability for this object to be present in the region
of occlusion Ro

(i1,...,im) can then be calculated as the ratio of
the average number of objects present in the region of occlu-
sion to the average number of objects in the available region.
Thus, one can write:

P

( ⋂
i∈(i1,...,im)

Ei

)
= lim

k→∞

k−1∏
j=0

(
1 −

∫
Ro

(i1,...,im)
λ(xc|x0)dxc∫

R−Rj
ob

λ(xc|x0)dxc

)

(12)

where Rj

ob is the region occupied by the previous j objects.
Since the previous j objects are located randomly in R, one
can simplify:

∫
R−Rj

ob

λ(xc|x0)dxc = λavg(A − jAob)

2Such formulation only captures the first-order effect of the presence
of an object. While higher order effects due to the presence of multiple
objects can be considered, they are likely to be small.
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where λavg is the average object density in the region. Using
this equation in (12) and noting that λavgA = k, we obtain:

P

( ⋂
i∈(i1,...,im)

Ei

)
= lim

k→∞

k−1∏
j=0

(
1 −

∫
Ro

(i1,...,im)
λ(xc|x0)dxc

k − j · λavg · Aob

)
.

(13)

Defining:

a = 1∫
Ro

(i1,...,im)
λ(xc|x0)dxc

,

(14)

b = Aob · λavg∫
Ro

(i1,...,im)
λ(xc|x0)dxc

.

Equation (13) may be put in the form of (9). As before, this
can be simplified to obtain:

P

( ⋂
i∈(i1,...,im)

Ei

)
≈

(
1 − b

a

)1/b

= (1 − λavgAob)

(∫
Ro

(i1,...,im)
λ(xc |x0)dxc

)
/λavgAob

. (15)

Furthermore, similar to the uniform density case, one may
generalize this equation to the case of probabilistically vary-
ing object shape:

P

( ⋂
i∈(i1,...,im)

Ei

)

=
∫ ∞

0
(1 − λavgA

avg
ob )

(∫
Ro

(i1,...,im)
λ(xc |x0)dxc

)
/λavgA

avg
ob

×pRo (Ro
(i1,...,im))dRo

(i1,...,im) (16)

where pRo ( ) is the probability density function for the dis-
tribution of the volume of the region of occlusion. This may
again be computed from the distribution of the shape of the
objects causing the occlusion.

2.4 Models for People Detection and Tracking

We have presented a general method for determining object
visibility given the presence of random occluding objects.
In this section, we consider model specification for the 2.5D
case of objects moving on a ground plane such that the sen-
sors are placed at some known heights Hi from this plane.
The objects are assumed to have the same horizontal profile
at each height. Examples of such objects include cylinders,
cubes, cuboids, and square prisms, and can adequately de-
scribe the objects of interest in many applications such as
people detection and tracking. Let the area of their projec-
tion onto the ground plane be Aob.

Fig. 2 The distance up to which an object can occlude another object
is proportional to its distance from the sensor

A useful quantity may be defined for the objects by
considering the projection of the object in a particular di-
rection. We then define r as the average, over different
directions, of the maximum distance from the centroid to
the projected object points. For e.g., for cylinders, r is the
radius of the cylinder; for a square prism with side 2s,
r = 1

π/4

∫ π/4
0 s cos θ dθ = 2

√
2s/π .

The visibility of an object may be defined according to
the requirements of the particular application. For some ap-
plications, it may be desirable to view the entire object. For
others, it may be sufficient to view the center line only. Fur-
thermore, visibility for a certain height h from the top may
be sufficient for some other applications like people detec-
tion and tracking. The occlusion region formed is a function
of such visibility requirements. For the case of visibility of
the center line and desired visibility only up to a length h

from the top of the object, this region is a rectangle of width
2r and a distance di from the object, that is proportional to
the object’s distance from sensor i [Fig. 2]. Specifically,

di = (Di − di)μi = Di

μi

μi + 1
, where μi = h

Hi

. (17)

Assuming that all object orientations are equally likely,3

one may approximate the area of the region of occlusion
Ro

i as Ao
i ≈ di(2r). Utilizing such models, it is possible to

reason about the particular application of people detection
and tracking for objects moving on a plane. Such a model
will be utilized for the rest of the paper.

The analysis presented so far is probabilistic and pro-
vides “average” answers. In high security areas, worst-case
analysis might be more appropriate. Such an analysis will
be presented in the next section.

3It is possible to perform the analysis by integration over different ob-
ject orientations. However, for ease of understanding, we will use this
approximation.
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3 Deterministic Worst-Case Visibility Analysis

The probabilistic analysis presented in the last section
yields results in the average case. When targets are non-
cooperative, a worst-case analysis is more appropriate. In
this section, we analyze location-specific limitations of
a given system in the worst-case. This analysis provides
conditions that guarantee visibility regardless of object con-
figuration and enables sensor placement such that such
conditions are satisfied in a given region of interest. Towards
this end, we provide the following results:

3.1 Point Objects

For point objects with negligible size, the following can be
easily proved:

Theorem 3.1 Part 1: Suppose there is an object O at loca-
tion L. If there are k point objects in the vicinity of O, and
n sensors have visibility of location L all with different lines
of sight to L, then n > k is the necessary and sufficient con-
dition to guarantee visibility for O from at least one sensor.

Part 2: If visibility from at least m sensors is required,
then the condition to be satisfied is n > k + m − 1.

Proof Part 1
(a) Necessary

Suppose n ≤ k. Then, consider the following configuration.
Place n objects such that each of them is obstructing one
of the sensors (Fig. 3 shows the case for 6 sensors and 6
objects). In this situation, O is not visible from any of the
sensors.

(b) Sufficient
Suppose n > k. O has n lines of sight to the sensors. How-
ever, there are only k objects that can obstruct these lines
of sight. Since the objects are assumed to be point objects,
they cannot obstruct more than one sensor. Therefore, by
simple application of the pigeon-hole principle, there must
be at least one sensor viewing O.

Fig. 3 Six sensors are insufficient in the presence of six potential ob-
structors

Part 2
(a) Necessary

Similar to the reasoning of Part 1(a) above, suppose n ≤ k +
m − 1. Place p = min(k, n) objects such that each obstructs
one sensor. The number of sensors having a clear view of the
object are then equal to n − p which is less than m (follows
easily from the condition n ≤ k + m − 1).

(b) Sufficient
Suppose n > k+m−1. O has n lines of sight to the sensors,
k of which are possibly obstructed by other objects. There-
fore, by the extended pigeon-hole principle, there must be at
least n − k ≥ m sensors viewing O. �

The actual arrangement of sensors does not matter as
long as no two sensors are along the same line of sight
from L. This is due to the limitation of considering only
point objects.

3.2 2D Finite Objects

Assume that we are given a distinguished point on the ob-
ject such that object visibility is defined as the visibility of
this point. This point may be defined arbitrarily. We will
also assume that all objects are identical and define α as
the maximum angle that any object can subtend at the dis-
tinguished point of any other object. For example, one can
consider a flat world scenario where the objects and sensors
are in 2D. In such a case, for cylinders with the center of the
circular projection as the distinguished point, α = 60◦; for
square prisms, α = 90◦ [Fig. 4]. Similarly, in 3D, α = 60◦
for spherical objects and 60◦ for cubic ones.

Under these assumptions, the following results hold:

Theorem 3.2 Part 1: Suppose there is an object O at lo-
cation L and there are k identical objects with maximum
subtending angle α in the vicinity of O. Also, let n be the
cardinality of the largest set of sensors such that all such
sensors have visibility of location L and the angular sepa-
ration between any two sensors in this set from the point of
view L is at least α. Then, n > k is a necessary and suf-
ficient condition to guarantee visibility for O from at least
one sensor.

Part 2: If we want visibility from at least m sensors, then
n ≥ k + m − 1 is the necessary and sufficient condition.

Proof Part 1. The necessary condition follows directly from
Theorem 3.1 Part 1(a). For the sufficiency condition, we note
that the distinguished point of O can be obstructed by an-
other object for a maximum viewing angle of α (Fig. 4).
Therefore, if the sensors are separated by an angle > α, no
single object can obstruct more than one sensor. Since there
are only k objects and n > k sensors, by simple application
of the pigeon-hole principle, there must be at least one sen-
sor viewing O.
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Fig. 4 α = 60◦ for identical
cylinders, α = 90◦ for square
prisms. An angular separation of
α between the sensors from the
point of view of the object
ensures that one object can only
obstruct one sensor

It may be noted that in the 2D case, n is never more
than 2π

α
since it is not possible to place n > 2π

α
sen-

sors such that there is an angular separation of at least α

between them. In the 3D case, such maximum angle is
4πr2/4πr2 sin2(α/4) = 1/ sin2(α/4), calculated as the sur-
face area of a cube divided by the maximum surface area of
a patch created by an object subtending an angle α at the
center of the cube.

Part 2. The proof is similar to the proof in Part 1. �

An observation may be made here for the region “cov-
ered” by any two sensors such that an object will be guaran-
teed to have a minimum angular separation α between the
views of the two sensors. Such a region is a circle passing
through the centers of the two sensors such that the angle
that the two centers subtend at the center of the circle is 2α

[Fig. 5]. This result is derived from the condition that the
angle subtended by a chord at any point on a circle is fixed
and equal to half the angle subtended by it at the center.

4 Sensor Planning

In the previous sections, we have presented mechanisms for
evaluation of the visibility constraints arising due to the
presence of random occluders. Other “‘static” constraints

Fig. 5 Every location within the circle has an angle > α to the sensors

also affect the view of the cameras and need to be consid-
ered in order to perform sensor planning. We next consider
the incorporation of such constraints.

4.1 “Static” Constraints

Several stationary factors limit the view of any camera. We
first describe such factors briefly and then discuss how they
can be incorporated into a generic formulation that enables
optimization of the sensor configuration with respect to a
user-defined criteria. Such factors may be categorized as:
hard constraints that must be satisfied at the given location
for visibility, or soft constraints that may be measured in
terms of a measure for capture quality.

1. Field of view: Cameras have a limited field of view. Such
constraint may be specified in terms of maximum view-
ing angles from a central direction of the camera, and it
can be verified whether a given location is viewable from
a given camera.

2. Obstacles: Fixed high obstacles like pillars block the
view of a camera. From a given location, it can be
determined whether any obstacle blocks the view of a
particular camera.

3. Prohibited areas: There might also exist prohibited areas
where people are not able to walk. An example of such
an area is a desk. These areas have a positive effect on
the visibility in their vicinity since it is not possible for
obstructing objects to be present within such regions.

4. Resolution: The resolution of an object in an image re-
duces as the object moves further away from the camera.
Therefore, useful observations are possible only up to a
certain distance from the camera. It is possible to specify
such constraint as a hard one by specifying a maximum
“resolution distance” from the camera. Alternately, such
a constraint may be measured in terms of a quality mea-
sure (i.e. a soft constraint) that deteriorates as we move
away from the camera.

5. Algorithmic constraints: Such constraints may involve
inter-relationships between the views of several cameras.
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Stereo matching across two or more cameras is an ex-
ample of such a constraint and involves an integration of
several factors including image resolution, the maximum
distortion of a view that can occur from one camera to
the other and the minimum angular separation that would
guarantee a certain resolution in depth recovery. Such
constraints may again be specified either as a hard or soft.

6. Viewing angle: An additional constraint exists for the
maximum angle αmax at which the observation of an ob-
ject is meaningful. Such an observation may be the basis
for performing some task such as object recognition. This
constraint translates into a constraint on the minimum
distance from the sensor to an object. This minimum dis-
tance guarantees the angle of observation to be smaller
than αmax. Alternately, a quality measure may be defined
that deteriorates as one moves closer to the camera cen-
ter.

4.2 The Capture Quality

In order to determine the quality or goodness of any given
sensor configuration, the “static” constraints need to be in-
tegrated into a single capture quality function ql(θ) that
measures how well a particular object at location l in angular
orientation θ is captured by the given sensor configuration.
Due to occlusions, however, such a quantity is a random
variable that depends on the occurrence of events Ei . Thus,
one needs to specify the capture quality as a function of such
events. More specifically, such function needs to be speci-
fied for all camera tuples that can be formed from the sensor
set, i.e. one needs to determine {ql(i, θ)}, i = 1, . . . , n,
{ql(i, j, θ)}, i, j = 1, . . . , n, and so on. Here, the m-tuple
ql (i1, . . . , im, θ) refers to the capture quality obtained if
an object at the location l in angular orientation θ is vis-
ible from all of the sensors in the m-tuple (i.e. the event
P(

⋂
i∈(i1,...,im) Ei ) occurs).

To give some insight into such specification, one can con-
sider the case of stereo matching. Then, since visibility from
at least two sensors would be required for matching, the
capture quality {ql(i, θ)}, i = 1, . . . , n would be zero. For
the terms involving two sensors, several competing require-
ments need to be considered. It has been shown (Mulligan et
al. 2001; Rodriguez and Aggarwal 1990; Kamgar-Parsi and
Kamgar-Parsi 1989; Georgis et al. 1998; Blostein and Huang
1987) that under some simplifying assumptions, the error in
the recovered depth due to image quantization is approxi-
mately proportional to δz ≈ z2/bf , where z is the distance
from the cameras, b is the baseline distance between the
cameras, and f is focal length. On the other hand, the an-
gular distortion of the image of an object from one camera
to the other may be approximated as θd ≈ tan−1(b/z), and is
directly related to the accuracy with which stereo matching
may be performed. Furthermore, an increase in the dis-
tance from the cameras also decreases the projected size

of the object, which might further decrease the accuracy
of stereo matching. Thus, the accuracy of stereo matching
first increases with the distances from the cameras, and then
decreases, while the quantization error increases with such
distances. Thus, a function that first increases and then de-
creases as a function of the distance from the cameras might
be an appropriate choice for the quality function.

If a multi-camera algorithm is utilized, one may per-
form a similar (though more complex) analysis for terms
involving more than two sensors. In the absence of such an
algorithm, one possibility is to consider the quality of the
best two pairs in the m-tuple as the quality of the m-tuple.

Thus, one needs to integrate several of the constraints
previously described into a single quality function. As in
the stereo matching example mentioned above, a trade-off
between different constraints is typically involved and it is
up to the user to specify functions that define the desired
behavior in such conditions.

4.3 Integrating Static Constraints with Probabilistic
Visibility

Given the capture quality measures for different m-tuples at
a given location, we now present a framework that allows us
to determine an overall measure for the capture quality of a
sensor configuration at a given location such that the prob-
abilities of visibility from different sensors are taken into
consideration. We first partition the event space into the fol-
lowing disjoint sets [Fig. 6]:

No Ei occurs, with quality: 0
Only Ei occurs, with quality: q(Ei )

Only Ei ∩ Ej occurs, with quality: q(Ei ∩ Ej )⋂
i Ei occurs, with quality: q(

⋂
i Ei )

Such separation allows one to specify the quality measure
for each of such events separately. Then, the computation of
probabilities for these disjoint events will yield a probabil-
ity function for the capture quality at this location (Fig. 15
illustrates an example where the function is averaged over
the entire region of interest). While it is possible to uti-
lize such function directly and consider complex integration

Fig. 6 The event space may be partitioned into disjoint event sets.
Here, only Ei , for instance, would only include event space that is not
common with other events
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measures, we assume for simplicity that the mean is a good
measure for combining the quality from different events. In
order to compute the mean capture quality, note that if the
event space is partitioned into disjoint sets, the mean may
be computed directly as the weighted average over all such
sets, i.e. if events E1 and E2 are disjoint, one may compute:
qavg = q(E1) ·P(E1)+q(E2) ·P(E2). So, the mean capture
quality at a particular location for a particular object orien-
tation θ can be calculated as:

q(θ) =
∑
∀i

q(Ei , θ)P (Only Ei )

+
∑
i<j

q(Ei ∩ Ej , θ)P (Only Ei ∩ Ej )

+ · · · + q

(⋂
i

Ei , θ

)
P

(
Only

⋂
i

Ei

)
.

This expression may be rearranged to obtain:

q(θ) =
∑
∀i

qc(Ei , θ)P (Ei )

−
∑
i<j

qc(Ei ∩ Ej , θ)P (Ei ∩ Ej )

+· · · + (−1)n+1qc

(⋂
i

Ei , θ

)
P

(⋂
i

Ei

)
(18)

where qc(
⋂

i∈(i1,...,im) Ei , θ) is defined as:

qc

( ⋂
i∈(i1,...,im)

Ei , θ

)

=
∑

i∈(i1,...,im)

q(Ei , θ) −
∑
i<j

q(Ei ∩ Ej , θ)

+· · · + (−1)m+1q

( ⋂
i∈(i1,...,im)

Ei , θ

)
. (19)

This analysis yields a capture quality measure for each
location and each angular orientation for a given sensor
configuration. Such quality measure needs to be integrated
across the entire region of interest in order to obtain a qual-
ity measure for the given configuration. This integration is
considered in the next section.

4.4 Integration of Quality Across Space

The analysis presented so far yields a function qs(x, θ) that
defines the capture quality of an object with orientation θ

at location x given the sensor configuration defined by the
parameter vector s. The parameter vector may include, for
instance, the location, viewing direction and zoom of each
camera. Given such a function, one can define a suitable cost

function to evaluate a given set of sensor parameters w.r.t.
to the entire region to be viewed. Such sensor parameters
may be constrained further due to other factors. For instance,
there typically exists a physical limitation on the positioning
of the cameras (walls, ceilings etc.). The sensor planning
problem can then be formulated as a problem of constrained
optimization of the cost function.

Several cost functions may be considered. Based on de-
terministic visibility analysis, one can consider a simple cost
function that sums, over the region of interest Ri , the num-
ber N(x) of cameras that a location x is visible from:

C(s) = −
∑

x∈Ri

N(x). (20)

Using probabilistic analysis, a cost function can be defined
that maximizes the minimum quality in the region:

C(s) = − min
x∈Ri ,θ∈[0,...,2π]

qs(x, θ).

Another cost function, and perhaps the most plausible one
in many situations, is to define the cost as the negative of the
average capture quality in a given region of interest:

C(s) = −
∫
Ri

∫ 2π

0
λ(x, θ)qs(x, θ)dθ dx. (21)

This cost function has been utilized for obtaining the re-
sults in this paper. Note that we have added an additional
parameter θ to the object density function in order to incor-
porate information about object orientations into the density
function. Since the orientation does not affect the occluding
characteristics of an object, this parameter was integrated
(and eliminated) for the visibility analysis presented previ-
ously.

4.5 Minimization of the Cost Function

While it may be possible to efficiently minimize the cost
function when the specified constraints are simple (e.g. see
González-Banos and Latombe 2001), minimization for the
most general capture quality functions is a difficult and
computationally expensive problem. For instance, the cost
function obtained in (21) is quite complex and it can be
shown that it is not differentiable. Furthermore, in most
non-trivial cases, it has multiple local minima and possibly
multiple global minima. Figure 7 illustrates the cost func-
tion for the scene shown in Fig. 12(a). Where, for illustration
purposes, only two of the nine parameters have been varied.
Even in this two dimensional space, there are two global
minima and several local minima. Furthermore, the gradient
is zero in some regions.

Due to these characteristics, some of the common opti-
mization techniques like simple gradient descent or a “set
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Fig. 7 The Cost Function for
the scene in Fig. 12(a) where,
for illustration purposes, only
the x-coordinate and direction
of the second camera have been
varied

cover” formulation are not appropriate. Therefore, we con-
sider global minimization techniques that can deal with
complex cost functions (Shang 1997). Simulated Anneal-
ing and Genetic Algorithms are two classes of algorithms
that have commonly been employed to handle such opti-
mization problems. The nature of the cost function suggests
that either of these two algorithms should provide an ac-
ceptable solution (Duda et al. 2001). For our experiments,
we implemented simulated annealing using a sophisticated
simulated re-annealing software ASA developed by Ingber
(Ingber 1989).

Using this algorithm, we obtain extremely good sensor
configurations in a reasonable amount of time (5 min—a
couple of hours on a Pentium IV 2.2 GHz PC, depending
on the desired accuracy of the result, the number of di-
mensions of the search space and complexity of the scene).
For low dimensional spaces (<4), where it was feasible to
verify the results using full search, it was found that the
algorithm quickly converged to a global minimum. For mod-
erate dimensions of the search space (<8), the algorithm
was able to obtain a good solution, but only after some
time. Although optimality of the solution could not be ver-
ified by full search, we believe the solutions to be close
to the optimum since running the algorithm several times
from different starting points and using different annealing
parameters did not alter the final solution. For very high
dimensional spaces (>8), although the algorithm provided
reasonably good solutions very quickly, it sometimes took
several hours to “jump” to a better solution.

5 Validation and Experiments

We have proposed analytical methods for computing the vis-
ibility characteristics of sensor configurations and integrated
them with static constraints to provide a framework and an
algorithm for recovering good sensor configurations with

respect to certain quality measures. We first validate the an-
alytical visibility models using real data. Then, we illustrate
the applicability of the sensor planning algorithm by provid-
ing planning results for various scenes, synthetic and real.

5.1 Validation of the Visibility Model

In order to validate the analytical visibility analysis devel-
oped in this paper, we compare the predicted visibility with
the visibility obtained for some real sequences [Fig. 8].
These sequences were captured in a laboratory environment
using multiple cameras. Ground truth about person locations
was established by using the M2Tracker algorithm (Mittal
and Davis 2003) that detects and tracks people automati-
cally under occlusions using multiple cameras. This people
location information was then used to determine the empir-
ical visibility rate in the area where people were allowed to
move (of approx. size 3 m × 3 m). Visibility rates were de-
termined for the cases of visibility from k cameras, such that
visibility from even one camera is sufficient. Visibility was
defined as visibility of the center line of the person. This in-
formation was computed over 200 time steps and averaged
over all possible (Cn

k ) camera k-tuples, where n is the total
number of cameras actually available. Different sequences
were captured containing different number of people and
statistics were obtained for each of them. This information
was then compared with the theoretical visibility rate ob-
tained using our models [Fig. 9]. Since a fixed number of
people were restricted to move in the region, the analysis
that uses a fixed number of objects was utilized for com-
parison purposes. Since the region is not too crowded, the
visibility rates obtained using a uniform density assumption
(with density computed as the number of people/area of the
region) were quite close to the fixed objects assumption. As
can be observed from the plot in Fig. 9, the predicted and
actual visibility rates are quite close to each other, which val-
idates the applicability of the analytical models developed in
the paper.
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Fig. 8 Some images from sequences used to validate the analytical visibility model

Fig. 9 Comparison of visibility
rates obtained using our model
with those obtained for real data

5.2 Sensor Planning Experiments

We now present results of the application of the sensor plan-
ning algorithm to various scenes. In order to illustrate the
algorithm for complex scenes, we first consider synthetic ex-
amples. Then we show, for some simple real scenes, how the
method may be utilized for sensor placement by utilization
of information about object characteristics that may be ob-
tained automatically by utilization of image-based detection
and tracking algorithms.

5.2.1 Synthetic Examples

In the synthetic examples, we make the following assump-
tions. The sensors are mounted H = 2.5 m above the ground
and have a field of view of 90◦. We use a uniform object
density λ = 1 m−2, object height = 150 cm, object radius
r = 15 cm, minimum visibility height h = 50 cm and max-
imum visibility angle αmax = 45◦. Furthermore, for ease of
understanding, the first few examples will assume a sim-
ple quality function such that visibility from any direction
is considered of equal utility and fixed thresholds are put
on the visibility distance from the camera based on camera
resolution (maxdistres) and maximum viewing angle αmax

(mindistview):

qx(Ei , θ)

=
{

1 if mindistview < dist(x, cam) < maxdistres,

0 otherwise.
(22)

Note that the parameter θ is neglected. Furthermore, for
multiple sensor terms qc(

⋂
i∈(i1,...,im) Ei , θ), the quality is

defined simply as the quality of the sensor having the best
view:

q

( ⋂
i∈(i1,...,im)

Ei , θ

)
= max

i∈(i1,...,im)
q(Ei , θ). (23)

Under this assumption, it is easy to verify that the quantity
qc defined in (19) becomes:

qc

( ⋂
i∈(i1,...,im)

Ei , θ

)
= min

i∈(i1,...,im)
q(Ei , θ). (24)

First, we consider a simple square area of size 10 m ×
10 m and determine the number of cameras required for the
scene. Figure 10 shows the mean quality maps obtained for
the case of one, two, three and four sensors respectively.
The maps are scaled such that [0,1] maps onto [0,255],
thus creating a gray scale image. Brighter regions represent
higher quality. Note how the mean capture quality decreases
as we move away from a camera due to an increase in oc-
clusion, in turn due to increase in the distance of occlusion
di . The average capture quality obtained for the four cases
were (a) 0.4296, (b) 0.672, (c) 0.8095, and (d) 0.888 respec-
tively. This information can be used to select the appropriate
number of cameras based on the application requirements.

In all the synthetic examples we consider next, we con-
sider a rectangular room of size 10 m × 20 m. Figure 11
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Fig. 10 Maps for the mean
capture quality for 1, 2, 3 and 4
sensors in a square region.
H = 10 m, R = 50 m × 50 m,
λ = 1 m−2, r = 15 cm,
h = 50 cm, and αmax = 30◦.
Note how the quality decreases
as we move away from a camera
due to an increase in occlusion
caused by an increase in the
distance of occlusion di (Fig. 2).
The average capture qualities
obtained were (a) 0.4296,
(b) 0.672, (c) 0.8095, and
(d) 0.888 respectively

Fig. 11 Illustration of the effect of scene geometry on sensor place-
ment. Optimum configuration when (a): obstacle size is small, (b):
obstacle size is big, (c): obstacle size is such that both configurations
are equally good

illustrates the effect that an obstacle can have on camera
placement. Using a maximum of two cameras having a field
of view of 90◦, the first configuration [a] was found to be
optimum when the obstacle size was small (<60 cm). Con-
figuration [b] was optimum when the object size was big
(>60 cm). For the object size shown in configuration [c]
(∼60 cm), both configurations were equally good. Note that
in both configurations all locations are visible from at least
one camera. Therefore, current methods based solely on
analysis of static obstacles would not be able to distinguish
between the two.

Figure 12 illustrates how the camera specifications can
significantly alter the optimum sensor configuration. Notice
that the scene has both obstacles and prohibited areas. With
three available cameras, configuration [a] was found to be
optimum when the cameras have only 90◦ field of view but
are able to “see” up to 25 m. With the same resolution, con-
figuration [b] is optimum if the cameras have a 360◦ field
of view (Omni-Camera, Nayar 1997; Peleg et al. 2001). If

Fig. 12 Illustration of the effect of different camera specifications.
With a uniform density assumption and visibility from any direction,
the optimum configuration when the cameras have: (a): field of view of
90◦ and resolution up to 25 m, (b): 360◦ field of view (Omni-Camera),
and resolution up to 25 m, (c): 360◦ field of view, but resolution only
up to 10 m

the resolution is lower so that cameras can “see” only up to
10 m, configuration [c] is optimum.

Figure 13 illustrates the effect of different assumptions
about the objects and their visibility. With all other assump-
tions the same as above, configuration [a] was found to be
optimum when the worst case analysis was utilized [see
(20)]. On the other hand, a uniform object density assump-
tion [see (21)] yielded configuration [b] as the optimum
one. When an assumption of variable object densities was
utilized such that the density is highest near the door and
decreases linearly with the distance from it [d], configura-
tion [c] was found to be the best. Note that a higher object
density near the door leads to a repositioning of the cameras
so that they can better capture this region.

So far, we have assumed a simple quality function [see
(22 and (23)] that ignores the angular orientation θ of the
objects and imposes fixed constraints on the camera reso-
lution and viewing angle. We now illustrate how one may



Int J Comput Vis (2008) 76: 31–52 45

Fig. 13 Illustration of the effect
of different object
characteristics and visibility
requirements. Optimum
configuration using: (a): object
visibility from any direction
using worst-case analysis [see
(20)], (b): object visibility from
any direction using a uniform
density [see (21)], (c): object
visibility from any direction
using variable densities [see
(21)], for the object density
shown in (d), (e): object
visibility from all directions
[see (25)], (f): object visibility
from all directions, with a soft
constraint on image resolution
[see (26)], (g): object visibility
from all directions, with soft
constraint on resolution [see
(26)], and using variable
densities (d), (h): object
visibility from all directions,
with soft constraints on
resolution and viewing angle
[see (26) and (27)]

Fig. 14 Computation of the viewing angle θdiff

change this function in order to incorporate more complex
visibility requirements. Assuming that one requires visibil-
ity from all directions, one may alter the quality function as
follows:

qx(Ei , θ) =
⎧⎨
⎩

1 if θdiff < θmax

and dmin
view < dist(x, cam) < dmax

res

0 otherwise

, (25)

where θmax is the maximum angular orientation at which
the observation of the object is still considered useful, and

θdiff = abs(θ − dir(cam,x)) such that dir(cam,x) is the
angular direction of the camera from the point of view x
[Fig. 14]. Assuming a uniform density and the above de-
finition of quality, with θmax = 90◦, we obtain the sensor
configuration shown in [e]. This may be compared with con-
figuration [b]. Note that the cameras are now more spread
out in order to capture the objects from many directions.

One may further expand the definition of the quality func-
tion in order to incorporate the camera distance constraints
as soft constraints rather than hard ones. One possible as-
sumption is that the quality decreases linearly with the
camera distance when such distance is less than dmin

view, and
decrease exponentially when such distance is above dmax

res :

qx(Ei , θ) = H(θdiff) ∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if dmin
view < dist(x, cam) < dmax

res ,

dist(x,cam)

dmin
view

if dist(x, cam) < dmin
view,

exp
(− dist(x,cam)−dmax

res
dmax

res

)
if dist(x, cam) > dmax

res

(26)
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Fig. 15 The probability density function for the capture quality. Note
the unusually high values for zero and one capture quality due to the
possibilities of complete object occlusion and perfect capture in certain
conditions

where H(θdiff) = 1 if θdiff ≥ θmax, = 0 otherwise. The sen-
sor configuration obtained for such definition of the quality
function is illustrated in [f]. Note that the cameras move
inwards compared to configuration [e] because of the in-
creased visibility in the regions close to a camera. Utilization
of variable densities with such quality measure leads to con-
figuration [g].

One may further allow a soft constraint on the viewing
orientation. One possibility is to assume that the quality de-
teriorates linearly as the angular orientation θdiff increases
between a low and high value. Such factor may be incorpo-
rated into above the mentioned quality measure [see (26)]
by specifying:

H(θdiff) =

⎧⎪⎨
⎪⎩

1 if θdiff < θmin,
θdiff−θmin

θmax−θmin if θmin < θdiff < θmax,

0 if θdiff > θmax.

(27)

Such quality measure leads to the sensor configuration [h]
when θmin = π/2 and θmax = π . Note that camera one
moves further inwards compared to configuration [f] since
the directional visibility requirement has been made a little
less rigid. The probability distribution for the capture qual-
ity for this case is shown in Fig. 15. Using such information,
one may be able to utilize more complex capture require-
ments. For instance, one may be able to specify that a certain
percentile of the capture quality be maximized.

Next, we consider a stereo scenario in which matching
across cameras and 3D reconstruction becomes an addi-
tional constraint. One can show that the error in triangulation
for an omni-camera is proportional to:

etr ∝
√

d2
1 + d2

2 + d1d2 cos(α)/ sin(α) (28)

where d1 and d2 are the distances of the object from the
two cameras, and α is the angular separation between the
two cameras as seen from the object. Although the error in
matching is algorithm-dependent, a reasonable assumption
is that:

em ∝ d1/ cos(θ/2) + d2/ cos(θ/2). (29)

Fig. 16 Illustration of integration of more complex algorith-
mic constraints. Configuration obtained using three omni-cameras,
non-directional object visibility, uniform densities, and: (a): a stereo
requirement (28), (29), (b): three omni-cameras, algorithmic constraint
of no visibility with the top wall as background, (c): no visibility with
the left wall as background

Considering a quality function that uses a weighted aver-
age of the two errors: q = −(w1etr + w2em), configuration
Fig. 16(a) was found to the best. Note that all the three cam-
eras come closer to each other in order to be able to conduct
stereo matching between any two of them.

In the final example for this scene, we consider a case
where, because of algorithmic constraints, capture of an ob-
ject with one of the walls as background is not useful. For
instance, the wall may be painted a certain color and the ob-
jects may have a high probability of appearing in this color.
Assuming that visibility with the top wall as background
is not useful, we obtain configuration Fig. 16(b). The same
constraint with the left wall yields configuration Fig. 16(c).
Note that some cameras move close to the prohibited wall
in order to avoid it as the background. Next, we consider a
more complex scene where several constraints are to be sat-
isfied simultaneously. In Fig. 17, the scene of a “museum” is
shown where the entrance is on the left upper corner and the
exit is on the bottom right corner. One is required to view
the faces of people as they enter or exit the scene. For the
rest of the area, 3D object localization is to be performed
via stereo reconstruction. In the first part of the scene, the
four cameras are trying to simultaneously satisfy the tasks
of capturing the faces of the entering people in ROI 1 and
performing stereo reconstruction for the rest of the scene. In
the middle portion, only stereo is to be performed. Finally, in
the last part, the faces of the people leaving the scene in ROI
2 are to be additionally captured. The difference in sensor
placement for the three zones is interesting.

We have illustrated the applicability and generality of
the sensor planning algorithm in various synthetic scenar-
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Fig. 17 Sensor Planning in a large “Museum”, where several con-
straints are to be satisfied simultaneously

ios. Next, we will show results from the algorithm in some
real scenes.

5.2.2 Real Scenes

We first present analysis of sensor placement for a real
office room. The structure of the room is illustrated in
Fig. 18(a). We used the following parameters—uniform den-
sity λ = 0.25 m−2, object height = 170 cm, r = 23 cm,
h = 40 cm, and αmax = 60◦. The cameras available to us
had a field of view of 45◦ and needed to be mounted on
the ceiling which is 2.5 m high. In order to view peo-
ple’s face as they enter the room, the quality function
was chosen such that it includes only the “entering” ob-
ject orientation. We first consider the case when there is
no panel (separator). If only one camera is available, the
best placement was found to be at location (600,600) at
an angle of 135◦ (measured clockwise from the positive
x-axis). If two cameras are available, the best configu-
ration consists of one camera at (0,600) at an angle of
67.5◦ and the other camera at (600,600) at an angle of
132◦. Figures 18(b) and (c) show the views from the cam-
eras.

Next, we place a thin panel at location (300,300)–
(600,300). The optimum configuration of two cameras con-
sists of a camera at (0,600) at an angle of 67.5◦ (same as
before) and the other camera at (180,600) at an angle of
88◦. Figures 18(d) and (e) show the views from the original
and new location of the second camera. Next, we consider
sensor planning in a small controlled environment [Fig. 20].
In the first experiment, face detection is maximized, while
in the second one, we try to maximize person detection via

background subtraction and grouping. We utilized an off-
the-shelf face detector from OpenCV and characterized its
performance over different camera distances and person ori-
entations [Fig. 19]. This gives us the quality function that
we need for our sensor planner. Cameras were then placed
in the optimum sensor configuration thus obtained and face
detection was performed on the video data. We also asked
a test user to try to position the cameras manually and ex-
periments were conducted with this configuration as well.
Results of this experiment are presented in Figs. 20(a)–(f)
and 21. In the next experiment, we tried to maximize per-
son detection using background subtraction and grouping.
An additional constraint we considered was that the appear-
ance of one of the actors matched with one of the walls,
thus making detection in front of it difficult. This condition
was then integrated into the quality function. The results of
this experiment are shown in Figs. 20(g)–(l) and 21. The
actual rates were quite close to the predicted rates, the differ-
ence being possibly due to the small experimental data sizes
used for the experiments and inaccuracies in the models uti-
lized. Inspite of these differences, the relative performance
of the different configurations was correctly predicted by the
sensor planner, allowing for effective planning of the sen-
sors.

In the next example, we consider camera placement in
the lobby of a building, where the objective was to cap-
ture the faces of people as they enter4 [Fig. 22]. Video was
captured from an existing camera over a period of a cou-
ple of hours and a common background subtraction method
(Stauffer and Grimson 2000) was utilized in order to de-
tect foreground pixels. Spatial integration and reasoning on
top of such pixel-level detection (Greiffenhagen et al. 2000;
Paragios and Ramesh 2001) yields estimates of the posi-
tion of the people on the ground plane. Such information
was then averaged over time in order to determine the ob-
ject densities at different portions on the plane. However,
partial or total occlusions cannot be handled by a single
camera and thus the algorithm fails to detect people that
are occluded by other people. Other methods that utilize
temporal information to track objects over time (Zhao and
Nevatia 2003, 2004; Isard and MacCormick 2001; Elgam-
mal and Davis 2001) or use multiple cameras to improve
object visibility (Mittal and Davis 2003) could be utilized to
improve such estimation. Furthermore, we found that there
were long periods of inactivity followed by bursts of activity
where several people appear suddenly in a group. There-
fore, we considered only those portions of the video that
contained some activity in order to determine the object den-
sities.

4Thus, the quality function includes only “entering” object orientations
near the door.
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Fig. 18 (a) Plan view of a room used for a real experiment. (b) and
(c) are the views from the optimum camera locations when there is no
panel (obstacle). Note that, of the three people in the scene, one person
is occluded in each view. However, all of them are visible from at least
one of the views. Image (d) shows the view from the second camera

in the presence of the panel. Now, one person is not visible in any
view. To improve visibility, the second camera is moved to (180,600).
The view from this new location is shown in (e), where all people are
visible again

Distance Face Detection Rate

1.8 m–2.5 m 97.5%

2.5 m–3.1 m 94%

3.1 m–3.8 m 92.5%

3.8 m–4.5 m 85%

4.5 m–5.2 m 77%

5.2 m–6 m 40%

>6 m 0 %

Fig. 19 Empirical face detection rates for different distances from the
cameras for the face detector from OpenCV. Additionally, detection
rates reduced by about 30% from the frontal to the side view. This
information is used by the sensor planner in the quality function

Utilizing such automatic algorithm, we were able to ob-
tain the object density shown in Fig. 22(c). This object
density was then utilized to identify a better location for the
camera 22(d). The average visibility probability predicted
was about 72%, while the actually obtained probability was
78%. In order to improve the visibility probability, if a sec-
ond camera is also utilized, the two cameras in optimum
configuration [e] achieve about 93% visibility (91% visibil-
ity predicted). Using two cameras, one may want to obtain
3D information via stereo matching. Utilization of such a
constraint leads to the sensor configuration [f]. Note that
the two cameras are much closer to each other in order to
minimize the image distortion across the views. When the
cameras were optimized for face detection, configuration [g]
was obtained, while fixing the position of the camera but
adjusting only the zoom and camera rotation led to config-
uration [h]. The images obtained from these configurations
and the results of the face detector on such images is shown
in images [i] and [j].

6 Discussion and Conclusion

We addressed the problem of sensor placement in multi-
camera systems, especially those that are deployed to cap-
ture certain characteristics of dynamic objects that appear
and move randomly in a specified region. While static
constraints such as those due to image resolution, camera
field-of-view, focus, static obstacles and the chosen algo-
rithm have been well studied in the literature, occlusion
due to the presence of other dynamic objects has not been
considered. Such occlusion is random and necessitates a
probabilistic formulation of the problem.

We developed two different approaches for modeling the
constraints arising due to the presence of random occluding
objects. The first approach utilizes a probabilistic framework
to determine the average rates of visibility of an object from
a given set of sensors. The second method evaluates worst-
case scenarios and provides conditions that would guarantee
visibility regardless of object configuration.

Integration of constraints due to occlusion from other ob-
jects with other types of constraints requires special care due
to the random nature of the occlusion. On the other hand,
all static constraints may be integrated into a single capture
quality function that denotes the quality of the object acqui-
sition when the object is visible from all of the sensors in a
given set. This led us to the development of a framework for
integration of probabilistic occlusion constraints with static
constraints. Such an analysis yields information about the
probability distribution of the capture quality at a particular
location. Integration of this information over a given region
of interest and maximization of appropriately chosen inte-
grated measures over the space of possible camera parame-
ters then leads to a method for determining good sensor lo-
cations. Selection of different measures for the quality func-
tion and different optimization criteria facilitate customiza-
tion of the method to a variety of multi-sensor systems.
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Fig. 20 (a): Configuration of
two cameras for optimum face
detection. (b) and (c): Sample
images captured from these
camera locations. Note that
some of the faces are not
detected because of a large
viewing angle or errors in the
face detector. (d): Configuration
selected by a human operator.
(e) and (f): Sample images
captured from this camera
configuration. (g): Configuration
of two cameras for person
detection using background
subtraction, where the right wall
matches the color of people
33% of the time. (h) and (i):
Sample images captured from
the optimal camera locations.
(j): Configuration selected by a
human operator. (k) and (l):
Sample images from the camera
configuration in (j). Note how
the top portion of one person is
not detected due to similarity
with the background

Fig. 21 Detection rates
predicted by the algorithm
compared with the actual rates
obtained from experimental data

Face Detection Person Detection
w/ planning w/o planning w/ planning w/o planning

Predicted 53.6% 48% 85% 81%
Actual 51.33% 42% 82% 76%

The utilization of the system for a given scenario requires
that certain information is available. This includes not only
the scene geometry and appearance, but also estimates of
the probability distributions of the geometry and appearance
of the objects that are expected to be present. In some sce-
narios, it may be possible to compute such distributions by
utilization of advanced algorithms and additional cameras
during training (Zhao and Nevatia 2003, 2004; Isard and
MacCormick 2001; Elgammal and Davis 2001; Mittal and

Davis 2003). Furthermore, if the object distributions are ex-
pected to be similar across a large area or across multiple
locations, then it may be possible to compute such infor-
mation from running such algorithms on only a part of the
scene. In some other scenes, it may be sufficient to specify
approximations to such distributions by hand.

The framework developed in the paper is perhaps most
relevant to surveillance where many target areas are crowded
and require multiple cameras for sufficient visibility and
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Fig. 22 Sensor placement in a
lobby. (a): Two views from an
original camera location at
different times of the day.
(b): Density map obtained via
background subtraction (darker
represents higher object
density). (c): Mapping of the
density map onto a plan view of
the scene. (d): Optimal object
visibility using one camera
(72% visibility predicted, 78%
obtained). (e): Optimal sensor
placement using two cameras
(91% visibility predicted, 93%
obtained). (f): Optimal sensor
placement using two cameras
and a stereo requirement.
(g): Optimization of face
detection for people entering the
building (46% detection
predicted, 43% obtained). An
example of face detection using
this sensor setting is shown in
(i). (h): Optimization of face
detection when the position of
the camera cannot be changed
(but the direction and zoom can)
(33% detection predicted, 35%
obtained). Note that people
turning right cannot be detected
in this configuration. An
example of face detection using
this setting is shown in (j)

system performance. Another application domain is that of
industrial automation where objects arrive randomly, for e.g.
on a belt, and the vision system is utilized for providing
real-time information for intelligent control of such objects.
Other possible application domains include traffic monitor-
ing and light control via “smart” vision sensor input and
cameras mounted on cars for enhancing driver safety. pa-
per could be cameras. Future work on this topic includes
specification of more complex cost functions, investigation
of more efficient methods for optimization of specific cost
functions and better estimation of the visibility probability
by considering the effect of long-term interaction between
objects.
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