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Abstract. This paper tackles an important aspect of the variational problem underlying active contours: optimiza-
tion by gradient flows. Classically, the definition of a gradient depends directly on the choice of an inner product
structure. This consideration is largely absent from the active contours literature. Most authors, explicitely or im-
plicitely, assume that the space of admissible deformations is ruled by the canonical L2 inner product. The classical
gradient flows reported in the literature are relative to this particular choice. Here, we investigate the relevance of
using (i) other inner products, yielding other gradient descents, and (ii) other minimizing flows not deriving from
any inner product. In particular, we show how to induce different degrees of spatial consistency into the minimizing
flow, in order to decrease the probability of getting trapped into irrelevant local minima. We report numerical exper-
iments indicating that the sensitivity of the active contours method to initial conditions, which seriously limits its
applicability and efficiency, is alleviated by our application-specific spatially coherent minimizing flows. We show
that the choice of the inner product can be seen as a prior on the deformation fields and we present an extension of
the definition of the gradient toward more general priors.

Keywords: shape, gradient descent, active contours, minimization flow, inner product, sobolev, generalized gra-
dient, rigidification, semi-local rigidification, shape warping, landmarks, Hausdorff distance, spatial coherence

1. Introduction

Many problems in computer vision can advantageously
be cast in a variational form, i.e. as a minimization of
an energy functional. In this paper, we focus on varia-
tional methods dedicated to the recovery of contours.
In this case, the problem amounts to finding a contour
which corresponds to a global minimum of the energy.
Unfortunately, in most cases, the exact minimization
of the energy functional is computationally unfeasible
due to the huge number of unknowns.

The graph cuts method is a powerful energy mini-
mization method which allows to find a global mini-

mum or a strong local minimum of an energy. In the last
few years, this method has been successfully applied to
several problems in computer vision, including stereo-
vision (Kolmogorov and Zabih, 2002) and image seg-
mentation (Boykov and Kolmogorov, 2003). However,
it has a severe limitation: it cannot be applied to an arbi-
trary energy function (Kolmogorov and Zabih, 2004),
and, when applicable, is computationally expensive.

Hence, in most cases, a suboptimal strategy must be
adopted. A common minimization procedure consists
in evolving an initial contour, positioned by the user,
in the direction of steepest descent of the energy. This
approach, known in the literature as active contours
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or deformable models, was pioneered by Kass et al.
(1987) for the purpose of image segmentation. Since,
it has been applied in many domains of computer vi-
sion and image analysis (image segmentation (Caselles
et al., 1997), surface reconstruction (Zhao et al., 2000;
Duan et al., 2004), stereo reconstruction (Faugeras and
Keriven, 1998; Jin et al., 2003; Goldlücke and Magnor,
2004), etc.).

However, due to the highly non-convex nature of
most energy functionals, a gradient descent flow is
very likely to be trapped in a local minimum. Also,
this local minimum depends on the position of the
initial contour. If the latter is far from the expected
final configuration, the evolution may be trapped
in a completely irrelevant state. This sensitivity to
initial conditions seriously limits the applicability and
efficiency of the active contours method.

We detail in Section 2 the general gradient descent
process so as to emphasize the crucial role of the inner
product. After an abstract study in Section 3 on how to
handle inner products and minimizing flows, we pro-
pose, in Section 4, various inner products and show
how they induce different degrees of spatial coherence
in the minimizing flow with numerical examples of
shape warping in Section 5. In Section 6, a rewriting
of the usual definition of the gradient shows how the
choice of an inner product can be seen as a way to intro-
duce a prior on the deformation fields, and this leads us
to a natural extension of the notion of gradient to more
general priors.

2. Minimization and Inner Product

In the following we consider a shape �, seen as a man-
ifold of dimension k embedded in Rn , for example a
planar curve or a surface in the space R3. We denote by
E(�) the energy functional to be minimized. In order
to define the gradient of the energy functional, the first
step is to compute its Gâteaux derivatives δE(�, v) in
all directions, i.e. for all admissible velocity fields v

defined on the shape � with values in Rn . The defor-
mation space, set of all these fields v, can be seen as
the tangent space of �, considered itself as a point in
the manifold of all admissible shapes.

δE(�, v)
de f= lim

ε→0

E(� + εv) − E(�)

ε
. (1)

where �+εv is the shape defined, for any parametriza-
tion of �, say P� : σ ∈ S ⊂ Rk �→ P�(σ ) ∈ � ⊂ Rn ,

by the parametrization P�+εv : σ ∈ S �→ P�+εv(σ ) =
P�(σ ) + εv(P�(σ )) ∈ Rn .

Then, we would like to pick the gradient as the di-
rection of steepest descent of the energy. However, it
is not yet possible at this stage: to be able to assess the
steepness of the energy, the deformation space needs
additional structure, namely an inner product introduc-
ing the geometrical notions of angles and lengths. This
consideration is largely absent from the active contours
literature: most authors, explicitely or implicitely, as-
sume that the deformation space is ruled by the canoni-
cal L2 inner product on�, which is, for two deformation
fields u and v:

〈u |v 〉L2 = 1

|�|
∫

�

u(x) · v(x) d�(x),

where d�(x) stands for the area element of the contour
so that the integral over � is intrinsic and does not
depend on the parametrization.

Here, for sake of generality, we model the space
of admissible deformations as an inner product space
(F, 〈| 〉F ). If there exists a deformation field u ∈ F
such that

∀v ∈ F, δE(�, v) = 〈u |v 〉F ,

then u is unique, we call it the gradient of E relative to
the inner product 〈| 〉F , and we denote by u = ∇F E(�).
The existence of u is related to the smoothness of E , or
more exactly to the continuity of δE(�, v) with respect
to v (Riesz representation theorem, see (Rudin, 1966))
for more details).

Clearly, each choice of inner product yields its
own gradient. This is often neglected and most au-
thors improperly refer to the gradient of the energy.
Thus, the classical gradient flows reported in the lit-
erature (mean curvature flow, geodesic active contours
(Caselles et al., 1997; Goldlücke and Magnor, 2004;
Solem and Overgaard, 2005), multi-view 3D recon-
struction (Faugeras and Keriven, 1998; Jin et al., 2003;
Goldlücke and Magnor, 2004)) are relative to the L2

inner product.
The gradient descent method consists in deforming

an initial contour �0 in the opposite direction of the
gradient. ⎧⎨⎩�(0) = �0

d�

dt
= −∇F E(�)

(2)

The problem of the existence and the uniqueness of
this minimizing flow is out of the scope of this article.
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Indeed, it is highly dependent on the properties of each
particular energy functional. If this evolution exists, it
decreases the energy:

d E(�)

dt
= − ‖∇F E(�)‖2

F ≤ 0.

The standard choice for F is the Hilbert space of
square integrable velocity fields L2(�, Rn) equipped
with its canonical inner product. Very few authors in
the active contours area have considered using other in-
ner products, whereas this is an established technique
in image registration (Trouvé, 1998). Very recently,
in the context of shape representation and analysis,
(Michor and Mumford, 2005; Yezzi and Mennucci,
2005) have shown that slightly modifying the L2 in-
ner product allows to build well-behaved metrics in
the space of curves; the particular case of the H 1 in-
ner product has been simultaneously and independently
investigated by us (Charpiat et al., 2005) and by Sun-
daramoorthi et al. (2005).

The variations on the gradient descent theme, as in
Bonnans et al. (2002), will still be applicable to the new
gradients we propose, since these methods are in fact
not specific to the particular L2 gradient.

Minimizing flows not deriving from any inner prod-
uct, that is to say evolutions that decrease the energy,
without any gradient interpretation, have also been
overlooked so far. Note that any evolution fulfilling
the condition

d E(�)

dt
=

〈
∇F E(�)

∣∣∣∣d�

dt

〉
F

≤ 0 (3)

is a candidate to solve the minimization problem. This
idea, proposed in Solem and Overgaard (2005), is ap-
plied by the same authors to the alignment of curve in
images in Overgaard and Solem (2005): a complicated
term in the gradient is safely neglected after checking
that the evolution still decreases the energy.

The spirit of our work is different. We do not focus
either on a specific inner product or on a particular en-
ergy functional. We rather explore general procedures
to build some new inner products and to compute the
associated gradients. We also address the design of non-
gradient minimizing flows.

Our motivation is also different. Our primary con-
cern in this work is the sensitivity of the active contours
method to initial conditions. There are essentially two
ways of dealing with this problem: positioning the ini-
tial contour very close to the expected final configura-

tion, or using a multiresolution coarse-to-fine strategy,
in other words running the optimization on a series of
smoothed and subsampled contours and input data. In
this paper, we pioneer a third way to tackle the prob-
lem of unwanted local minima: the careful design of
the minimizing flow.

We do not modify the energy, hence the relief of
the energy landscape and in particular the “number”
of local minima remains unchanged. But by using an
evolution that favors certain types of directions, we ex-
pect to decrease the probability of falling into unwanted
energy basins.

Typically, in many applications, spatially coherent
motions are to be preferred over erratic evolutions. For
example, in the tracking problem, the object of interest
is likely to have similar shapes in consecutive frames.
So if we initialize the contour with the result of the pre-
vious frame, it makes sense to encourage the motions
which preserve its overall appearance. This way, it may
be easier to dodge unexpected local low-energy con-
figurations. A traditional L2 gradient descent definitely
does not have this desirable property since the L2 inner
product completely disregards the spatial coherence of
the velocity field.

3. New Inner Products and New Flows

In this section, we suppose that the space F of all admis-
sible deformations of the shape � is initially equipped
with the inner product 〈| 〉F , for example in the stan-
dard case we would have F = L2, and we study how
to build new inner products or new minimizing flows
from the given one.

3.1. Designing New Inner Products

Definition 1. For any symmetric positive definite lin-
ear operator L : F → F , a new inner product can be
defined by

〈u |v 〉L = 〈Lu |v 〉F . (4)

Here, for simplicity, we assume that the domain and
the range of L are equal to F . A similar study is pos-
sible if they are strictly smaller than F , under certain
conditions, using the Friedrichs extension of L (see
(Akhiezer and Glazman, 1981) for details). But these
technical details are out of the scope of this paper.

The following observation is central to our work:
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Proposition 2. If ∇F E(�) exists and if L is also in-
vertible, then ∇LE(�) also exists and we have

∇LE(�) = L−1 (∇F E(�)) . (5)

Proof: Indeed:

∀v ∈ F, δE(�, v) = 〈∇F E(�) |v 〉F

= 〈
LL−1∇F E(�) |v 〉

F

= 〈
L−1∇F E(�) |v 〉

L .

The above procedure is of great practical interest
because it allows to upgrade any existing L2 gradient
flow. However, it is not completely general in the sense
than all inner products cannot be expressed in this form.

Nevertheless, if F is a separable Hilbert space (i.e.
complete with respect to the norm ‖‖F ), the Riesz rep-
resentation theorem tells us that any inner product 〈| 〉L
such that

∃C > 0, ∀u ∈ F, ‖u‖L ≤ C ‖u‖F

can be written in the form of Eq. (4). This suggests
that our procedure accounts for a wide range of inner
products.

3.2. Designing New Minimizing Flows

In this subsection, we follow the inverse approach.
Instead of working with the inner product, we apply
a linear operator L : F → F to the gradient, and we
study the properties of the resulting flow:

d�

dt
= −L(∇F E(�)). (6)

This naturally sets up a hierarchy among different types
of operators:

• if L is positive, the energy is non-increasing along
the flow (6). Indeed,

d E(�)

dt
= − 〈∇F E(�) |L∇F E(�) 〉F ≤ 0.

• if L is positive definite, the energy strictly decreases
along the flow (6) until a critical point of the original
gradient flow (2) is reached.

• if L is symmetric positive definite and invertible, the
flow (6) coincides with a gradient descent relative to
the inner product 〈| 〉L−1 , as defined in Eq. (4).

The third case is contained in Section 3.1. A useful
example of the second case is given in Section 4.3.

3.3. Adding An Orthogonal Term

The rate of decrease of the energy when following the
direction of descent d�

dt is given by:

d E(�)

dt
=

〈
∇F E(�)

∣∣∣∣d�

dt

〉
F

≤ 0.

In particular, for the usual evolution d�
dt = −∇F E(�),

we have:

d E(�)

dt
= −‖∇F E(�)‖2

F

If we denote by v any vector field defined on � such as
〈∇F E(�) |v 〉F = 0, then adding such a vector field v

to the usual gradient descent term will not change the
amount of decreased energy:

d E(�)

dt
= 〈∇F E(�) |−∇F E(�) + v 〉F

= −‖∇F E(�)‖2
F

so we can choose the field v which we would like to add
to the initial gradient. Rather than choosing v = 0 as
usual, we could for example choose one, noted v̂, that
minimizes a regularizing criterion R(−∇F E(�) + v):

v̂ = arg min
v⊥∇F E(�)

R(−∇F E(�) + v) (7)

In fact this remark still stands when the choice of the
direction of descent is not the gradient itself. If we
denote by u the initially proposed deformation field
d�
dt , then adding a vector field which is orthogonal to
the gradient ∇F E(�) will not change the amount of
decreased energy at this step of the gradient descent
(but will change the evolution):

d E(�)

dt
= 〈∇F E(�) |−u + v 〉F = 〈∇F E(�) |−u 〉F

Note that the notion of being orthogonal to the gradient
is independent from the chosen inner product. Indeed,
if F and G are two different inner products, ∇F E and
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∇G E the associated gradients, and ⊥F and ⊥G the as-
sociated notions of orthogonality, we have:

〈∇F E(�) |v 〉F = δE(�, v) = 〈∇G E(�) |v 〉G

so, consequently:

〈∇F E(�) |v 〉F = 0 ⇐⇒ 〈∇G E(�) |v 〉G = 0

∇F E(�) ⊥F v ⇐⇒ ∇G E(�) ⊥G v.

4. Some Spatially Coherent Minimizing Flows

This theoretical study has brought us the tools we need
to better apprehend minimizing flows and build new
ones. We now propose some minimizing flows yield-
ing different degrees of spatial coherence. We insist on
the fact that this spatial coherence has nothing to do
with an eventual regularity term in the energy func-
tional. We do not modify the energy, so the regularity
constraint on the contour remains unchanged. We mod-
ify the trajectory of the minimizing flow, by favoring
spatially coherent motions, but this does not condition
the regularity of the final contour.

In the following, we sometimes use differential ge-
ometry. We refer the reader to DoCarmo (1976) for the
basic notions.

4.1. Motion Decomposition

A simple and useful procedure, to design new inner
products yielding spatially coherent flows, is to de-
compose the deformation space into a sum of several
mutually orthogonal linear subspaces, and to apply dif-
ferent penalty factors to the different types of motions.
Typically, the subspaces are chosen according to an
application-specific hierarchy of the motions. For ex-
ample, rigid/non-rigid, affine/non-affine, etc.

We suppose that such an orthogonal (with respect to
〈| 〉F ) decomposition of the deformation space F into
N closed linear subspaces is available:

F = F1 ⊥ F2 ⊥ . . . ⊥ FN .

Then a new inner product is derived from 〈| 〉F by ap-
plying the procedure of Section 3.1 with

L =
N⊕

i=1

λi IdFi ,

where ∀i, λi > 0. The lower is λi , the shorter is the
norm of the velocity fields of subspace Fi , and the
stronger will be this type of motion in the new gradient
flow.

Obviously, L is symmetric positive definite and in-
vertible. If ∇F E exists, so does ∇LE and

∇LE =
N∑

i=1

1

λi
�Fi (∇F E) , (8)

where �Fi denotes the orthogonal projection on the i th
subspace Fi . Of course, if all λi are equal to 1, ∇LE
coincides with ∇F E .

We apply this general construction to two useful
cases. In the first case, we decompose the velocity field
into a translation, an instantaneous rotation, a rescaling
motion and a non-rigid residual. In the second case, we
isolate the instantaneous affine motion.

In the following, we denote by G = (
∫
�

x d�(x))/∫
�

d�(x) the center of mass of the shape.

4.1.1. Translation, Rotation and Scaling. In this
paragraph, we focus on the two-dimensional and three-
dimensional cases. The expressions below are for the
3D case, but can easily be adapted to 2D.

We denote by T , R and S the subspaces of the trans-
lations, the instantaneous rotations around the centroid,
and the scaling motions centered on the centroid, re-
spectively, defined on the shape �:

T = {
v : x ∈ � �→ t | t ∈ R3} ,

R = {
v : x �→ (x − G) ∧ ω | ω ∈ R3} ,

S = {v : x �→ s(x − G) | s ∈ R} .

These subspaces are mutually orthogonal for the L2

inner product. Indeed, the L2 product of any two fields
of any two different subspaces (among T , R and S) is
zero. For instance, if v1 : x �→ t1 is an element of T
and v2 : x �→ (x − G) ∧ ω2 an element of R, then:

〈v1 |v2 〉L2 = 1

|�|
∫

�

t1 · (
(x − G) ∧ ω2

)
d�(x)

= t1 ·
([

1

|�|
∫

�

x d�(x) − G
]

∧ ω2

)
= 0.

We suppose that these subspaces are included in
the space of admissible deformations F , and that the
latter is ruled by the L2 inner product. We denote
by N the orthogonal complement of these subspaces:
F = T ⊥ R ⊥ S ⊥ N . The orthogonal projection
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of a velocity field u on one of these subspaces can be
found by minimizing ‖u − v‖F with respect to v in
the considered subspace. As an example, we detail the
computation of (�R u).

As for each element v of R there exists an ω such
that v(x) = (x − G) ∧ ω for all x, we minimize the
quantity ‖u − (· − G) ∧ ω‖L2 with respect to ω.

∂ω

(∫
�

‖u(y) − (y − G) ∧ ω‖2d�(y)

)
=

∫
�

−(
u(y) − (y − G) ∧ ω

) ∧ (y − G) d�(y)

= −
∫

�

u(y) ∧ (y − G) d�(y)

+
(∫

�

‖y − G‖2d�(y)

)
ω

−
[∫

�

(y − G)(y − G)T d�(y)

]
ω

As this quantity is zero for the ωu which minimizes
‖u − (· − G) ∧ ω‖L2 , we have:

ωu =
[(∫

�

‖y − G‖2d�(y)

)
Id

−
∫

�

(y − G)(y − G)T d�(y)

]−1

×
(∫

�

u(y) ∧ (y − G) d�(y)

)
To guarantee that the linear application between
brackets is invertible, we prove it is a symmet-
ric positive definite matrix M . We have indeed for
any x:

xT Mx =
∫

�

‖x‖2‖y − G‖2 − (x · (y − G))2d�(y)

As for any x and z we have (x·z)≤‖x‖‖z‖, with equality
only if the two vectors are collinear, and as x cannot be
collinear with all y−G for y in �, we obtain xT Mx > 0
for any x, so M is positive definite and consequently
invertible.

Note that if we had not taken for u the L2 gradient
but the gradient for another inner product F , we would
have to ensure the subspaces are orthogonal for that
inner product F , and compute new projections by
minimizing ‖u − v‖F .

We apply the method we detailed for the subspace
R to the other subspaces T and S, and obtain:

(�T u) (x) = u := 1

|�|
∫

�

u(y) d�(y),

(�R u) (x) = (x − G) ∧ ωu,

(�S u) (x) =
∫
�

u(y) · (y − G) d�(y)∫
�

‖y − G‖2 d�(y)
(x − G),

(�N u) (x) = u(x) − (�T + �R + �S) (u)(x).

In the two-dimensional case, the expressions of the
projections are the same, and the expression of ωu can
be simplified in:

ωu =
∫
�

(y − G) ∧ u(y)d�(y)∫
�

‖y − G‖2 d�(y)
.

The new gradient is deduced from the L2 gradient
by Eq. (5) with

L−1 = Id +
(

1

λT
− 1

)
�T +

(
1

λR
− 1

)
�R

+
(

1

λS
− 1

)
�S.

The weights λT , λR and λS are adapted to the user’s
needs in each particular application. For example:

• Boost rigid + scaling motions: λT , λR, λS � 1,
• Boost rigid motions: λT , λR � 1, λS = 1,
• Boost translations: λT � 1, λR = λS = 1.

4.1.2. Affine Motion. We can apply this same idea to
the subspace A of instantaneous affine motions:

A = {
v : x ∈ � �→ Ax + b | A ∈ Rn×n, b ∈ Rn

}
.

The L2 orthogonal projection on this subspace writes:

(�A u) (x) = Ax + b,

where

A =
[∫

�

u(y)(y − G)T d�(y)

]
×

[∫
�

(y − G)(y − G)T d�(y)

]−1

,

b = u − A G.
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4.2. The Sobolev H 1 Gradient Flow

We consider the canonical inner product of the Sobolev
space H 1(�, Rn) of square integrable velocity fields
with square integrable derivatives, defined on the shape
� with values in Rn . For two such fields u and v its
expression is:

〈u |v 〉H 1 = 1

|�|
∫

�

u(x) · v(x)d�(x)

+ 1

|�| l
2
∫

�

Dxu(x) · Dxv(x)d�(x),

where Dx denotes the intrinsic derivatives on the con-
tour and l is a characteristic length for the derivation
which acts as a weight between the two integrals. The
second term of this expression introduces a notion of
spatial coherence: not only the length of the velocity
field, but also its variations along the contour are pe-
nalized. Indeed, Dxu(x) stands for the matrix of the
derivative of the vector field u at the point x on the
manifold � and consequently expresses how much
the field u varies at point x. In the two-dimensional
case, Dxu(x) is simply a vector. In the general case,
Dxu(x) · Dxv(x) = ∑

i, j (Dxu(x))i, j (Dxv(x))i, j is the
usual inner product between matrices.

By definition of the gradients of E(�), and then
thanks to an integration by parts on the manifold �,
we have:

∀v, 〈∇L2 E(�)| v〉L2 = δE(�, v) = 〈∇H1 E(�)| v〉H1

= 〈∇H1 E | v〉L2 + l2 〈 Dx∇H1 E | Dxv〉L2

= 〈∇H1 E − l2
∇H1 E
∣∣ v〉

L2

Thus the H 1 inner product is related to the L2 inner
product as proposed in Section 3.1 through the linear
operator L(u) = u −l2
u, where 
 denotes the intrin-
sic Laplacian operator on the contour, often called the
Laplace-Beltrami operator. As a consequence, the H 1

gradient can be obtained from the L2 gradient by solv-
ing an intrinsic heat equation with a data attachment
term:

l2 
u = u − ∇L2 E . (9)

Interestingly, the solution of Eq. (9) coincides with

arg min
u

∫
�

‖u(x) − ∇L2 E(�)(x)‖2 d�(x)

+ l2
∫

�

‖Dxu(x)‖2 d�(x) (10)

Intuitively, the H 1 gradient is a smoothed version
of the L2 gradient and can be obtained by a process
similar to the image restoration process on a manifold
�, a problem familiar to the image processing commu-
nity. The factor l2 acts as a parameter balancing the
influences of the data term and the regularizing term.
Actually, smoothing a gradient using this particular in-
ner product is a standard “trick”, well-known in numer-
ical analysis. As we mentioned previously, this idea has
been introduced in computer vision simultaneously by
us (Charpiat et al., 2005) and by Sundaramoorthi et al.
(2005). However, the main point remains that, intro-
ducing this smoothing via a modification of the gradi-
ent rather than directly from Eq. (10), warrants that the
gradient descent will decrease the energy.

In the two-dimensional case, the shape is a curve
which can be parametrized by its arc length σ , so that
any field u defined on � can be seen as an application
from [ 0, |�| ] to R2, where |�| is the length of the curve.
The explicit solution of the equation 
u = u − v is
then known and given by:

u(σ ) = 1

2l

(
eσ/ l

(
A −

∫ σ

0
e−τ/ l v(τ ) dτ

)
+ e−σ/ l

(
B +

∫ σ

0
eτ/ l v(τ ) dτ

))
(11)

with A = e|�|/ l

e|�|/ l − 1

∮
�

e−τ/ l v(τ ) dτ

and B = 1

e|�|/ l − 1

∮
�

eτ/ l v(τ ) dτ.

Of course, the choice of the initial point on � in order
to define its parametrization by the arc length does not
interfere with the resulting solution considered as an
application from � into R2.

In greater dimensions, we can obtain in practice the
H 1 gradient, solution of Eq. (9), from an iterative min-
imization induced by (10). Since the work introduced
in Bertalmio et al. (2001), implementing a PDE on a
surface is affordable in the implicit framework with
the level set method (Dervieux and Thomasset, 1979;
Osher and Sethian, 1988).

4.3. Intrinsic Gaussian Smoothing

We apply the procedure of Section 3.2 to design a useful
minimizing flow: it is a smoothed version of the L2

gradient flow. Hence, to some extent, it resembles the
H 1 gradient flow of Section 4.2. However, here, we
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apply an ad hoc procedure to the L2 gradient without
resorting to an inner product.

We define a linear intrinsic smoothing operator
which may be seen as the counterpart on the contour
of Gaussian smoothing in Rn−1, by considering the so-
lution ũ of the intrinsic heat equation on � with initial
condition u: ⎧⎨⎩

ũ(., 0) = u

∂ ũ

∂τ
= 
 ũ

, (12)

where 
 denotes the Laplace-Beltrami operator. We
then denote by Lτ u its solution ũ(., τ ) at time τ ≥ 0.

On the one hand, Lτ is symmetric positive. In par-
ticular, a flow (6) based on this operator decreases the
energy. The larger is τ , the smoother is the flow.
Lτ is symmetric:

〈L0(u) |v 〉L2 = 〈u |L0(v) 〉L2 = 〈u |v 〉L2 ,
∂

∂τ
〈Lτ (u) |v 〉L2 = ∂

∂τ
〈u |Lτ (v) 〉L2 =− 〈Dxu |Dxv 〉L2

Lτ is positive:

〈Lτ (u) |u 〉L2 = 〈
Lτ/2Lτ/2(u) |u 〉

L2 = ∥∥Lτ/2(u)
∥∥

L2 ≥ 0

But on the other hand, the inversion of Lτ for τ >

0 is an ill-posed anti-diffusive process. So a gradient
interpretation is not available.

5. Numerical Experiments With The New Inner
Products

The approach presented in this paper can be applied
to virtually any active contour evolution. In this sec-
tion, we have chosen some particular applications to
demonstrate the interest of our contribution.

Moreover, the content of this paper is not specific
to a particular implementation of the contour evolu-
tion. In our experiments, we have used the level set
framework (Dervieux and Thomasset, 1979; Osher and
Sethian, 1988; Sethian, 1999; Osher and Fedkiw, 2002;
Osher and Paragios, 2003), motivated by its numerical
stability and its ability to handle topological changes
automatically. The implicit framework also offers an
elegant formulation of the Laplace-Beltrami operator
(Bertalmı́o et al., 2001) and of the average of a quantity
along the contour (Peng et al., 1999).

The additional computational cost of our approach
depends on the type of minimizing flow we consider.

The extra time is barely noticeable for the rigid plus
scaling and affine flows of paragraphs 4.1.1 and 4.1.2.
The latter only require to compute a handful of inte-
grals on the contour. The smooth minimizing flows of
Sections 4.2 and 4.3 are more demanding. In 2D, the
implicit diffusion Eqs. (9) and (12) are equivalent to
some convolutions with respect to the curvilinear co-
ordinate on �. In 3D and more, they must be solved
with some iterative methods, for each time step.

5.1. Shape Warping

We illustrate our approach in the problem of shape
warping. In this context, the energy functional to be
minimized is a measure of dissimilarity between the
evolving contour and a target contour. The study of
shape metrics is still an active research area (Younes,
1998; Yezzi and Soatto, 2003; Charpiat et al., 2005;
Yezzi and Mennucci, 2005), and there are many can-
didates for the dissimilarity measure. In this paper, we
use a differentiable approximation of the well-known
Hausdorff distance, as proposed in Charpiat et al.
(2005), to warp the contours of two different hands.

Figure 1 compares the evolution of the contour when
using the L2 gradient descent (top row) and a modified
gradient descent favoring rigid plus scaling motions
(bottom row) as in paragraph 4.1.1. Both evolutions
achieve a perfect warping. However, despite the sim-
ilarity of the two input shapes, the L2 gradient flow
goes through some states of completely different ap-
pearances. The trajectory followed by this flow looks
particularly inefficient and unnatural, because the no-
tion of length contained in the L2 inner product is very
far from our intuition. In contrast, the behavior of our
gradient flow is natural and visually pleasing. Some
movies of these evolutions are available in our addi-
tional submission data.

In Fig. 2, we show a three-dimensional warping ex-
ample from a teddy bear to Hayao Miyazaki’s charac-
ter Totoro. We use here the W 1,2-norm of the distance
functions as proposed in Charpiat et al. (2005). Despite
an initial rigid registration, the L2 gradient descent is
unable to give satisfying results. A modified gradient
descent favoring rigid plus scaling motions leads to
better results.

This suggests that our approach can infer rele-
vant correspondences between the two contours, as a
byproduct of the warping process. This point-to-point
matching is obtained by tracking the points along the
evolution. It does not make much sense with a L2
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Figure 1. Shape warping with the L2 gradient descent (top) and with a modified gradient descent favoring rigid plus scaling motions (bottom):
λT = λR = λS = 0.025.

Figure 2. 3D shape warping with the L2 gradient descent (top) and with a modified gradient descent favoring rigid plus scaling motions
(bottom): λT = λR = λS = 0.025.

gradient flow, because the latter yields a strictly nor-
mal velocity field. But when using our approach, the
velocity field has a meaningful tangential part. Main-
taining point correspondences during the evolution is
straightforward in an implementation with meshes. It
is also feasible in a level set implementation, with an
extension proposed in Pons et al. (2003).

5.2. Tracking

We now illustrate the better robustness to local minima
of spatially coherent minimizing flows with a naive
experiment. We insist on the fact that this example is
illustrative: we did not look for the method and the
energy that gave the best results of tracking for the
particular sequence we worked on; we focus more on
the improvements brought by our changement of inner
product rather than on the results themselves.

We track a moving hand in a monocular video se-
quence. For each frame, we minimize the contour-

based energy of the original geodesic active contours
method (Caselles et al., 1997), starting from the result
of the segmentation of the previous frame. Note that
a region-based approach (Paragios and Deriche, 2005)
or a background substraction method would give better
results on our particular test sequence.

Figure 3 compares the evolution of the contour when
using the L2 gradient descent (top row) and a modified
gradient descent favoring affine motions (bottom row)
as in paragraph 4.1.2. Due to large displacements be-
tween consecutive frames, the L2 gradient flow fails
and the contour finally locks between two fingers,
whereas our gradient flow manages to dodge this un-
wanted low-energy configuration.

5.3. Landmarks-Guided Shape Warping

Let us study the case of an energy which does not admit
a usual L2 gradient because its formal computation
leads to an expression with Dirac peaks in the space
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Figure 3. Tracking a hand in a video sequence with the L2 gradient descent (top) and with a modified gradient descent favoring affine motions
(bottom): λA = 0.025.

of distributions. The problem with such a gradient is
that it is not implementable in practice. However, with
a suitable choice of another inner product, we naturally
obtain a smoothed version of this gradient. For more
details we refer to (Maurel et al., 2006).

We consider two shapes �1 and �2, and we would
like to warp �1 onto �2. It can be useful to consider a
small set of landmarks in order to improve the evolu-
tion. Provided by the user (anatomical landmarks), or
automatically extracted (geometric landmarks), we as-
sume that we are given p pairs of corresponding points
on the initial and on the target shapes, {(x1i , x2i ) ∈
�1 × �2, 1 ≤ i ≤ p}. We would like to use the in-
formation given by these correspondences to guide the
evolution.

5.3.1. Choice of the Energy and of the Inner Product.
The usual variational approach consists in minimizing
the distance between the evolving shape �(t) and the
target one �2, with initial condition �(0) = �1. This
distance Ed could be for example the approximation
of the Hausdorff distance presented in Charpiat et al.
(2005) or the W 1,2 norm of the signed distance func-
tions over the embedding space. We would like to add
to this distance a landmark term E ; the energy to
minimize would be consequently:

E(�, �2) = Ed (�, �2) + E (�, �2)

We follow each landmark x1i from the initial shape
�1 during the evolution and denote by xi (t) its cor-
responding point on �(t). We simply choose for the
landmark term:

E =
∑

i

d(xi (t), x2i )
2 (13)

Formally, the energy given by Eq. (13) yields Dirac
peaks in the expression of the gradient of the energy:

∀x ∈ �, ∇L2 E(�)(x) = ∇L2 Ed (�)(x)

+
∑

i

δxi (t)(x)(xi (t) − x2i ) (14)

where δx denotes the Dirac function centered at point x.
This is indeed not a good candidate for a gradient
descent.

The trick consists in changing the inner product
which appears in the definition of the gradient. We use
H 1(�, Rn), the Sobolev space of square integrable ve-
locity fields with square integrable derivatives, defined
and studied in Section 4.2.

Starting from the irregular gradient ∇L2 E(�) given
by Eq. (14), we obtain a smooth gradient ∇H 1 E(�),
given by the PDE (9) and mathematically justified by
an adapted choice of inner product that guarantees a
decrease of the energy. In practice and in detail, when
solving (9), we substitute for each Dirac peak in the
expression of ∇L2 E(�) a Gaussian with a very small
standard deviation.

In the two-dimensional case, the Eq. (11) gives us
an explicit expression of the H 1 gradient from the L2

one thanks to a convolution. In the three-dimensional
case we have to deal with the minimization process
proposed in Section 4.2.

5.3.2. Experiments. As a benchmark, we warp some
artificial two-dimensional curves with the original en-
ergy Ed = dW 1,2 and test how our landmark-guided
force modifies the warping and the final matching. To
begin with a simple example, we show in Fig. 4 the
warping of a rectangle onto another one. The differ-
ent parts of the curves are shown with different col-
ors, so that their respective evolution can be followed.
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Figure 4. Warping of a rectangle shape onto another one. Top row: evolution with E = dW 1,2 . Bottom row: evolution with the same energy,
augmented with four provided landmarks, marked by color spots. The colors on the evolving curve shows the evolution of different parts of it.
See text for comments.

Figure 5. Warping of a hand shape onto another one. Top row: evolution with E = dW 1,2 . Middle row: evolution with the same energy plus
spatially coherent flows. Bottom row: evolution with the same energy plus coherent flows plus three provided landmarks. See text for comments.

Although the initial warping without any landmark
seems natural, it fails discovering the matching be-
tween the edges of the rectangles, a matching indeed
recovered when providing landmarks. Let us now study
the case of some real, complex shapes. Figure 5 shows
the warping between two hands. The energy E = dW 1,2

yields an unnatural warping. Adding spatially coherent
flows makes the warping a bit better but still fails in
some parts, mainly because the difference between the
two shapes can not be summed up to a global motion.
With three landmarks only, both a satisfying warping
and a good matching are recovered. Figure 6 shows
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Figure 6. Warping of a teddy bear onto a cartoon character. Top row: evolution with E = dW 1,2 . Bottom row, first image: four landmarks
provided on the two shapes, indicated by blue spots. Bottom row, remaining images: evolution with E = dW 1,2 plus the provided landmarks. In
red, some parts of the shapes are tracked. See text for comments.

the warping of a teddy bear onto a cartoon charac-
ter. Without any landmarks, the top row evolution fails
matching the ears and arms of the characters. The bot-
tom row shows the evolution with four landmarks.
Red spots allow to check a good matching between
landmarks.

6. A Generalized Gradient Method

In this section, we go further and consider the defini-
tion of the gradient of an energy from a new point of
view, which leads us to a larger class of minimization
algorithms. The thread we follow is the fact that the
gradient of the energy can be obtained as the result of
another minimization problem.

To help developing the reader’s intuition let us recall
that the usual gradient descent method can be seen, up
to first order, as minimizing E(� + u) with respect to
the deformation field u through the linearization of the
energy E in the neighborhood of the shape �:

E(� + u) � E(�) + δE(�, u)

But since δE(�, u) is linear with respect to the defor-
mation field u, there is no minimum. This is of course a
direct consequence of the first-order approximation. It
is therefore more sensible to speak in terms of the direc-
tion of the deformation field u. The notion of direction
implies the choice of a norm: the set of all directions
is the set of all fields with norm equal to 1. Once a
norm F has been chosen (related to an inner product

preferably), a natural solution appears as the direction
uF that minimizes the energy δE(�, v):

uF = arg min
{v s.t. ‖v‖F =1}

[δE(�, v)] = − ∇F E(�)

‖∇F E(�)‖F

(15)

The main point here is that the opposite of the gra-
dient −∇F E(�) of the energy E for the inner product
related to the norm F is precisely in the direction uF .
This gradient has been introduced previously as the
deformation field linked to the continuous linear form
δE(�, ·) for the inner product F thanks to the Riesz
theorem. Note that the influence of the inner product F
upon the best direction uF lies in the fact that it changes
the shape of the unit sphere (the set of all directions u
with unit norm ‖u‖F = 1).

It turns out that the gradient itself (not only its direc-
tion) can be obtained as the solution of a minimization
problem. This also explicits the link between the norm
F and the gradient. This is shown in the following

Theorem 3. The gradient∇F E(�) for the inner prod-
uct F satisfies:

−∇F E(�) = arg min
v

[
δE(�, v) + 1

2
‖v‖2

F

]

Proof: We have indeed, for any v:

δE(�, v) + 1

2
‖v‖2

F = 1

2

[
‖v‖2

F + 2 〈v |∇F E(�) 〉F

]
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= 1

2

[‖v + ∇F E(�)‖2
F − ‖∇F E(�)‖2

F

]
So that:

arg min
v

[
δE(�, v) + 1

2
‖v‖2

F

]
= arg min

v

[‖v + ∇F E(�)‖2
F

]
= −∇F E(�)

The expression between brackets breaks up into two
parts: the first one, δE(�, v), comes from the energy
E(�) and stands for the quantity to minimize, whereas
the second one, R(v) = 1

2‖v‖2
F , is a regularizing term

which imposes to the solution to be smooth and small
enough in the sense of the norm F . Different choices of
the smoothing term thanks to different choices of the
norm F imply different final gradients ∇F E(�).

For example, the choice of the H 1 inner prod-
uct leads to the regularizing term R(v) = 1

2‖v‖2
L2 +

1
2 l2‖Dv‖2

L2 and consequently the gradient ∇H 1 E(�)
is the deformation field which minimizes δE(�, v) +
1
2‖v‖2

L2 + 1
2 l2‖Dv‖2

L2 . This leads us to an elegant proof
of a property of the H 1 gradient stated in Section 4.2,
without considering PDEs:

Proposition 4. The opposite of the H 1 gradient is the
solution of:

arg min
v

[‖u − v‖2
L2 + l2‖Dv‖2

L2

]
where u = −∇L2 E(�) is the opposite of the usual
gradient.

Proof: Indeed, for any v:

‖u − v‖2
L2 = ‖u‖2

L2 − 2 〈u |v 〉L2 + ‖v‖2
L2

hence

‖u − v‖2
L2 + l2‖Dv‖2

L2 = ‖u‖2
L2+2 δE(�, v) + ‖v‖2

H 1

since by definition of u, δE(�, v) = 〈−u |v 〉L2 ; so
the H 1-gradient can naturally be seen as a smoothed
version of the standard gradient u, thanks to Theorem 3:

arg min
v

[‖u − v‖2
L2 + l2‖Dv‖2

L2

] =

arg min
v

[
δE(�, v) + 1

2
‖v‖2

H 1

]
= −∇H 1 E(�)

6.1. Generalization of the Regularizing Term

We have stressed the influence of the choice of an inner
product 〈| 〉F on the associated gradient:

−∇F E(�) = arg min
v

[δE(�, v) + R(v)]

where R(v) = 1
2‖v‖2

F , and ‖ · ‖F is the norm related
to the chosen inner product. Since the choice of the
inner product is equivalent to the choice of the regular-
izing term R(v) and acts qualitatively upon the gradient
descent paths, we can see R(v) as a prior on the defor-
mation fields.

Let us now generalize our framework and allow R(v)
to be (almost) any positive real function, not necessarily
related to an inner product, and compute (when it exists)
the associated field which we will denote, with a slight
abuse of notation, by −∇R E(�) (note that if R is related
as previously to the inner product F , then ∇F E =
∇R E):

−∇R E(�) = arg min
v

[δE(�, v) + R(v)] (16)

Under some reasonable assumptions about R(v), the
new “gradient” ∇R E(�) exists and has interesting
properties.

First, the existence of ∇R E(�), which is the solu-
tion of an infimum problem, is guaranteed if R is pos-
itive, superlinear and convex. The solution is then not
necessarily unique; nevertheless, the set of solutions is
convex, reduced to a single point in most cases. How-
ever, the question of the existence and unicity of ∇R

in general is not the main point here, it depends on the
particular chosen application R. Here, R is supposed
to stand for an application approximatively “looking
like” the square of a norm; for reasonable choices of
R from this point of view, the existence is guaranteed,
and so is the uniqueness in most cases.

We now present the fundamental property of the ex-
tended gradient ∇R E as the

Theorem 5. If R is differentiable and reaches its
global minimum at the zero field, then the flow
−∇R E(�), if it exists, decreases the energy E.

Proof: We prove that δE(�, −∇R E(�)) ≤ 0.
We have −∇R E(�) = arg minv [δE(�, v) + R(v)],

so, in particular, considering the zero field v = 0:

δE(�, −∇R E(�))+R(−∇R E(�))≤δE(�, 0) + R(0)

δE(�, −∇R E(�))≤R(0) − R(−∇R E(�))
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As v = 0 is the global minimum of R, we have
R(−∇R E(�)) ≥ R(0), so:

δE(�, −∇R E(�))≤0

Moreover, this last inequality is strict if the usual
gradient ∇L2 E(�) is not zero. Indeed, in that case,
as R(v) reaches its global minimum at the zero field
v = 0, its derivative is zero for v = 0. Consequently,
the L2 gradient of δE(�, v) + R(v) with respect to v

at the zero field equals ∇L2 E(�), which is not zero
by hypothesis. Therefore infv [δE(�, v) + R(v)] is not
reached at v = 0 and all inequalities in the proof are
strict.

Note that the application R is specific to the shape
� (or, more exactly, to its tangent space) and there is
no assumption about a “regularity” of the applications
R� with respect to �. However, as in the previous part
where we had to associate to each shape an inner prod-
uct and naturally chose the same general expression for
all of them, we will restrict ourselves to the case where
the application R� has the same general expression
R(�) for all shapes � and consequently will commit a
slight abuse of notation between R and R� .

6.2. Remarks

6.2.1. Addition of An Orthogonal Term. Note that
the method proposed in Section 3.3, which consists
in adding an orthogonal term to the gradient (see Eq.
(7)), can be seen as a variation on the extended gradi-
ent theme, where the search for the infimum has been
restricted to the affine hyperplane H containing the
opposite of the gradient −∇F E and orthogonal to it.
Indeed:

arg min
v∈H

[δE(�, v) + R(v)]

= arg min
w;w⊥∇F E

[δE(�, −∇F E + w) + R(−∇F E + w)]

= arg min
w;w⊥∇F E

R(−∇F E + w)

6.2.2. Directional Formulation. We have seen ear-
lier (Eq. (15)) that the direction of the gradient could
be defined as the field v of the unit sphere UF =
{v s.t. ‖v‖F = 1} which most decreases the energy, and
that changing the inner product F was precisely acting
on the gradient by changing the unit sphere. One way to
generalize the notion of gradient could have been to set

any hypersurface S instead of the unit sphere UF and
to search for the best field v in S. However, this would
lead to some difficulties in practice (how to search for
a minimum on an hypersurface of infinite dimension,
how to represent this hypersurface?). A slightly better
way to do this would be to focus on the hypersurfaces
of the form UR = {v s.t. R(v) = 1}, which is in the
spirit of the level-set method. Note that this approach
would be very close in practice to the one we described,
the main difference being that we would only obtain a
direction, without the magnitude.

6.2.3. Temporal Coherence. The application R(v)
does not necessarily only deal with spatial coherence
and can also be designed to favor temporally coherent
motions. For example, at time step t of an evolution,
one could force the new deformation field ut to resem-
ble the previous one ut−1. If we transport ut−1 from the
previous shape �t−1 to the new one �t , we obtain a new
field noted T (ut−1) defined on the same space as ut , and
we can compare them, e.g., with ‖T (ut−1) − ut‖. We
are thus led to define R(v) = ‖T (ut−1)−v‖. This func-
tion however does not satisfy in general the condition
R(0) = 0 which is necessary in Theorem 5. Never-
theless this problem can be solved by defining R(v)
to be the norm of the projection of v orthogonally to
T (ut−1).

6.3. Computing the Extended Gradient

If R is simple enough so that the inverse application of
v �→ ∇L2 R(v) is easily computable, then the computa-
tion of the extended gradient ∇R E is immediate from
the knowledge of the usual L2-gradient. Indeed, the ap-
plication v �→ δE(�, v) + R(v) has a local minimum
at v = −∇R E(�), so its derivative with respect to v is
zero at this point:

Dv (δE(�, v) + R(v))|v=−∇R E = 0

∇L2 (〈∇L2 E(�) |v 〉L2 + R(v))|v=−∇R E = 0

∇L2 E(�) + ∇L2 R(−∇R E(�)) = 0

−∇R E(�) = (∇L2 R)−1 (−∇L2 E(�))

This formula generalizes the one obtained previously
in Proposition 2 in Section 3 concerning the relation be-
tween the gradient for an inner product P and the usual
L2 gradient. Now, for the extended gradient, the appli-
cation (∇L2 R)−1 which stands in for L in this proposi-
tion is not supposed to be linear anymore.
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In more general cases, if we cannot compute the
application (∇L2 R)−1, we can still solve the infimum
problem with a Partial Differential Equation (PDE)
which is equivalent to a . . . infinitesimal gradient de-
scent! The definition in Eq. (16) can be seen indeed as
a minimization problem which leads to the evolution:⎧⎨⎩v(0) = 0

dv

dt
= −∇L2 E(�) − ∇L2 R(v)

(17)

This evolution leads to a local minimum of
δE(�, v) + R(v). Even if this local minimum is not
the global one (if R has not been well-chosen) or if the
evolution is stopped before the convergence, the final
flow v computed will strictly decrease the energy E(�)
(same proof as in Theorem 5). This point may be impor-
tant in practice. Note also that there exist many other
methods (Bonnans et al., 2002) than the usual gradient
descent to solve that kind of problem, since the quan-
tity to minimize is a sum of a linear term δE(�, v) and
another term R(v) which “looks like” a quadratic term
since it is supposed to play a role similar to the square
of a norm.

6.4. Application: The Semi-Local Rigidification

We now present an example for which the previous
framework appears to be useful. We consider an en-
ergy E(�) defined on plane curves. These curves are
assumed to lie in an image �, in fact a bounded subset
of R2. Instead of following a usual gradient descent in
order to minimize E(�) with respect to �, we would
like to favor the deformation fields which preserve the
rigidity of the shape as much as possible, or, more ex-
actly, we would like to favor more rigid deformations,
so that some kinds of local minima could be avoided. In
Section 4.1.1 we showed how to change the inner prod-
uct so as to favor global rigid transformations. In case
of articulated movement, this global method may not
be sufficient, so we would like to favor fields containing
parts close to rigid motions; this leads us to the notion
of “semi-local rigidification”. We use the expression
“semi-local” in order to emphasize the contrast with
usual smoothing methods such as Gaussian smoothing
or H 1 smoothing, which we will qualify of “local”.

Let us consider a shape � and any field v defined on
it. We would like to find the parts, if any, of the field
v which are well approximated by a translation or a
rotation acting on the corresponding parts of �. In order

to model this, we associate to each point x of � a rigid
deformation wx defined on the whole image �. In order
to describe wx we introduce three functions defined on
�: a translation T (x), a center of rotation C(x) and the
magnitude A(x) of the instantaneous rotation, so that:

∀y ∈ �, wx(y) = A(x) (y − C(x))⊥ + T (x)

where a⊥ stands for the vector a rotated by +π/2.
We suppose that this rigid deformation wx varies
slowly with respect to x, that is to say we suppose
the L2(�, R2) norm of its derivative ‖Dxwx(·)‖L2 to
be small for each point x of the curve �. We consider
the L2(�, R) norm of this application defined on �

and obtain the criterion
∥∥‖Dxwx(·)‖L2(�,R2)

∥∥
L2(�,R) to

quantify the smoothness of the field wx of rigid defor-
mations on �.

It is always possible to express any field v on � as a
member of the class rigid motions:

∀x ∈ �, v(x) = wx(x) = A(x)(x − C(x))⊥ + T (x)

(18)

The field v is then completely defined by the knowledge
of T , A and C . For a given field v, there exist of course
many triplets (T, A, C) satisfying (18), the simplest
one being (v, 0, G), where G� is the center of mass of
the image �. In order to lift this ambiguity we define
a deformation prior R which depends on T , A and C
that should be seen as parameters of v:

R(T, A, C) = ‖v‖2
L2 + ∥∥‖Dxwx(·)‖L2(�,R2)

∥∥2
L2

which in fact can also be written simpler (by expanding
and integrating the expression ‖Dxwx(y)‖2) as:

R(T, A, C) = ‖v‖2
L2 + ∥∥DT + D A(G� − C)⊥

−A DC⊥∥∥2

L2 + σ 2
�‖D A‖L2

where σ 2
� = ∫

�
(y− G�)2dy is a characteristic squared

“length” of the image. The middle term represents the
interaction between T , A and C ; for example, changing
the center of rotation DC(x) has no consequence on the
rigid motion wx if it is compensated by the adequate
added translation DT = A DC⊥. Note that the quan-
tities G� and σ� are the only ones where the influence
of the image � appears.

In order to compute the generalized gradient ∇R

of an energy E(�), we first compute the usual L2

gradient ∇L2 E , initialize (T, A, C) = (0, 0, G�) so
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Figure 7. Warping the red shape onto the blue one (top) with the L2 gradient descent (first row), with a H1 gradient descent (second row) and
with a modified gradient descent favoring semi-local rigid motion (third row) for the same energy (Hausdorff distance). All evolutions converge
to the same shape, but with different paths.

that the corresponding field v(T, A, C) is zero, as re-
quired in Eq. (17), and let (T, A, C) evolve to minimize
δE(�, v) + R(T, A, C). The corresponding PDEs are⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t T (x) = − (∇L2 E(�)(x) + v(x)) + 
wx

∂t A(x) = − (∇L2 E(�)(x) + v(x)) · (x − C(x))⊥

+ (G� − C(x))⊥ · 
wx + σ 2
�
A(x)

∂t C(x) = − A(x)(∇L2 E(�)(x) + v(x))⊥+A(x)
wx
⊥

where wx = wx(G�) is the mean of the linear applica-
tion y �→ wx(y) on �. Note that if we had considered
only translations T (and not rotations), we would have
wx = T (x) = v(x) and the algorithms would act as an
H 1 smoothing.

6.5. Numerical Example

We now apply this method to a specific choice of the
energy E to minimize. We would like to warp a given
initial shape �1 onto a given target shape �2, that is
to say, we would like to minimize the shape distance
between �1 and �2 with respect to �1. We choose for E

a smooth approximation of the Hausdorff distance de-
scribed in Charpiat et al. (2005), which we will denote
here by dH (�1, �2).

This energy E achieves generally good warping be-
tween any two shapes which are relatively close one
to the other, but, in case of large deformations, it can
suffer from an important lack of spatial coherence if a
part A of the moving shape �1 has to cross a part B of
the target one on its way to another parallel part C of
the target shape (see Fig. 7 for an example), because
the part A tries to minimize its distance to both parts B
and C at the same time.

A global coherence can nonetheless be recovered
by an adequate change of inner product which favors
rigid transformations, as presented before. However,
this is not sufficient for dealing with local deforma-
tions. The methods of Gaussian or H 1 smoothing stud-
ied in Sections 4.3 and 4.2 could be helpful, since their
action is local. But even if their influence is appre-
ciable, these smoothing techniques do not favor semi-
locally rigid deformations like the movements of an
articulated object. We have noticed that, in practice,
the quality of the matching between two shapes �1 and
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Figure 8. Comparison of the correspondences between the initial curve (left) and two final curves resulting from the H1 gradient evolution
(middle) and from the semi-local rigidification (right). The different parts of the curves are shown with different colors, so that their respective
evolutions can be followed. The correspondences for the semi-local rigification case are more geometrically meaningful.

Figure 9. Comparison with a L2 gradient descent on the L2 norm of the signed distance functions associated to the curves. The gradient is
naturally smooth but lacks geometric information.

�2 generally depends on the quality of the path that has
been followed during the evolution from one shape to
the other, or, more precisely, on how natural a human
observer would judge this path. This statement is very
intuitive and qualitative but we believe that this quality
precisely relies on notions such as articulated motion.
There is clearly room here for further work. In any case
this is the reason why we think that methods like the
ones proposed in this paper, which allow to set priors
on the deformation fields can have interesting practical
applications.

We use the framework presented above and compare
the evolutions resulting from three different approaches
on a difficult example of shape warping in the case of
the Hausdorff distance: the usual L2 gradient method,
the H 1 smoothing method of Section 4.2 (for the best
value of the smoothness parameter l in Eq. (10)) and
the semi-local rigidification method (Fig. 7). The last
one achieves the best path and the best correspondences
(Fig. 8). Some movies of these evolutions are available
in our additional submission data.

The gradient descent framework in the case of an
extended gradient ∇R could have needed some impor-
tant additional time if we had to wait until the evolution
of ∇R converges at each time step of the global evolu-
tion of �1. Fortunately, when necessary, thanks to the
remark in Section 6.3, we can choose to stop the evo-
lution of ∇R before convergence in order to keep the
additional cost into reasonable limits. The result pre-

sented here was computed so that the total evolution
time was multiplied by two, but the effect of the semi-
local rigidification is already noticeable for an added
cost time of 10%.

For the particular example presented in Fig. 7, one
could object we should have considered other dis-
tances, such as the L2 norm between the signed dis-
tance functions of the shapes, which always leads to
very smooth evolutions. However, those smooth evo-
lutions are not very sensible, in that they often miss
entirely the similarity between the two shapes to match
(see Fig. 9). As a consequence their gradient does not
contain a lot of geometric information and cannot be
very much improved by changes of inner products. This
is why, despite the sometimes irregular behavior of the
gradient of the Hausdorff distance, we prefer to use it
in combination with new inner products, because this
has both advantages of guaranteeing smoothness and
making geometric sense.

In Fig. 10 we show an example with real contours
from hand segmentation of pictures. As in the previous
example, we show the evolution path obtained by
minimization of the approximation of the Hausdorff
distance between the two curves, with the semi-local
rigidification approach. The evolution mainly consists
in four local rotations (arms and legs), which fits
well our intuition. We have colored, as previously,
different parts of the initial curve in order to follow
them through the evolution and notice how relevant
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Figure 10. Warping real contours by minimization of the approximation of the Hausdorff distance with the semi-local rigidification approach.
The colors show the correspondences between the moving curve and the initial one.

the correspondences are. A usual gradient descent for
this energy would have faced the same irregularity
problems as in the first evolution presented in Fig.
7, and the choice of other usual energies, like the L2

norm between the signed distance functions to the
curves, would lack geometric sense, as in Fig. 9.

7. Conclusion

The impact of the inner product structure of the de-
formation space on the behavior of the active contours
method had been overlooked so far in the computer
vision community. We have explored several families

of inner products, as well as some minimizing flows
not deriving from any inner product by extending the
notion of gradient. Given an energy, we now have sev-
eral ways to minimize it, each of the proposed flows
being a minimizing flow but leading to different kinds
of evolutions. The inner products and the extended gra-
dients should consequently be seen as priors on the de-
formation fields, that is to say priors on the evolution
paths. They can be used to introduce different degrees
of spatial coherence (local, semi-local or global) in the
evolution of the contour.

We have shown, with some numerical experiments,
that these evolutions better fit our intuitive notion of
deformation cost and that they can mimic the behavior
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of the objects of interest. As a result, they are at the
same time more meaningful and more robust to local
minima attraction.

Appendix A: Brief Overview of Shape Metrics

For more details on this part, we refer to Charpiat et al.
(2005).

A.1. The Hausdorff Distance

Let �1 and �2 be two shapes, i.e. manifolds embedded
in Rn . The Hausdorff distance between �1 and �2 is:

dH (�1, �2) = sup

(
sup
x∈�1

inf
y∈�2

d(x, y), sup
y∈�2

inf
x∈�1

d(x, y)

)
= sup

(
sup
x∈�1

d(x, �2), sup
y∈�2

d(y, �1)

)

The Hausdorff distance is a natural distance on the
set of shapes and fits well enough our intuition of dis-
tances between shapes, in that, if you consider a (short-
est) path �(t) in the set of shapes between �(0) = �1

and �(1) = �2 and follow the points of the initial shape
during the evolution, then dH (�1, �2) is precisely the
maximum distance that has to be covered by one of the
points to reach its final position on the curve �2.

However (and consequently), the Hausdorff distance
does not handle with considerations such as weak costs
for rigid motion; hence our approach consististing in
changing the inner product so as to enhance rigid
motion.

The Hausdorff distance being not differentiable, we
have to consider a smooth approximation of it. We first
introduce the following notation:

〈 f 〉ϕ�1
= ϕ−1

(
1

�1

∫
x∈�1

ϕ( f (x))d�1(x)

)

where ϕ is an application from R+ to R+. If ϕ is smooth
and increases quickly, then 〈 f 〉ϕ�1

is a smooth approxi-
mation of sup�1

f . On the other side, if ϕ is smooth and
decreases quickly, it is a smooth approximation of the
infimum. For well-chosen applications ϕ, ψ and �, we
have found our smooth approximation of the Hausdorff
distance:

ρH (�1, �2) =
〈〈〈d(·, ·)〉ϕ�2

〉ψ
�1

,
〈〈d(·, ·)〉ϕ�1

〉ψ
�2

〉�

where 〈a, b〉� = �−1(1/2(�(a) + �(b))) is the dis-
crete case of the approximation.

A.2. Metrics Based on Distance Functions

We associate to any closed shape �1 its signed distance
function d�1 defined on the whole embedding space
Rn , with negative values in the bounded part of Rn of
boundary �1:

d�1 (x) =
{−d(x, �1) if x is inside�1,

+d(x, �1) else.

We then consider two natural distances on the set of
shapes based on their representation by signed distance
functions.

dL2 (�1, �2) = ∥∥d�1 − d�2

∥∥
L2(Rn �→R)

=
(∫

x∈Rn

∣∣d�1 (x) − d�2 (x)
∣∣2

dx
)1/2

dW 1,2 (�1, �2) = ∥∥d�1 − d�2

∥∥
W 1,2(Rn �→R)

=
(∫

x∈Rn

∣∣d�1 (x) − d�2 (x)
∣∣2+ ‖∇d�1 (x)

− ∇d�2 (x)‖2dx
)1/2

The minimization of these distances with respect
to the shape �1 leads to naturally smooth evolutions.
However, these evolutions may lack geometrical sense
in some cases.
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