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Abstract. The machine interpretation of line drawings has applications both in vision and geometric modelling.
This paper extends the classic technique of assigning semantic labels to lines subject to junction constraints, by
introducing new constraints (often between distant lines). These include generic constraints between lines lying on
a path in the drawing as well as preference constraints between the labellings of pairs of junctions lying on parallel
lines. Such constraints are essential to avoid an exponential number of legal labellings of drawings of objects with
non-trihedral vertices.

The strength of these constraints is demonstrated by their ability to identify the unique correct labelling of many
drawings of polyhedral objects with tetrahedral vertices. These new constraints also allowed us to deduce a general
polyhedral junction constraint for the case when there is no limit on the number of faces which can meet at a
junction.

Keywords: line drawing labelling, parallel lines, polyhedral objects, non-trihedral vertices, valued constraint
satisfaction problem, soft constraints

1. Introduction

The interpretation of line drawings is a classic
problem in machine vision. The pioneers in this
field (Clowes, 1971; Huffman, 1971) concentrated on
perfect projections of opaque polyhedral objects and
on the problem of labelling each line as concave,
convex or occluding. With the further restriction to
simple trihedral vertices (i.e. vertices formed by the
intersection of three faces), they were able to write
down the complete list of legal junction labellings,
known as the Huffman-Clowes catalogue. Although
determining whether a given line drawing has a
global labelling consistent with the Huffman-Clowes
catalogue is known to be an NP-complete problem
(Kirousis and Papadimitriou, 1988), the median-case
complexity has been empirically observed to be O(n)

(Parodi et al., 1998) and polynomial-time algorithms
exist for certain special cases (Kirousis, 1990; Parodi
and Torre, 1994). Furthermore, the Huffman-Clowes
catalogue is often sufficient to reduce the theoretically
exponential number of labellings to a manageable
number of legal labellings when it is used in conjunc-
tion with the Outer Boundary constraint, which says
that when the drawing represents an isolated object or
group of objects, the outer boundary can be assigned
a unique labelling corresponding to an occluding
edge.

This initial success was tempered by the following
points:

1. The catalogue of labelled junctions provides neces-
sary but not sufficient conditions for physical real-
isability of the drawing.
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2. Classifying lines as projections of concave, convex
or occluding edges only provides partial informa-
tion about the corresponding 3D scene.

3. The restriction to perfect projection of polyhedral
objects with trihedral vertices is too unrealistic for
most vision applications.

Sugihara (1984, 1986) resolved point (1) above
by giving necessary and sufficient conditions for
the physical realisability of a legally-labelled line
drawing of a polyhedral scene, by expressing the
problem as a linear programming problem whose
solution represents the equations of visible faces of
the objects in the scene. This technique theoretically
also resolves point (2), but there is often a great deal of
ambiguity in the result which is not present in a human
interpretation of the same drawing. For example, a
drawing of a cube is immediately interpreted by a
human being as a cube, even though it could theoret-
ically be the 2D projection of any of a large class of
parallelipipeds.

Much progress has been made in recent years con-
cerning point (3). Some systems have been specifi-
cally designed to allow for freehand sketching errors
(Grimstead and Martin, 1996; Lipson and Shpitalni,
1996; Varley and Martin, 2000). Catalogues of labelled
junctions have also notably been given for curved
objects (Cooper, 1993; Malik, 1987), for curved ob-
jects with edges and surfaces which can meet tan-
gentially (Cooper, 1997), for polyhedral objects with
tetrahedral vertices (Varley and Martin, 2001), and
for drawings of scenes with lighting effects such as
shadows (Waltz, 1975) and contrast failure (Cooper,
2001). When the restriction to polyhedral objects
with trihedral vertices is relaxed, theoretical analy-
sis (Cooper, 1997, 2001) has shown that a catalogue
of labelled junctions is insufficient to disambiguate
line drawings. Furthermore, experimental trials indi-
cated that time complexity to find the best labelling
grows with the number of valid labellings which is
now an exponential function of the size of the drawing
(Varley, 2004).

Although junctions can be said to provide most of
the information in a technical drawing, other features
provide valuable clues. For example, if we know the
vanishing points of all lines in a drawing of a poly-
hedral object with trihedral vertices, then the labelling
problem is no longer NP-complete, but can be solved
in polynomial time (Parodi and Torre, 1994). Other

sources of 3D information include collinearity of a
line with a junction or another line (Cooper, 2000,
2001), parallel lines (Cooper, 1999) and straight lines
(in the case of curved objects with some straight edges)
(Cooper, 2000).

When multiple interpretations are possible, many
heuristics have been used to find the most plau-
sible interpretation, such as maximising commonly
occuring 3D features such as right angles, verti-
cal edges, symmetries and parallel planes, while
minimising the number of distinct objects, angles
and edge-lengths in the reconstructed 3D scene
(Lipson and Shpitalni, 1996).

In this paper we express the line drawing labelling
problem as a valued constraint satisfaction problem
(Cooper and Schiex, 2004). This allows us to mix hard
constraints (which must imperatively be satisfied) with
soft constraints expressing preferences between differ-
ent combinations of labels. This framework not only
allows us to combine several junction catalogues based
on different assumptions (such as trihedral/tetrahedral
vertices, polyhedra/curved objects) but also allows us
to express preferences (for example for right angles or
parallel faces).

The main contribution of this paper is the introduc-
tion of novel constraints between unconnected lines
or junctions, based on parallel lines, cycles of lines
or collinearity. These non-local constraints permit the
propagation of information between unconnected com-
ponents of the drawing. Among other things, these
constraints formalise and generalise constraints be-
tween holes or bosses and the boundary of the pla-
nar surface on which it lies (Varley and Martin, 2003)
or between lines separating the same two regions
(Kirousis, 1990; Varley et al., 2004). These new con-
straints considerably strengthen the trihedral catalogue
of Huffman (1971) and Clowes (1971) which is of-
ten insufficient to uniquely identify the correct la-
belling of a drawing. Our constraints thus provide
an alternative to Sugihara’s necessary and sufficient
conditions for realisability (Sugihara, 1984). Although
incomplete, they have the advantage of being appli-
cable on small subsets of the drawing (in the same
way as junction constraints) whereas Sugihara’s test
must be applied to each global labelling, of which there
may be an exponential number. We report results of
experimental trials in which we evaluate the strength
of our new constraints in disambiguating drawings of
polyhedral objects with tetrahedral vertices.
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2. Line Drawing Labelling as Optimisation

To obtain labelling constraints, such as the Huffman-
Clowes catalogue, we must make assumptions on
the 3D scenes which may be represented and the
projection operation which produces the drawing.
Common assumptions include planar faces, trihedral
vertices, general viewpoint, general object positions,
perfect projection. We can measure the plausibility
of a labelling by determining how many of these
assumptions must be relaxed (and how many times).
For example, consider a drawing and two labellings
L1 and L2, such that L1 requires that two vertices are
tetrahedral and L2 requires that one pair of parallel
lines in the drawing are not actually parallel in 3D.
Should we prefer L1 to L2 or vice-versa, or should we
accept both as plausible interpretations?

Different applications may give rise to different an-
swers to this and similar questions. For example if the
line drawing has been derived from a human-entered
drawing then the user may have explicitly specified that
certain lines are projections of parallel lines in 3D (but
this is not assumed in this paper) or knowledge of the
application area may imply that tetrahedral vertices are
quite common. In all cases, recent work on reduction
operations on valued constraint satisfaction problems
may be applied to mitigate the theoretical intractability
of the resulting optimisation problem (Cooper, 2003;
Cooper and Schiex, 2004; Cooper, 2004). Valued con-
straints are local cost functions which allow us to ex-
press preferences between legal labellings and also to
mark other labellings as illegal by assigning them an
infinite cost (Schiex et al., 1995).

In later sections we study non-local soft constraints
based on a natural tendancy to minimise the num-
ber of distinct surface orientations in the interpre-
tation of man-made objects. But first we begin by
studying non-local hard constraints. It is well known
that junction constraints alone are not sufficient to
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Figure 1. (a) The ParOcc constraint: This labelling is impossible if lines L1, L2, L3 are adjacent to region R and lines L1, L2 are parallel; (b),
(c) the ParCon constraint: this labelling is impossible if lines L1, L3 are adjacent to region R1, lines L2, L3 are adjacent to region R2, and lines
L1, L2 are parallel but are not parallel to L3.

ensure realisability (Sugihara, 1984) and several work-
ers have stated constraints on the labelling of sets
of lines not meeting at a junction (Huffman, 1971;
Kirousis, 1990). In the next section, we formalise con-
straints on the labelling of a set of lines intersected by a
path from line L A to L B , where either L A = L B or L A,
L B are parallel. We emphasize that these constraints
assume planar surfaces. They may also be applied to
drawings of curved objects provided we have sufficient
evidence that particular regions are the projection of
planar faces. For example, it may be reasonable to as-
sume that a surface which has a polygonal boundary is
planar.

3. Parallel Lines Constraint

In this section we assume that the line drawing is an
orthographic projection of the edges of opaque poly-
hedral objects from a general viewpoint. The general
viewpoint assumption says that a small change in the
position of the viewpoint does not alter the configura-
tion of the drawing (including junction types and pres-
ence of parallel or collinear lines). The orthographic
projection and general viewpoint conditions imply that
parallel lines in the drawing are projections of parallel
lines in the 3D scene. If, as will usually be the case,
we mark lines as parallel if the angle between them
is less than some threshold ε (to take into account,
for example, rounding errors or a projection which is
only approximately orthographic), then the constraints
presented in this section become soft rather than hard
constraints. The coding of such soft constraints is dis-
cussed in detail in Section 9.

Figure 1 shows combinations of labels that are phys-
ically impossible under these assumptions. In all fig-
ures we use a generic label � to represent any of the
three labels + (convex), − (concave), → (occluding
with the nearer object below the line). Similarly �
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Figure 2. The trihedral labelling in (a) violates the ParCon constraint, whereas the tetrahedral labelling in (b) does not.

represents any of the labels +, −, ←. Thus, for ex-
ample, the label � for line L1 in Fig. 1(a) implies that
the edge projecting into L1 lies on the surface project-
ing into region R. Note that in the ParOcc constraint
(Fig. 1(a)), α can be any angle. A line L is said to be
adjacent to a region R if L is part of the boundary of
R when considered as a face in the planar graph rep-
resentation of the drawing. For example, in the ParOcc
constraint, L1, L2, L3 are all adjacent to the region R
as shown in Fig. 1(a). The junction J in Fig. 1(a) is
any viewpoint-independent junction (such as a Y, W
or L, but not a T-junction caused by a depth discon-
tinuity). Let S1, S2, S3 represent the 3D lines in the
scene which project into L1, L2, L3, respectively. The
labelling in Fig. 1(a) implies that S1 and S2 are coplanar.
Since S2, S3 intersect, they are also coplanar. Further-
more, since S1, S3 are parallel, they are also coplanar.
It follows that S1, S2, S3 all lie in the same plane, the
face projecting into region R, but this contradicts the
occluding label for L2. A reflected version of the con-
figuration in Fig. 1(a), with L3 to the right of L2, is also
physically impossible.

In the ParCon constraint (Fig. 1(b)), the labellings
shown are impossible provided L1, L2 are parallel but
not parallel to L3. The proof is omitted since we prove
a more general result below. Note that the parallel lines
L1, L2 do not necessarily face each other; for example,
the configuration in Fig. 1(c) gives rise to the same
constraint.

Figure 2 shows an example of the use of the ParCon
constraint. Applying the trihedral catalogue (Clowes,
1971; Huffman, 1971) and the Outer Boundary con-
straint produces a single legal labelling, which in-
cludes the four labels given in Fig. 2(a). However,
this labelling violates the ParCon constraint both on
L1, L2, L3 and on L1, L ′

2, L3. Applying the tetrahe-
dral catalogue (Varley and Martin, 2001) instead of

the trihedral catalogue produces an alternative labelling
which includes the four labels shown in Fig. 2(b). This
labelling, in which junction J is the projection of a
tetrahedral vertex, is consistent with the ParCon con-
straint.

We can generalise the ParOcc and ParCon con-
straints to a general constraint which can be applied
to any pair of parallel lines. Consider a labelled draw-
ing produced by orthographic projection. A path is a
locus of points in the drawing from a point on a line
L1 to a point on a line L2. It may intersect any number
of intermediate lines between L1 and L2. A path � is
parallel if L1, L2 are parallel and the tangent to � is
parallel to L1, L2 at each intersection of � with inter-
mediate lines. In the following we assume (by rotation
of the drawing if necessary) that L1 and L2 are hori-
zontal. L1 may be above or below L2 in the drawing
and � may approach intermediate lines L from the left
or the right (but always horizontally). Figure 3 shows
two ways in which a path �, shown as a broken line,
may intersect an intermediate line. The direction of �

is indicated by an arrow.
An intersection between a parallel path � and an

intermediate line L is known as strictly monotone if
L is labelled as in one of the two configurations given
in Fig. 3. The justification for this term is as follows.
Imagine an imaginary horizontal line segment HP in
the plane of the drawing such that HP intersects � at a

Π

L

+

Π

L

−

Figure 3. The catalogue of strictly monotone intersections.
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Figure 4. (a,b) How a strictly monotone path � may begin; (c), (d) how a strictly monotone path � may end.

point P . Let SP be the 3D line segment which projects
into HP and which lies on the 3D planar surface visible
at P . As P follows the path � in the drawing and
intersects an intermediate line L , SP twists in 3D so
that the depth zr of its right hand end either increases
or decreases. In both cases shown in Fig. 3, the depth
zr strictly increases. The angle of line L in Fig. 3 is
arbitrary, but L must be at an angle greater than ε to
the horizontal to avoid superstrictness problems (i.e.
marking a legal labelling as illegal due to rounding
errors in the positions of junctions). Note that the path
� is shown as a straight line but may be any continuous
curve provided that the tangent to � at its intersection
with L is horizontal.

Figure 4 shows some ways in which a path may
begin or end at the horizontal lines L1, L2. The generic
label � = {+, −, →} is as in Fig. 1. J represents any
viewpoint-independent junction (i.e. not a T-junction
caused by a depth discontinuity). In Fig. 4(b), (d) any
number of other lines can meet at J , as shown. The
angle between L ′ and L1(L2) is arbitrary. No other
junction lies on L1(L2) between J and the point P
where � intersects L1(L2).

A parallel path is called strictly monotone if

1. it contains only strictly monotone intersections
2. it begins at a line L1 in one of the configurations

shown in Fig. 4(a) or (b)
3. it ends at a line L2 in one of the configurations shown

in Fig. 4(c) or (d)
4. either it contains at least one intersection or it begins

with a configuration in Fig. 4(b) or it ends with a
configuration in Fig. 4(d).

It is clear that if the two parallel lines L1 and L2 are
projections of parallel lines in 3D, then there can be no

strictly monotone path joining L1 and L2; otherwise
the line projecting into L2 would be twisted compared
to the line projecting into L1. The Parallel Lines con-
straint simply says that no strictly monotone parallel
path exists in a labelled line drawing. It is easily seen
that the ParOcc and ParCon constraints are just special
cases of the Parallel Lines constraint.

Figure 5 shows an example of the use of the Parallel
Lines constraint. Even assuming trihedral vertices and
using the Outer Boundary constraint, this drawing still
has four legal labellings. All but one of these labellings
can be eliminated by applying the Parallel Lines con-
straint to the lines AB, EF with a path � passing by the
intermediate lines BC, ED. The labelling in Fig. 5(a) is
an example of a labelling that violates this constraint.
Figure 5(b) is the only legal labelling consistent with
the Parallel Lines constraint.

A strictly monotone path may begin and end at the
same line, since a line is necessarily parallel to itself.
In this case, we do not need the assumption of an or-
thographic projection. A strictly monotone path may
contain no intermediate lines provided it begins or ends
in one of the configurations in Fig. 4 (b), (d). Figure 6
shows a constraint on the labelling of three consecu-
tive lines on the boundary of a region R. Any num-
ber of lines can meet at junctions A and B, as shown,
and the angles α, β are arbitrary. The labelling shown
in Fig. 6 is illegal if junctions A, B are viewpoint-
independent (i.e. not depth-discontinuity T-junctions),
there are no other junctions between A and B, and the
surface projecting into region R is planar. This con-
straint is easily deduced from the Parallel Lines con-
straint with a strictly monotone path leaving the line
AB towards the right and immediately returning to
AB.
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Figure 5. (a) A legal labelling according to the trihedral catalogue and the Outer Boundary constraint; (b) the unique and correct labelling
found by also applying the Parallel Lines constraint and propagating.
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Figure 6. This labelling is impossible by the Parallel Lines con-
straint.

It is clear that when applying the Parallel Lines con-
straint it is not necessary to specify the actual locus of
points traced by the path �: we identify � with the
sequence of lines and regions it intersects. However, if
the length t of a path is defined as the number of lines it
contains (including the beginning and end lines), then
the number of strictly monotone paths of length t is
�(nt ) in the worst case where n is the number of lines
in the drawing. Therefore, in practice, we recommend
limiting the use of the Parallel Lines constraint to par-
allel paths with, for example, at most two intermediate
lines. When a line drawing contains many parallel lines,
we can often identify parallel planes. For example, a
human being sees at a glance that the object depicted in
Fig. 2 has three pairs of parallel planar surfaces. If we
know (from their labelling) that lines L1, L2 lie on the
planar surface projecting into region R, lines L ′

1, L ′
2 lie

on the planar surface projecting into region R′, L1, L ′
1

are parallel, L2, L ′
2 are parallel, but L1, L2 are not, then

we can deduce that the surfaces projecting into R, R′ are
parallel planes. In this case, we can extend the Parallel

Lines constraint as follows. A strictly monotone path
can jump from any point in the interior of R to any
point in the interior of R′, without affecting the valid-
ity of the Parallel Lines constraint. We call the resulting
constraint the Extended Parallel Lines constraint.

As a trial of the usefulness of the Parallel Lines con-
straint, we examined the labelled line drawings given in
Varley and Martin’s paper to illustrate their catalogue
of trihedral and tetrahedral junction labellings (Figs.
4–9 and 24–166 of Varley and Martin (2001)). Elimi-
nating mirror-image versions of the same drawing pro-
duced a total of 92 drawings. Nine of these drawings
are such that if taken out of the context of the paper
(where several drawings from different viewpoints are
given of each different object) it would not necessar-
ily be interpreted by a human being as indicated by
Varley and Martin (2001). These drawings were ig-
nored, which left us with 83 line drawings, containing
an average of 14.8 lines each. Out of these 83 draw-
ings, 54 of them were correctly labelled by applying the
Outer Boundary constraint (which simply imposes an
occluding label on the external boundary of the draw-
ing) and prefering trihedral to tetrahedral labellings.
For all the remaining 29 drawings, applying the Parallel
Lines constraint or its extended version was sufficient to
make the correct labelling the unique optimal labelling.
In only three cases did we require the Extended Par-
allel Lines constraint. In all 29 cases, the number of
intermediate lines in the Parallel Lines constraint was
never greater than two. In the experimental trials de-
scribed in this section, we applied the Parallel Lines
constraint (coded as a hard constraint) to all parallel
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paths in the drawing involving up to two intermediate
lines.

In a second trial, we studied the same sample of
83 drawings but this time without applying the Outer
Boundary Constraint. If for each drawing, we imagine
the same object this time depicted resting on a large
flat surface, such as a table-top, the human interpreta-
tion of the drawing does not change, even though the
Outer Boundary Constraint no longer applies. The re-
sulting drawing is only ambiguous for a human being
in that we cannot determine whether the object is actu-
ally touching the surface or not, and if so along which
edges. Surprisingly, the Parallel Lines constraint, to-
gether with our preference for trihedral junction la-
bellings, was sufficient to identify as optimal exactly
the interpretations corresponding to human intuition in
all but one of the 83 drawings. Note that the almost
100% success rate in imitating human intuition as to
which is the most likely interpretation of these draw-
ings is no doubt due to the fact that Varley and Martin
used parallel lines as the main visual cue to avoid am-
biguity in their drawings. Other sets of drawings may
require reasoning about, for example, collinearity or
symmetry.

In a previous paper we studied the interpretation of
line drawings in which lines may be missing due to
contrast failure (Cooper, 2001). If contrast failure is
assumed to only occur between parallel surfaces, then
the Parallel Lines constraint is still valid for strictly
monotone paths � beginning and ending at the config-
urations in Fig. 4(a) and (c). This follows from the fact
that, even if the path � intersects a missing occluding
line, the 3D orientation of the occluding and occluded
surfaces are identical since these surfaces are assumed
to be parallel (Cooper, 2001).

In the following section we give a theoretical appli-
cation, by showing how the Parallel Lines constraint
can be used in the construction of a junction catalogue
for polyhedral vertices.

4. A Universal Constraint for Simple Polyhedral
Junctions

In this section we derive a constraint on the labelling
of a large class of junctions when there is no limit on
the number of surfaces which can meet at a vertex.

Definition 4.1. A simple junction J is any intersection
of lines terminating at J such that no two of these lines
are collinear.

Figure 7 shows a simple junction J . For any line
L terminating at J , we can apply the Parallel Lines
constraint to the path � shown in Fig. 7, since L is
parallel to itself. Note that, in this special case, we no
longer require the assumption of orthographic projec-
tion to apply the Parallel Lines constraint. In this sec-
tion, therefore, we study the labelling of projections
of polyhedral vertices under only a general viewpoint
assumption.

It is a direct consequence of the Parallel Lines con-
straint that the labellings shown in Fig. 8 are illegal.
Note that there may be any number m ≥ 0 of lines
arriving at J from above and any number n ≥ 0 of
lines arriving at J from below. The special case when
L is the only line terminating at J is clearly also illegal,
although this is not a consequence of the Parallel Lines
constraint.

As an example of the use of the Polyhedral Junction
constraint, consider the two labellings of a Multi junc-
tion in Fig. 9. The Polyhedral Junction constraint tells
us that the labelling of Fig. 9(a) is illegal, whereas the
labelling of Fig. 9 is legal (as will be proved below). The
difference between the two configurations is that delet-
ing the concave line leaves a W junction in Fig. 9(a)
and a Y junction in Fig. 9(b). A (+, +, +) labelling
is legal for Y junctions but not for W junctions. Thus
Fig. 9 provides a refinement to the list of labellings for

Π . . .

. . .

LJ

Figure 7. A simple junction J .

. . .

. . .

LJ

−−

+ +

. . .

. . .

LJ

++

− −

Figure 8. The Polyhedral Junction constraint: the labellings shown
are illegal.
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Figure 9. The labelling (a) is illegal, but the labelling (b) is legal.

Multi junctions in the tetrahedral catalogue (Varley and
Martin, 2001).

In fact, the rest of this section is devoted to show-
ing that the constraint of Fig. 8 is the tightest possible
constraint on labellings of simple junctions.

Definition 4.2. A labelled junction J1 is a subla-
belling of a labelled junction J2 if J1 can be obtained
from J2 by deleting some number (possibly zero) of
lines from J2.

For example, a W-junction labelled + − + has 3
L-junction labellings, namely +−,−+, ++, as subla-
bellings.

Figure 10 shows some legal polyhedral junction la-
bellings of L, Y and W junctions.

Lemma 4.3. All labellings of a simple junction J
which are not illegal by the Polyhedral Junction con-
straint (Fig. 8) contain one of the labelled junctions in
Fig. 10 as a sublabelling.

Proof: Let J be a labelled junction which has none
of the labelled junctions in Fig. 10 as sublabellings. We
will show that J is illegal by the Polyhedral Junction
constraint.

J cannot have two or more occluding labels, since
this would imply that it necessarily had as a subla-
belling an L-junction with two occluding labels and all
such labellings of L-junctions are listed in Fig. 10. Sup-
pose that J has just one line A with an occluding label,

−
+ −

+

+

++

−
−− −

++

+

−−

Figure 10. Minimal legal polyhedral junction labellings.

and suppose that A is labelled with an arrow pointing
towards the junction (the proof for other case being
entirely similar). Since J has neither of the first two
L-junction labellings given in Fig. 10 as sublabellings,
it must be of the form shown on the left of Fig. 8 and
hence must be illegal.

If each line meeting at J is labelled +, then since J
has no Y-junction, labelled + + +, as a sublabelling,
there must be an angle α > π between two adjacent
lines. But then J is again illegal by the Polyhedral Junc-
tion constraint. A similar argument applies if all the
lines meeting at J are labelled −.

The only case left to consider is when J has no oc-
cluding labels and at least one + label and at least one
− label. Let A, B be two lines meeting at J such that
A, B have different labels and such that the angle β be-
tween A and B is minimal. Without loss of generality,
suppose A is labelled + and B is labelled −. This sit-
uation is illustrated in Fig. 11. The extensions of lines
A, B divide the plane into four quadrants as shown in
Fig. 11. In Qopp there cannot be two lines with different
labels; if not this would contradict the minimality of β.
In Q A there can be no line labelled −, otherwise J
would have the W-junction labelling −+− as a subla-
belling. Similarly, in Q B there can be no line labelled
+, otherwise J would have the W-junction labelling
+−+ as a sublabelling. The labelling of J is then ille-
gal by the Polyhedral Junction constraint (with L = A
if Qopp contains only + labels and with L = B if Qopp

contains only − labels).

Lemma 4.4. Let J be a labelled simple junction. If
J has a legal polyhedral junction labelling J0 as a
sublabelling, then J is also a legal polyhedral junction
labelling.

Proof: Let J0 be a legal polyhedral labelling which
is a sublabelling of J . Let V0 be a vertex which projects

β
A

B

+

−QB

QA

Qopp

Figure 11. Qopp contains either only + lines or only − lines, Q A

contains only + lines and Q B only − lines.
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Figure 12. Introduction of a new edge E of any type within a surface
bounded by non-collinear edges E1, E2.

into J0. Suppose that L is a line of J which does not
occur in J0. L must lie in some region R between ad-
jacent lines L1, L2 meeting at J0. Let S be the surface
which projects into R.

Consider first the case in which S is a one of the
surfaces meeting at the vertex V0 and that S is bounded
by 3D edges E1, E2 projecting into lines L1, L2. Par-
tition S into two distinct faces S1, S2 separated by a
3D line E which projects into line L . Since E1, E2

are not collinear, by our assumption that J contains
no collinear lines, it is possible to rotate S1 about E1

and S2 about E2, by small angles ε1, ε2, so that E be-
comes either a concave or convex edge. By also creating
a hidden edge, it is possible, in a similar manner, to
construct an occluding edge. Figure 12 shows how it
is possible to introduce a concave, convex or occlud-
ing edge in a vertical surface. For sufficiently small
ε1, ε2, the labelling of the lines L1, L2 of J0 remains un-
changed. The cases in which one or both of E1, E2 oc-
clude the surface S can be dealt with by entirely similar
constructions.

By repeating this operation for each line L of J not in
J0, we can clearly construct a vertex V which projects
into J .

The following theorem now follows immediately
from Lemma 4.3 and Lemma 4.4.

Theorem 4.5. Let J be a labelled simple junction. J
is a legal polyhedral junction labelling if and only if it
satisfies the Polyhedral Junction constraint (Fig. 8).

Huffman (1972) characterised all legal labellings of
simple polyhedral junctions in terms of the possibility
of finding in dual space a closed trace corresponding
to the junction. Theorem 4.5 provides a more explicit
characterisation.

The table in Fig. 13 gives the number of la-
bellings which are realisable as projections of trihedral,

Junction type

L

Y

W

T

Multi

Peak

K

ψ

X

Trihedral

6

5

3

4

-

-

-

-

-

Tetrahedral

8

32

28

20

9

11

8

-

-

Polyhedral

8

52

52

24

240

240

139

94

48

Combinatorial

16

64

64

64

256

256

256

256

256

Figure 13. The number of labellings for junctions of arity up to
four.

tetrahedral or polyhedral vertices, for each junction
type of arity up to four. The figures for trihedral vertices
refer to the basic Huffman-Clowes catalogue (Clowes,
1971; Huffman, 1971). The figures for tetrahedral ver-
tices refer to Varley and Martin’s catalogue (Varley and
Martin, 2001). The lists of legal polyhedral labellings
for L, Y, W, Multi and Peak junctions are easily ob-
tained from Theorem 4.5. The list of legal polyhedral
T-junction labellings can be found in Huffman (1972)
and the lists of legal polyhedral labellings for K, Y and
X junctions were obtained by exhaustive search making
ample use of the Parallel Lines constraint (which inci-
dently was not quite sufficient on its own to eliminate
all illegal labellings since two illegal labellings for the
ψ-junction also satisfy the Parallel Lines constraint).

The figures in the rightmost column are the num-
ber of combinatorially possible labellings. It is clear
that the general polyhedral junction constraints are far
too weak to obtain a unique labelling of a line drawing.
Consider a catalogue containing junction types belong-
ing to a set C (e.g. C = {L, Y, W, T} in the trihedral
catalogue). Let N be the total number of line-ends in
the catalogue (e.g. N = 2 + 3 + 3 + 3 for the tri-
hedral catalogue). Assuming a uniform distribution of
junction types, a drawing with n lines contains on av-
erage 2n

N junctions of each type in C . For each junction
type t ∈ C , let pt be the ratio of the number of legal
labellings to the number of combinatorially possible la-
bellings. Since each line can have one of four labels, the
average number of global legal labellings of a drawing
with n lines is thus

4n
∏

t∈C

p
2n
N

t

We can therefore calculate that the average number
of global legal labellings of a drawing with n lines
is �(1.49n) for the tetrahedral catalogue and �(2.8n)
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for the polyhedral catalogue. This can be compared
with the O(0.73n) average number of legal labellings
using the trihedral catalogue. These figures highlight
the need for new constraints involving small subsets of
lines to reduce the exponential number of global legal
labellings. On the drawings tested, the Outer Boundary
constraint and the Parallel Lines constraint turned out to
be the most powerful such constraints. In the following
sections we establish constraints on the labellings of
sets of lines intersected by a another form of path, based
on depths rather than orientations of surfaces.

5. Lines Sharing the Same Two Regions

In this section we do not need the assumption of or-
thographic projection, but we assume that the drawing
is a projection of a polyhedral scene from a general
viewpoint. In order to introduce a generic constraint
on lines intersected by a path in the drawing, we first
study the special case of a pair of lines adjacent to the
same two regions. In a line drawing of a polyhedral
scene, each line separates two distinct regions of the
drawing. The 2Reg constraint applies when two non-
collinear lines are adjacent to the same two regions.
For example, in both drawings in Fig. 14, the region
above the line AB is the same as the region below
the line CD and the region below the line AB is the
same as the region above the line CD. We represent this
generic situation by the diagram in Fig. 15(a) where the
straight lines L1, L2 labelled l1, l2 are lines present in
the drawing and the other lines are construction lines
which simply indicate which side of the lines share
the same region in the drawing. This is, in fact, a very
common situation since it occurs at every L-junction.
There is a distinct and less common case illustrated in
Fig. 15(b).

A

C
B

D

−

+

(a)

A

C B

D

+

−

(b)

Figure 14. Two impossible pictures of polyhedral objects, both
detected by the 2Reg constraint ((b) is known as Sugihara’s box
(Sugihara, 1986)).

l1 l2

(a)

l1l2 ∈ {−↓, +↑, ↑−, ↓+, ↓↓, ↓↑, ↑↓, ↑↑}
l1

l2

(b)

l1l2 ∈ {−↑, +↓, ↓−, ↑+, ↓↓, ↓↑, ↑↓, ↑↑}

Figure 15. The 2Reg constraint.

Figure 15 gives the list of legal labellings of the two
lines in both cases. Note that the angles between the
two lines are arbitrary. For example, if the two lines
are parallel this does not provide a stronger constraint.
This 2Reg constraint follows from simple reasoning
about the depth of scene points. As an example, con-
sider the case in which l1 = +. It is clear that l1 = +
(convex) implies that a scene point just to the right of
the line L2 is nearer to the viewer than a point just to
the left of L2. This, in turn, implies that l2 = ↑. An
important point is that we do not need an assumption
of trihedral vertices to obtain this constraint. This is,
therefore, a very general constraint, from which can be
deduced, for example, the L-junction constraint in the
general polyhedral catalogue. Indeed the list of eight
labellings in Fig. 15(a) coincides with the list of eight
legal L-junction labellings given in Fig. 10.

An illustration of the strength of the 2Reg constraint
is that it can be used to detect some classic examples of
drawings of impossible polyhedral objects. For exam-
ple, both of the drawings in Fig. 14 have legal labellings
according to the trihedral catalogue, but none of these
labellings is consistent with the 2Reg constraint. In all
trihedral labellings, lines AB and CD have labels + and
−, respectively. But the +− labelling is illegal accord-
ing to the 2Reg constraint.

A special case of the 2Reg constraint that needs to
be considered separately occurs when the two lines are
collinear. In this case, the lists of legal labellings are
given in Fig. 16. These lists are completely different
to those for the 2Reg constraint (Fig. 15). This new
constraint, which we call Col2Reg, was derived us-
ing the general viewpoint assumption which implies
that collinear lines in the drawing are projections of
collinear lines in the 3D scene.

When two lines share only one common region then
without any other information we can deduce nothing
about the possible labellings of the lines. However, in
the case that the two lines are collinear, this gives rise
to a constraint which we call the Col1Reg constraint.
The lists of legal labellings are given in Fig. 17.
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l1 l2

(a)

l1 = l2

l1 l2

(b)

l1l2 ∈ {−+, +−,←→,→←}

Figure 16. The Col2Reg constraint.

l1 l2

(a)

l1l2 ∈ {←←, ++, +−, + →,−+,
−−,− →,→ +,→ −,→→}

l1 l2

(b)

l1l2 ∈ {→←, ++, +−, + →,−+,
−−,− →,← +,← −,←→}

Figure 17. The Col1Reg constraint.

To illustrate the utility of the Col2Reg and Col1Reg
constraints, consider the example line drawing in
Fig. 18. After applying the trihedral catalogue and the
Outer Boundary constraint, seven of the line labels are
still ambiguous. However, by applying the Col2Reg
constraint to the pair of collinear lines (AB, CD) and
the Col1Reg constraint to the pairs of collinear lines
(EF, GH) and (IJ, HK), a unique labelling is deter-
mined after propagation. For example, the fact that
the line AB is labelled as convex (+) implies imme-
diately by Col2Reg (case (b) of Fig. 16) that line CD
is concave (−) rather than occluding (→). Similarly,
the concave label (−) for line EF implies by Col1Reg
(case (a) of Fig. 17) that line GH cannot be labelled
as ←.

Kirousis (1990) gave a constraint for L-chains (se-
quences of lines connected by L-junctions) in drawings
of objects with trihedral vertices. Stated succinctly,
the L-chain constraint says that a + or − label for
a line on an L-chain C uniquely determines the la-
belling of all lines on C and that an occluding label
for a line on C reduces the number of possible labels
for all other lines to at most three. This constraint is
a direct consequence of the 2Reg and Col2Reg con-
straints. It therefore follows that the L-chain constraint
also holds for drawings of objects with non-trihedral
vertices.

6. Cyclic Path Constraint

In Fig. 15(a), (b) it was necessary to make explicit
a cyclic path intersecting the two lines, since the

constraint is not identical for the two distinct cases
shown in Fig. 15. Furthermore, a completely differ-
ent constraint is obtained when the lines are collinear
(Fig. 16). The 2Reg and Col2Reg constraints can be
generalised to the case of a path passing through n > 2
lines. Since, even for n = 3 we identified 95 distinct
cases, we prefer to give a generic constraint valid for
all cases and all values of n. The resulting Cyclic Path
constraint, given below, was inspired by but also strictly
generalises Huffman’s cut-set rule based on reasoning
in dual space (Huffman, 1972). Our rule allows for
paths of arbitrary shape which do not necessarily begin
and end at the same point and we correct Huffman’s
treatment of intersections with occluding lines. It can
be considered as an application of Draper’s sidedness
reasoning (Draper, 1981) along a path in the drawing.

A cyclic path is a path in a drawing which begins at
a point P1 on line L0 and ends at a point P2 on L0. It
is anchored at a point Q collinear with L0. Any two
or three of the points P1, P2 and Q may, and often
do, coincide. Suppose that a cyclic path passes through
regions R1, . . . , Rt which are projections of planar sur-
faces S1, . . . , St and let z1, . . . , zt denote the 3D depths
of these surfaces at a point which projects into Q in the
drawing. Then a labelling is clearly illegal if it implies
z1 ≤ z2 ≤ · · · ≤ zt ≤ z1 with at least one of the
inequalities being strict.

We define the intersection of a path � with a line L ,
separating regions Ri and Ri+1, to be strictly positive
if the labelling of L implies that zi < zi+1. This is the
case for the intersections in Fig. 19(a) and (b), in which
Q lies on the same side of L as Ri (respectively Ri+1)
if L is labelled + (−). An intersection is said to be
null if the labelling of L implies zi = zi+1. This is the
case for the intersection shown in Fig. 19(c), where Q
is collinear with L and L is labelled either convex or
concave. An cyclic path � is strictly positive if

1. � contains only strictly positive or null intersections
2. � begins as shown in Fig. 20(a)
3. � ends as shown in Fig. 20(b–d)
4. either � ends as in Fig. 20(b) and Q does not co-

incide with a junction or � contains at least one
strictly positive intersection.

In the configuration of Fig. 20(b), if the point Q does
not coincide with a junction, then the occluding label
implies a strict depth inequality between the two sur-
faces at Q (z1 < zt ). In the configurations illustrated
in Fig. 20(a) and (c) Q may lie either to the left or the
right of P1 or P2. In Fig. 20(d), the path � may arrive
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A

B
C

D

E

F
G

H

I

J

K

?

? ?

??

?

?

Figure 18. A line drawing which has seven ambiguous labels
(marked with a question mark) after applying the trihedral catalogue
and the Outer Boundary constraint, but which has a unique labelling
after applying the Col1Reg and Col2Reg constraints.

•
Q

Π

(a) +

L

•
Q

Π

(b) −
L

•
Q

Π

(c) +/−

L

Figure 19. (a), (b) the two types of strictly positive intersections;
(c) a null intersection.

• •
QP1

Π

(a)
L0

•
Q = P2

Π

(b)
L0

•
Q

•
P2

Π

(c)
L0

....
..
.. Q = P2•

Π

(d)

Figure 20. (a) How strictly positive cyclic paths begin; (b–d) how
strictly positive cyclic paths end.

from any angle. Whatever the angle, the surface St pro-
jecting into the region Rt through which � arrives at
P2 = Q either intersects or passes behind the vertex
projecting into Q, implying z1 ≤ zt .

The Cyclic Path constraint simply says that a strictly
positive cyclic path is illegal, since a net increase in
depth as we traverse a cycle of surfaces is physically im-
possible. To avoid superstrictness problems, we could
classify an intersection as strictly positive only if the
perpendicular distance between the anchor point Q and
the extension of L exceeds some minimum value δ.
Furthermore, we could choose to only allow the cases

in Fig. 19(c) or Fig. 20(a) and (c) in which the an-
chor point Q actually lies on the line L or L0 (re-
spectively), to avoid superstrictness problems due to
accidental collinearity of Q with these lines. The 2Reg
and Col1Reg constraints are just special cases obtained
by studying cyclic paths containing either one or zero
intermediate lines. The Col2Reg constraint can be ob-
tained from the Cyclic Path constraint and the Paral-
lel Lines constraint (applied to an imaginary line lying
anywhere on a surface but not parallel to the lines in the
drawing).

A path is not specified by an actual locus of points,
but rather by the sequence of regions and lines it in-
tersects. For any given cyclic path intersecting lines
L0, . . . , Lt−1, we do not need to test the Cyclic Path
constraint for every point Q collinear with L0. Imagine
the extension of L0 divided into t segments by its inter-
section with the extensions of the lines L1, . . . , Lt−1.
It suffices to test the constraint for 2t −1 points Q, one
per segment together with each of the t −1 intersection
points. As with the Parallel Lines constraint, we sug-
gest applying the Cyclic Path constraint only to cyclic
paths involving only a small number of lines, since in
the worst case there are �(nt ) cyclic paths of length t
in a drawing containing n lines.

It is important to note that the Cyclic Path constraint
does not require an orthographic projection, and is
hence more generally applicable than the Parallel Lines
constraint. Applied to our sample of drawings from
Varley and Martin (2001), we found that the Cyclic
Path constraint invalidated a subset of the labellings in-
validated by the Parallel Lines constraint (where both
constraints were applied to all paths involving up to two
intermediate lines). As a concrete example, the Poly-
hedral Junction constraint can easily be deduced from
the Cyclic Path constraint, instead of the Parallel Lines
constraint. Nevertheless the Cyclic Path constraint and
Parallel Lines constraint often complement each other.
As an illustration of the strength of the Cyclic Path
constraint, consider the drawing in Fig. 21. The labels
shown are consistent with the trihedral catalogue, the
Outer Boundary constraint and the Parallel Lines con-
straint. However, a cyclic path passing through regions
R1, R2, R0 and intersecting lines AB, CD and EF inval-
idates the labelling (−, +, −) for (AB, CD, EF) if we
choose the anchor point Q as shown. Similarly a cyclic
path passing through regions R3, R4, R0 and intersect-
ing lines GH, IJ, KL invalidates the labelling (→, +, +)
for (GH,IJ,KL) if the anchor point is chosen to be any
point on GH. A more subtle example is the labelling
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A

B

C

D

E F

G H

I J

K
L

M

N

O

S T

Q •

−
+

−

−
++

+

R0

R1

R2 R3

R4

R5

R6

Figure 21. Three examples of applications of the Cyclic Path con-
straint.

(←, +, −) for (LM, NO, ST) invalidated by a cyclic
path passing through regions R5, R6, R0, intersecting
lines LM, NO, ST and anchored at any point of LM.

7. Parallel Junctions on Distinct Faces

The constraints described in this section express a pref-
erence for a small number of distinct orientations of
3D edges in the scene reconstructed from the drawing.
We do not assume planar faces and these preference
constraints can thus be applied even when surfaces are
curved. In this case, the straight lines depicted in the
figures in this section represent tangents to the curved
lines which meet at a junction. All the constraints on
junction pairs given in this section are only valid if
the total number of distinct orientations of 3D edges
meeting at the corresponding pair of vertices is equal
to three. Thus these constraints certainly hold if we can
assume that all faces in the scene are parallel to one of
only three planes. In general, this is too strong an as-
sumption and hence these constraints simply express
a preference for 3D interpretations involving pairs of
trihedral vertices V1, V2 such that each of the planes
meeting at V1 is parallel to one of the planes meeting at
V2. Such interpretations are more likely in the case of
man-made objects, which tend to have many parallel
planes, by a simple application of Bayes’s theorem.

Before giving our constraints on parallel junction
pairs (pairs of junctions involving at least one pair of
parallel lines), we reproduce in Fig. 22 the Huffman-
Clowes (trihedral) catalogue of labelled junctions. We
follow (Parodi and Torre, 1994) in dividing the set of
labellings for Y and W junctions into subcategories
Y(+), Y(−) and W(+), W(−). For example, a Y(+)
junction is the projection of a convex vertex whereas

L1(+)

+

L1(−)

+

L2(+)

L2(−)

−−

Y (+)

+

++

Y (−)

− −
− −− −

W (+)

+ +

−−
W (−)

−

++
T (occlusion)

?

Figure 22. The catalogue of labelled junctions which are projec-
tions of trihedral vertices. A question mark represents any label.

a Y(−) is the projection of a concave vertex or a sad-
dle point. Knowledge of the positions of the vanishing
points of all lines (under perspective projection) is suf-
ficient to classify Y and W junctions as + or − (Parodi
and Torre, 1994). For notational convenience, we also
divide the six labellings of L-junctions into four subcat-
egories (called L1(+), L1(−), L2(+), L2(−)) as shown
in Fig. 22. Let V be a trihedral vertex projecting into an
L-junction J . One of the edges meeting at V is not vis-
ible in the drawing. Let H denote the projection in the
drawing of this hidden edge. When extended, the two
visible lines meeting at J divide the plane of the draw-
ing into four quadrants. For each of the four subcat-
egories L1(+), L1(−), L2(+), L2(−), the hidden line
H lies in a different quadrant. In the Huffman-Clowes
catalogue, the set of legal labellings for an L-junction
is simply the union of the sets of legal labellings for
L1(+), L1(−), L2(+), L2(−) junctions.

Consider any pair of junctions J1, J2 in the draw-
ing. Suppose that the two vertices V1, V2 projecting
into these junctions are both trihedral and, furthermore,
that each of the three edges meeting at V1 is parallel
to one of the edges meeting at V2. Then the list of
possible labellings of J1, J2 is given by the table of
possible junction-types in Fig. 23 (if J1, J2 are Y or W
junctions), Fig. 24 (if J1 is a Y or W junction and J2

is an L junction) or Fig. 25 (if J1, J2 are both L junc-
tions). We call the corresponding constraint the Par3-3,
Par3-2 or Par2-2 constraint, according to the number
of lines meeting at junctions J1 and J2. The Par3-3
constraint has already been stated in a previous paper
(Cooper, 1999), but is repeated here for completeness.
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same sign opposite sign

Figure 23. The Par3-3 constraint: pairs of junctions in the left hand
column are of the same sign; pairs of junctions in the right hand
column are of opposite sign

same sign opposite sign

L2

L1

Figure 24. The Par3-2 constraint: pairs of junctions in the left hand
column are of the same sign; pairs of junctions in the right hand
column are of opposite sign; L-junctions in the top half of the figure
are L2 junctions; L-junctions in the bottom half of the figure are L1

junctions.

L2(+)L1(−), L2(−)L1(+)

L2(+)L1(−), L2(−)L1(+)

L2(+)L1(+), L2(−)L1(−)

L2(+)L1(+), L2(−)L1(−)

L1(+)L1(−), L1(−)L1(+)

L1(+)L1(+), L1(−)L1(−)

L2(+)L2(−), L2(−)L2(+)

L2(+)L2(+), L2(−)L2(−)

L2(+)L1(+), L2(−)L1(−), L1(−)L2(+), L1(+)L2(−)

L2(+)L2(−), L2(−)L2(+), L1(+)L1(−), L1(−)L1(+)

L2(+)L2(+), L2(−)L2(−), L1(+)L1(+), L1(−)L1(−)

Figure 25. The Par2-2 constraint: for each pair of L-junctions
shown on the left, the list of possible junction types are as shown
on the right.

For example, assuming trihedral vertices and that par-
allel lines are projections of parallel 3D lines, the pair of
Y-junctions at the top of the left hand column of Fig. 23
must be the same sign (i.e. Y(+)Y(+) or Y(−)Y(−)).
As another example, the sixth configuration of pairs
of L-junctions given in Fig. 25 has only two legal la-
bellings which involve only three distinct face orienta-
tions. The constraints in Figs. 23–25 were derived by
exhaustive search over all possible types of vertex-pairs
formed by parallel planes, making use of the catalogue
of labelled trihedral junctions in wireframe projections
(Cooper, 2005).

Consider the drawing in Fig. 26(a). The trihedral
catalogue and the Outer Boundary constraint imply
the unique labelling of some lines, but the triangle
ABC remains very ambiguous. Indeed, the triangle
ABC has eight legal labellings. Note that ParOcc elimi-
nates three of these eight labellings, but this still leaves
five physically possible labellings. Par3-2 applied to
the pair of junctions (D, A) indicates that A is an
L1(+) junction which implies a unique labelling for
the whole drawing, corresponding to the most natu-
ral interpretation. Note that applying Par3-2 to any
of the junction pairs (B, E), (C, F), (C, I ) or Par2-
2 to either of the junction pairs (G, A), (B, H ) also
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(a)
A B

C

D E

F
G H

I

(b)
A

G

Figure 26. (a) A line drawing which has eight legal labellings ac-
cording to the trihedral catalogue and the Outer Boundary constraint,
but has only one labelling satisfying the Par3-2 constraint; (b) a line
drawing which can be uniquely labelled using the Par2-2 constraint.

implies the same unique and correct interpretation of
the drawing. Therefore, Par3-2 and Par2-2 would al-
low us to interpret correctly the triangle ABC even
if all but one of the junctions D, E, F, G, H, I were
occluded in the drawing. Figure 26(b) shows such an
example.

The encoding of the Par3-3, Par3-2 and Par2-2
constraints as valued constraints is discussed in detail
in Section 9.

8. Parallel or Collinear Lines Sharing a Region

Among the legal labellings for pairs of collinear lines
given by the Col2Reg constraint, some require more
distinct 3D face orientations than others and, hence,
may be considered less likely. In the list of legal la-
bellings given in Fig. 16(b), the labellings +−, +−
are more likely than the labellings ←→, →←. Note
that all legal labellings given in Fig. 16(a) are equally
likely.

Among the legal labellings given in Fig. 17(a) as
part of the Col1Reg constraint, the labellings +−, −+,
+→, →+ all require more 3D face orientations than
the other legal labellings, and are hence less likely. By
the same reasoning, among the labellings given in Fig.
17(b), the labellings ++, −−, ←→, ← −, − → are
less likely than the others.

All legal labellings given in the 2Reg constraint are
equally likely, since they all require three distinct face
orientations, except in the special case when the lines
labelled l1, l2 in Fig. 15 are parallel. In this case, the
labellings + ↑, ↓ + are more likely than the other la-
bellings given in Fig. 15(a) since they only require two
distinct face orientations. Similarly, the labellings −↑,
↓ −, ↑↑, ↓↓, ↓↑ are more likely than the other la-
bellings given in Fig. 15(b).

A soft constraint also exists when two parallel lines
share a single common region. This situation does not

l1 l2

(a)

−↓, ↑−, ++,−−

l1 l2

(b)

−↑, ↓−, ++,−−
l1

l2

(c)

+↓, ↓+,−+, +−

Figure 27. The Par1Reg soft constraint: the labellings shown are
unlikely labellings l1l2.

give rise to a hard constraint, since all 16 combinations
of labels are theoretically possible. However, certain
labellings require three distinct 3D face orientations
and hence are less likely than those requiring only
two. These unlikely labellings are given in Fig. 27 for
the three distinct configurations of two parallel lines
adjacent to a common region. Note that in Fig. 27(c),
the line labelled l1 may lie to the left or to the right of
the line labelled l2.

9. Encoding of Soft Constraints

In a Valued Constraint Satisfaction Problem (VCSP),
a valued constraint is represented by a local
cost function and the aim is to minimise the
sum of these cost functions (Cooper and Schiex,
2004; Schiex et al., 1995). State-of-the-art VCSP
solvers (http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/
ToolBarIntro) maintain a form of soft arc consis-
tency (such as FDAC) during branch and bound search
and use appropriate variable/value ordering heuristics
(Larrosa and Schiex, 2003). FDAC propagates hard
constraints (represented by infinite costs) in all direc-
tions and propagates finite costs towards earlier vari-
ables in the instantiation order so as to produce a better
lower bound with which to prune the search tree. This
paper is concerned uniquely with new hard and soft
constraints and their encoding as a VCSP; algorithmic
aspects of VCSPs are treated in independent papers
(Cooper, 2003; Cooper and Schiex, 2004).

For a given optimisation problem, many different en-
codings are possible as a VCSP. We say that the encod-
ing of a line drawing labelling problem is faithful if the
set of optimal solutions to the VCSP coincide with the
most likely interpretations. A simple, but naive, encod-
ing associates a fixed cost to the violation of each soft
constraint. Consider a pair of parallel lines, involved in
a large number m of Parallel Lines or Parallel Junctions
(Par3-3, Par3-2 or Par2-2) constraints. It is possible, by
a single violation of the general viewpoint assumption,
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that these two lines are in fact projections of 3D edges
with two distinct 3D orientations, meaning that these
m constraints are invalid. The naive encoding is there-
fore not faithful, since the likelihood that the general
viewpoint assumption is violated is independent of m.

A more faithful encoding is obtained by the intro-
duction of auxiliary variables, which of course has the
drawback of increasing the size of the search space. For
example, we can introduce a variable parS for each set
S of parallel lines in the drawing (parS being true iff all
lines in S are projections of parallel 3D edges). Then
each Parallel Lines constraint along a parallel path �

beginning and ending at lines in S can be encoded as a
hard conditional constraint of the form

parS ⇒ (the Parallel Lines constraint is satisfied

by the lines on �)

An assignment parS = false incurs a fixed finite
penalty corresponding to the violation of the general
viewpoint assumption.

In the case of imperfect line drawings, such as those
derived from freehand sketches, we can obtain an opti-
mal partitioning of 2D lines into sets S1, . . . , Sr of near-
parallel lines, by using, for example, a linear-time opti-
mal segmentation algorithm applied to the sorted array
of their angles (Cooper, 1998). An auxiliary boolean
variable parSi would be required for each Si contain-
ing at least two distinct lines involved in at least one
Parallel Lines or Parallel Junctions constraint.

A Par3-3 constraint between J, J ′ can be simply
encoded as a hard conditional constraint of the form

parSp ∧ parSq ∧ parSr ⇒
(the Par3-3 constraint is satisfied on J , J ′)

where the lines meeting at the junctions J, J ′ belong to
the sets of parallel lines Sp, Sq , Sr . In the case of Par3-
2 constraints, the corresponding conditional constraint
is a soft constraint, since even if the two visible lines
are projections of parallel 3D edges, we are merely
expressing a preference for vertices in which the hidden
third edge is parallel to the visible third edge. In other
words, the constraint

parSp ∧ parSq ∧ parSr ⇒
(the Par3-2 constraint is satisfied on J , L)

can be violated with a fixed finite cost chosen as a

function of the likelihood that the hidden third edge is
parallel to the visible third edge. (As above, the lines
meeting at J belong to the sets Sp, Sq , Sr .) The encoding
of the Par2-2 constraint is entirely similar.

Alternative, more faithful, encodings exist at the cost
of the introduction of more auxiliary variables. For ex-
ample, we could introduce an auxiliary variable VL

with domain {0, . . . , r}, for each L junction L , where
VL = i if the hidden third line is parallel to the lines in
Si and VL = 0 if this hidden line is parallel to no other
visible lines in the drawing. In other words, we attempt
to explicitly reconstruct the directions of hidden lines.

10. Discussion

In this paper we have presented constraints for the
labelling of line drawings of polyhedral scenes. The
resulting constraints are necessary but not sufficient
conditions for physical realisability. The aim of this re-
search is to identify low-arity hard or soft constraints
which can be applied before or during the search for an
optimal interpretation. We consider such constraints to
be essential for any practical line drawing interpreta-
tion system which is not restricted to objects with tri-
hedral vertices. Indeed, based on junction constraints
alone, we have seen that the number of legal labellings
would be an exponential function of the size of the
drawing.

We have chosen to restrict our attention to constraints
on lines intersected by a path as well as constraints
derived from the presence of parallel or collinear
lines. Many other constraints exist. Examples include
constraints derived from the presence of lines collinear
with junctions (Cooper, 2001), collinear lines (Lipson
and Shpitalni, 1996), cubic corners (Conesa Pastor

A

B

C

D
E

F

G

H +

− −

Figure 28. An example of a physically unrealisable labelled draw-
ing not detected by our constraints.
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et al., 1999; Varley and Martin, 2002), skew symmetry
(Piquer Vicent et al., 2003) or vanishing points (Parodi
and Torre, 1994). Furthermore, we have only studied
low-arity constraints, and thus our constraints are
necessarily incomplete even in the treatment of parallel
and collinear lines. For example, the labelled drawing
in Fig. 28 is physically unrealisable although it satisfies
all the constraints given in this paper. Physically unre-
alisability is a consequence of the following argument.
From the labelling and the presence of parallel lines,
we can deduce that GACE and DFH lie on two parallel
planes. But then, since AB is parallel to CD, it follows
that B should not be visible since it must lie behind the
plane DFH. We can thus deduce an arity-4 constraint
based on the presence of three pairs of parallel lines.
It is, of course, debatable whether constraints based
on the presence of several pairs of parallel lines will
be sufficiently robust to be worth applying in practical
applications.
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