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Abstract. In this work, we are trying to propose fast algorithms for Mumford-Shah image segmentation using some
recently proposed piecewise constant level set methods (PCLSM). Two variants of the PCLSM will be considered
in this work. The first variant, which we call the binary level set method, needs a level set function which only takes
values ±1 to identify the regions. The second variant only needs to use one piecewise constant level set function
to identify arbitrary number of regions. For the Mumford-Shah image segmentation model with these new level set
methods, one needs to minimize some smooth energy functionals under some constrains. A penalty method will
be used to deal with the constraint. AOS (additive operator splitting) and MOS (multiplicative operator splitting)
schemes will be used to solve the Euler-Lagrange equations for the minimization problems. By doing this, we obtain
some algorithms which are essentially applying the MBO scheme for our segmentation models. Advantages and
disadvantages are discussed for the proposed schemes.
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1. Introduction

Recently, some piecewise constant level set meth-
ods (PCLSM) were proposed in Lie et al. (2005,
2004, 2003) for image segmentation and other inter-
face problems. The binary level set method of Lie et
al. (2004) is closely related to the phase field models
(Du et al. 2004; Modica and Mortola 1977; Samson
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et al. 2000; Evans et al. 1992; Aubert and Kornprobst
2002; Rubinstein et al. 1989, 1993). For applications
to image segmentation, it extends the ideas used in
Gibou and Fedkiw (2002); Song and Chan (2002). The
method proposed in Lie et al. (2003) seems to be a novel
approach for tracing interfaces separating a domain into
subdomains. It just needs to use one level set function to
identify arbitrary number of regions. In Lie et al. (2004,
2003, 2005), the PCLSM was used for Mumford-Shah
image segmentation. A smooth energy functional needs
to be minimized under some constraint. The augmented
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Lagrangian method is used to deal with the constraint.
For numerical implementations, Uzawa type of gra-
dient iteration was used to find the minimizer of the
cost functional. The iteration number is usually high.
The purpose of this work is to develop some fast algo-
rithms for these piecewise constant level set methods
(PCLSM). We shall still concentrate on image segmen-
tation in this work, but the method can be used for other
problems that need to partition a domain into subdo-
mains to minimize some energy functional.

We shall mainly try to use two technical devices to
accelerate the convergence of the PCLSM. The first
one is to use the MBO type of projection to deal with
the constraint. The MBO scheme of Merriman et al.
(1994) is used in a phase field model for motion by
mean curvature.

Once the constraint has been handled by the MBO
projection, we then propose AOS (additive operator
splitting) schemes or multiplicative operator splitting
(MOS) schemes to solve the Euler-Lagrange equations
for the minimization of the energy functional. These
splitting schemes could treat the time stepping in an
implicit or semi-implicit manner and thus allow large
time steps to be used. In addition, the computing cost
is kept at a lower level due to the fact that tri-diagonal
matrices can be solved exactly with low computing cost
(Lu et al., 1991; Weickert et al., 1998).

We want to emphasize that we are trying to use MBO
type of projection for two different piecewise constant
level set methods. One of them, i.e. the binary level set
method, is closely related to phase field models. The
other just needs one level set function to identify ar-
bitrary number of regions. It shall be mentioned that
it is not new to use phase field for image segmen-
tation problems, for example see Ambrosio and Tor-
torelli (1990); Aubert and Kornprobst (2002); Samson
et al. (2000); March (1992). However, the approach
of Lie et al. (2003) seems to offer a new technique
to trace interfaces. In some recent works Esedoglu
and Tsai (2004); Shen (2005), similar efforts have
been devoted to use the phase field model or the bi-
nary level set idea to get efficient image segmentation
algorithms. One purpose of this work is to show that
we can use MBO type of projection for the binary level
set method. Moreover, such a technique can also be
extended to the single PCLSM of Lie et al. (2003).
Numerical experiments show that we can indeed use
one level set function to identify multiple regions and
the efficiency is rather high compared with the tradi-
tional approaches of Chan and Vese (2001); Vese and

Chan (2002); Lie et al. (2003, 2004); Weickert and
Kühne (2003). In addition, our methods are truly vari-
ational. It avoids the re-initialization procedure and the
connection with Heaviside type of non-differentiable
functions. Moreover, the traditional level set method
is trying to move a curve and this is not the case for
our models. The model proposed here has advantages
in treating some geometries, for example in situations
where inside ”holes” need to be identified. We also note
that both the Chan-Vese model and our model can be
extended to shape recognition using the framework of
Cremers et al. (2004, 2003).

There also exists fast level set methods without solv-
ing PDEs. In a recent paper Shi and Karl (2005) present
a method whose foundation is the direct use of an op-
timality condition for the final curve location based on
the speed field.

This work is organized as follows: Some splitting al-
gorithms are introduced in §2. The splitting algorithms
are used later to solve the Euler-Lagrange equations for
the minimization problem for the piecewise constant
level set methods. In §3, the MBO scheme of, Merriman
et al. (1994) is presented. The binary level set method of
Lie et al. (2004) is outlined in §4. After introducing the
MBO scheme and the binary level set method, we try
to combine them in §5. Once we have applied the MBO
projection for the binary level set method, it is easy to
see that we can extend it to the single level set approach
of Lie et al. (2003) using a slightly different projection,
see §6. A number of algorithms are summarized here
using different splitting techniques to improve the ef-
ficiency. Algorithm 1 is a recall of the MBO scheme.
Algorithms 2 and 3 are an explanation of MBO as a
splitting scheme for a phase field model. Algorithms
5 and 6 are then the applications of Algorithms 2 and
3 together with the dimensional splitting to the piece-
wise constant level set functions for multi-phase image
segmentation. Intensive numerical experiments are pre-
sented in §7. Our numerical experiments indicate that
Algorithm 6 is mostly recommended.

2. Sequential and Parallel Splitting Algorithms

For a given function space V and an operator (linear
or nonlinear) defined in V , we often need to solve the
following time dependent equation:

∂φ

∂t
+ A(φ) = f (t), t ∈ [0, T ], φ(0) = φ̂ ∈ V .

(1)
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In case that the operator A and the function f can be
split in the following way:

A = A1 + A2 + · · · Am, f = f1 + f2 + · · · fm, (2)

then some splitting schemes can be used to approximate
the solution of (1). Normally, the operators Ai are sim-
pler and easier to solve. The first scheme is called the
parallel splitting scheme or additive operator splitting
(AOS) scheme. First we choose a time step τ and set

φ0 = φ̂. At each time level t j = jτ , we compute φ j+ i
2m

in parallel for i = 1, 2, · · · , m from:

φ j+ i
2m − φ j

mτ
+ Ai (φ

j+ i
2m ) = fi (t j ), and then set

φ j+1 = 1

m

m∑
i=1

φ j+ i
2m . (3)

Note that all the subproblems for the operators Ai use
the same initial value φ j . This algorithm was first pro-
posed in Lu et al. (1991, 1992). It was discovered in-
dependently later in Weickert et al. (1998) and used
in a different context for image processing (Weickert
and Kühne, 2003; Steidl et al., 2004; Barash et al.,
2003; Barash, 2005). This scheme is locally second or-
der of accuracy and globally first order of accuracy,
i.e.

e j = φ j − φ(t j ) = O(τ ). (4)

See Lu et al. (1992) for a proof of this error estimate.
The advantage of the above scheme is that all the sub-
problems can be computed in parallel. Another advan-
tage of the scheme is that it treats all the operators Ai

in the same way. For image processing problems, the
operators Ai are differential operators in the xi direc-
tions. Thus this scheme will treat all the spatial vari-
ables in a symmetrical way and avoid the artifacts pro-
duced by treating the spatial variables in nonsymmetric
ways.

The following sequential scheme, sometimes also
called the multiplicative operator splitting (MOS)
scheme can also be used to approximate the solution
of (1):

φ j+ i
m − φ j+ i−1

m

τ
+ Ai (φ

j+ i
m ) = fi (t j ),

i = 1, 2, · · · , m. (5)

The above scheme uses different initial values for the Ai

operators and thus must be computed sequentially for
i = 1, 2, · · · , m. This scheme also has the first order
convergence as stated in (4). Both schemes (3) and (5)
are absolutely stable for some differential operators,
see Marchuk (1990); Lions and Mercier (1979).

In case that the equation (1) has a steady state, then
the steady state satisfies

A(φ) = f. (6)

Both schemes (3) and (5) can be used to compute the
solution of (6). However, the parameter τ should not be
regarded as a time step, but as a relaxation parameter.
For the stability and convergence analysis of (3) and (5)
for solving eq. (6), we refer to Lu et al. (1991, 1992).

3. The MBO Scheme

Merriman, Bence, and Osher introduced a very interest-
ing scheme to approximate the motion of an interface
by its mean curvature (Merriman et al., 1994). Suppose
we wish to follow an interface moving with a normal
velocity equal to its mean curvature. The MBO scheme
for the case of two regions is given as an algorithm be-
low:

Algorithm 1. (MBO scheme for two regions)
Choose initial value φ(0) = ±1 and the time step τ .
For n = 0, 1, 2, · · · and tn = nτ ,

• Solve φ̃(t), t ∈ [tn, tn+1] from

φ̃t = �φ̃, φ̃(tn) = φ(tn) in �,
∂φ̃

∂n
= 0 on ∂�.

(7)

• Set

φ(tn+1) =
{−1 if φ̃(tn+1) < 0,

1 if φ̃(tn+1) ≥ 0.
(8)

In the original paper (Merriman et al., 1994), the phase
function φ is taking values 0 or 1. Here we use ±1 to be
consistent with our notation. To apply the above scheme
for mean curvature motion of multiphase symmetric
junctions, one just needs to use multiple phase func-
tions φi , i = 1, 2, · · · r and project the largest value of
φi to 1 and the others to −1 (See Ruuth (1998)).
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The connection between the MBO scheme and the
splitting algorithm is revealed in Esedoglu and Tsai
(2004); Evans et al. (1992); Rubinstein et al. (1989,
1993); Glowinski et al. (2003) by interpreting it as a
phase field method. Let u be the solution of

ut = ε�u − 1

ε
W ′(u), (9)

with W (s) = (s2 − 1)2/2. It is known that the rescaled
solution u(x, t

ε
) is the solution of the mean curvature

motion in the limit when ε → 0+, c.f. Evans et al.
(1992); Modica and Mortola (1977); Rubinstein et al.
(1989, 1993).

If we use the splitting scheme (5) to solve (9), we
would need to solve the following two equations on
[tn, tn+1]:

a) φt = ε�φ, b) φt = −1

ε
W ′(φ). (10)

The rescaled solution φ(x, tn/ε) of (10.a) is exactly the
solution of (7). When ε → 0+, the rescaled solution
φ(x, tn/ε) of (10.b) has three values, i.e. 1, 0, −1. We
drop the nonstable solution 0 and get (8). This splitting
scheme bears some of the natures of the algorithm that
have been analyzed in Lions and Mercier (1979).

4. The Binary Level Set Method

The binary level set method was originally introduced
in Lie et al. (2004). To introduce the main idea, let
us first assume that the interface is enclosing �1 ⊂
� ⊂ Rd . For the standard level set methods, we need
to use a distance function φ and the interior of �1 is
represented by points �x : φ(�x) > 0, and the exterior
of �1 is represented by points �x : φ(�x) < 0. For the
binary level set method, we instead use a discontinuous
level set function φ, with φ(�x) = 1 if �x is an interior
point of �1 and φ(�x) = −1 if �x is an exterior point of
�1, i.e.

φ(�x) =
{

1 if �x ∈ int( �1),
−1 if �x ∈ ext( �1).

(11)

Thus � is implicitly defined as the discontinuity of φ.
This representation can be used for various applications
where subdomains need to be identified. We shall use
this idea for image segmentation. Let us assume that u0

is an image consisting of two distinct regions �1 and

�2, and that we want to construct a piecewise constant
approximation u to u0. Let u(�x) = c1 in �1, and u(�x) =
c2 in �2. If φ(�x) = 1 in �1, and φ(�x) = −1 in �2, u
can be written as the sum

u = c1

2
(φ + 1) − c2

2
(φ − 1). (12)

The formula (12) can be generalized to represent func-
tions with more than two constant values by using
multiple functions {φi } following the essential ideas of
the level set formulation used in Chan and Tai (2003);
Vese and Chan (2002). A function having four constant
values can be associated with two level set functions
{φi }2

i=1 satisfying φ2
i = 1. More precisely, a function

given as

u = c1

4
(φ1 + 1)(φ2 + 1) − c2

4
(φ1 + 1)(φ2 − 1)

− c3

4
(φ1 − 1)(φ2 + 1) + c4

4
(φ1 − 1)(φ2 − 1), (13)

is a piecewise constant function of the form

u(�x) =

⎧⎪⎪⎨⎪⎪⎩
c1, if φ1(�x) = 1, φ2(�x) = 1,

c2, if φ1(�x) = 1, φ2(�x) = −1,

c3, if φ1(�x) = −1, φ2(�x) = 1,

c4, if φ1(�x) = −1, φ2(�x) = −1.

Introducing basis functions ψi as in the following

ψ1 = 1

4
(φ1 + 1)(φ2 + 1),

ψ2 = (−1)
1

4
(φ1 + 1)(φ2 − 1)

ψ3 = (−1)
1

4
(φ1 − 1)(φ2 + 1),

ψ4 = 1

4
(φ1 − 1)(φ2 − 1), (14)

we see that u can be written as

u =
4∑

i=1

ciψi . (15)

For more general cases, we can use N level set func-
tions to represent 2N phases. To simplify the nota-
tion, we define the vectors �φ = {φ1, φ2, . . . , φN }
and �c = {c1, c2, . . . , c2N }. For i = 1, 2, . . . , 2N , let



Image Segmentation Using PCLSM 65

(bi−1
1 , bi−1

2 , . . . , bi−1
N ) be the binary representation of

i − 1, where bi−1
j = 0 or 1. Furthermore, set

s(i) =
N∑

j=1

bi−1
j , (16)

and write ψi as the product

ψi = (−1)s(i)

2N

N∏
j=1

(φ j + 1 − 2bi−1
j ). (17)

Then a function u having 2N constant values can be
written as the weighted sum

u =
2N∑
i=1

ciψi . (18)

If the level set functions φi satisfy φ2
i = 1 and ψi are

defined as in (15) or (17), then supp(ψi ) = �i , ψi = 1
in �i , and supp(ψi ) ∩ supp(ψ j ) = ∅ when j �= i .
This ensures non-overlapping phases, and in addition⋃

i supp(ψi ) = �, which prevents vacuums. It is clear
that ψi is the characteristic function of the set �i .

If the level set functions satisfy φ2
i = 1, then we can

use the basis functions ψi to calculate the length of the
boundary of �i and the area inside �i , i.e.

|∂�i | =
∫

�

|∇ψi |dx, and |�i | =
∫

�

ψi dx .

(19)

The first equality of (19) shows that the length of the
boundary of �i equals the total variation of ψi . See
Ziemer (1989) for more explanations about the total
variations of functions that might have discontinuities.
In numerical computations, we use the approximation∫

�

|∇ψi |dx
.=

∫
�

√
|∇ψi |2 + ε dx, (20)

for a small ε and the gradient ∇ψ is approximated by
finite differences.

We have now introduced a way to represent a piece-
wise constant function u by using the binary level set
functions. Based on this we propose to minimize the
following Mumford-Shah functional to find a segmen-

tation of a given image u0 (Mumford and Shah, 1989):

Fms(�φ, �c) = 1

2

∫
�

| u − u0 | 2dx + β

2N∑
i=1

∫
�

|∇ψi |dx .

(21)

In the above, β is a nonnegative parameter controlling
the regularizing, u is a piecewise constant function de-
pending on �φ and �c, as in (18). The first term of (21)
is a least square functional, measuring how well the
piecewise constant image u approximates u0. The sec-
ond term is a regularizer measuring the length of the
edges in the image u0. It is easy to see that

c1(N )
N∑

i=1

∫
�

|∇φi |dx ≤
2N∑
i=1

∫
�

|∇ψi |dx

≤ c2(N )
N∑

i=1

∫
�

|∇φi |dx, (22)

where c1(N ) and c2(N ) only depend on N . Thus, we
can replace the regularization term by an equivalent
one and get the following simplified cost functional:

F(�φ, �c) = 1

2

∫
�

| u − u0 | 2dx + β

N∑
i=1

∫
�

|∇φi |dx .

(23)

Considering the constraints imposed on the level set
functions, we find that the segmentation problem is the
following constrained minimization problem

min
�φ, �c

F(�φ, �c), subject to φ2
i = 1, ∀ i. (24)

Recall that �φ is a vector having N elements φi . For
notational simplicity, we introduce a vector �K (�φ) of
the same dimension as �φ with Ki (�φ) = φ2

i − 1. It is
easy to see that

φ2
i = 1, ∀i ⇔ �K (�φ) = �0. (25)

In the next section, we try to use the MBO scheme
to solve this minimization problem and point out a
relationship between our scheme and the scheme of
Esedoglu and Tsai (2004).
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5. Combining the MBO Projection with the
Binary Level Set Method

In order to make the relation clear, we shall consider
the two dimensional two-phase model here, that is, we
need to solve

min
φ, �c

F(φ, �c), subject to φ2 = 1 (26)

The minimization functional in this case is:

F(φ, �c) = 1

2

∫
�

| u(φ, �c) − u0 | 2dx + β

∫
�

|∇φ|dx .

(27)

For the two-phase problem, we have

ψ1 = 1

2
(1 − φ), ψ2 = 1

2
(1 + φ). (28)

In case that φ2 = 1, we can use relation (28) to show
that the minimization functional of (26) is exactly

Fμ(φ, �c) = 1

2

∫
�(φ=1)

|c1 − u0 | 2dx

+ 1

2

∫
�(φ=−1)

| c2 − u0 | 2dx + β

∫
�

|∇φ|dx .

If we use a penalization term to tackle the constraint
φ2 = 1, we need to choose a small μ and solve:

min
φ, �c

Fμ(φ, �c), (29)

where

Fμ(φ, �c) = 1

2

∫
�

| u(φ, �c) − u0 | 2dx

+ β

∫
�

|∇φ|dx + 1

μ

∫
�

W (φ)dx, (30)

with u(φ, �c) = c1ψ1(φ) + c2ψ2(φ) and W (φ) = (φ2 −
1)2. In order to find a minimizer for (29), we shall find
�c and φ that satisfy

a)
∂ Fμ

∂�c = 0, b)
∂ Fμ

∂φ
= 0. (31)

As u is linear with respect to �c, we see that Fμ is
quadratic with respect to �c. For a given φn , the min-

imizer of Fμ with respect to �c satisfies

2∑
j=1

∫
�

ψi (φ
n)ψ j (φ

n)cn
i =

∫
�

u0ψi (φ
n), ∀i, i = 1, 2.

(32)

For a fixed �c, the steepest decent method in φ for the
energy functional (30) gives the following equation for
the level set function φ:

φt = β∇ ·
( ∇φ

|∇φ|
)

− (u(φ, �c) − u0)
∂u

∂φ
− 1

μ
W ′(φ),

(33)

with boundary condition

∇φ

|∇φ| · �n = 0 on ∂�.

To use the MOS splitting scheme (5) to compute φ for
a given �cn , we choose a τ > 0 and an initial value φ0

and then solve

φn+1/2 − φn

τ
= ∂ F

∂φ
(φn+1/2, �cn). (34)

Afterwards, we need to solve

φn+1 − φn+1/2

τ
= − 1

μ
W ′(φn+1). (35)

For the parallel splitting scheme (3), we will need to
solve

φn+1/4 − φn

2τ
= − 1

μ
W ′(φn+1/4). (36)

and

φn+1/2 − φn

2τ
= ∂ F

∂φ
(φn+1/2, �cn). (37)

In the end, we set

φn+1 = 1

2
(φn+1/4 + φn+1/2).
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For simplicity, we define the function for the MBO
projection to be

P(x) =
{

1 if x ≥ 0
−1 if x < 0

. (38)

If we replace the solving of (35) and (36) by the MBO
projection, we get the following two algorithms.

Algorithm 2. (MOS MBO scheme) For n = 0, 1,

2, · · ·

• Solve φn+1/2 from

φn+1/2 − φn

τ
= β∇ ·

( ∇φn+1/2

|∇φn+1/2|
)

− (u(φn+1/2, �cn) − u0)
∂u

∂φ
(φn+1/2, �cn). (39)

• Set

φn+1 = P(φn+1/2). (40)

• Compute �cn from (32).

Algorithm 3. (AOS MBO scheme) For n =
0, 1, 2, · · ·

• Solve φn+1/2 from

φn+1/2 − φn

2τ
= β∇ ·

( ∇φn+1/2

|∇φn+1/2|
)

− (u(φn+1/2, �cn) − u0)
∂u

∂φ
(φn+1/2, �cn). (41)

• Set

φn+1 = (P(φn) + φn+1/2)/2. (42)

• Compute �cn from (32).

For the above two algorithms, we may not need to
update the values for cn at each iteration.

If we replace the total variation regularization term∫
�

|∇φ|dx by
∫
�

|∇φ|2dx (which is not suggested

though), we need to replace the curvature term ∇·( ∇φ

|∇φ| )
by �φ (i.e the Laplacian of φ) in all the algorithms. If
we do this for Algorithm 2, we will get essentially the
same algorithms as Esedoglu and Tsai (2004). For clar-
ity, we write this scheme in the following:

Algorithm 4. (The scheme of Esedoglu and Tsai
(2004)) For n = 0, 1, 2, · · ·

• Solve φn+1/2 from

φn+1/2 − φn

τ
= β�φn+1/2

− (u(φn+1/2, �cn) − u0)
∂u

∂φ
(φn+1/2, �cn). (43)

• Set

φn+1 = P(φn). (44)

When we need to identify more than two subdo-
mains, we need to use multiple level set functions φi .
The iterations for the multiple level set functions are es-
sentially the same as for the one level set function case.
The interplay between the different level set functions
are through the values of u(�φ) which depends on all the
level set functions.

6. A Piecewise Constant Level Set Method

The binary level set method presented in §4 needs to use
more than one level set function φ when more than two
phases are needed in the segmentation. Here we shall
introduce a method that just needs one level set func-
tion to represent multiphase segmentation. This idea
was originally introduced in Lie et al. (2003). Assume
that we need to find N regions {�i }N

i=1 which form a
partition of �. In order to find the regions, we want to
find a piecewise constant function which takes values

φ = i in �i , i = 1, 2, . . . , N . (45)

With this approach we just need one function to identify
all the phases in �. The basis functions ψi associated
with φ are defined in the following form:

ψi = 1

αi

N∏
j=1
j �=i

(φ − j) and αi =
N∏

k=1
k �=i

(i − k). (46)

It is clear that the function u given by u = ∑
ciψi is

a piecewise constant function and u = ci in �i if φ

is as in (45). The function u is a polynomial of order
N −1 in φ. Each ψi is expressed as a product of linear
factors of the form (φ − j), with the i th factor omitted.
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Thereupon ψi (x) = 1 for x ∈ �i , and ψi (x) equals zero
elsewhere as long as (45) holds.

To ensure that different values of φ should corre-
spond to different function values of u(φ, �c) at conver-
gence, we introduce

K (φ) = (φ − 1)(φ − 2) · · · (φ − N ) =
N∏

i=1

(φ − i). (47)

If a given function φ : � �→ R satisfies

K (φ) = 0, (48)

there exists a unique i ∈ {1, 2, . . . , N } for every x ∈ �

such that φ(x) = i . Thus, each point x ∈ � can belong
to one and only one phase if K (φ) = 0. The constraint
(48) is used to guarantee that there is no vacuum and
overlap between the different phases. In Zhao et al.
(1996) some other constraints for the classical level set
methods were used to avoid vacuum and overlap.

In order to segment a given image, we shall solve
the following constrained minimization problem:

min
K (φ)=0

1

2

∫
�

| u(φ, �c) − u0 | 2dx + β

∫
�

|∇φ|dx . (49)

Above, u(φ, �c) = ∑
ciψi and ψi are given as in (46).

The minimization variables are φ and �c. In Lie et al.
(2003), the length of the subdomain boundaries were
used as the regularization term. Here we replace the
regularization term by the total variation of φ which is
equivalent to the regularization term up to a constant,
c.f. (22).

For the new level set method, the function W (φ) is
defined as W (φ) = |K (φ)|2. If we use a penalization
method to deal with the constraint K (φ) = 0, then the
penalization functional for this case will be:

Fμ(φ, �c) = 1

2

∫
�

| u(φ, �c) − u0 | 2dx + β

∫
�

|∇φ|dx

+ 1

μ

∫
�

|K (φ)|2dx . (50)

If we split A(φ) = ∂ Fμ

∂φ
into a sum of B(φ) = ∂ F

∂φ
,

C(φ) = 1
μ

W ′(φ) and use the splitting schemes and
MBO projections for such a splitting, we will get two
algorithms for this piecewise constant level set method.
We will omit the details of these algorithms as they look
rather similar to Algorithms 2 and 3. The only differ-
ence is the MBO projection. For the level set method

presented in this section, the MBO projection is given
by:

P(x) =
⎧⎨⎩ 1 if x ≤ 1.5

i if x ∈ (i − 0.5, i + 0.5]
N if x > N − 0.5

. (51)

In order to further simplify the computations, we
shall split B into a sum of

Bi (φ) = Di

(
Diφ

|∇φ|
)

+ 1

d
(u(φ, �c) − u0)

∂u

∂φ
(φ, �c),

i = 1, 2, · · · d.

Above Di denotes the partial derivative with respect to
xi and d is the dimension of �, i.e. � ⊂ Rd . We see
that

A = B1 + B2 + · · · Bd + C.

If we use scheme (3) for such a splitting, we will get
the following algorithm if the penalization is replaced
by the MBO projection (51).

Algorithm 5. (Dimensional AOS MBO scheme) For
n = 0, 1, 2, · · ·

• Solve φn+i/2d in parallel for i = 1, 2, · · · d from

φn+i/2d − φn

dτ
= β Di ·

(
Diφ

n+i/2d

|∇φn+i/2d |
)

− 1

d
(u(φn+i/2d , �cn) − u0)

∂u

∂φ
(φn+i/2d , �cn). (52)

• Set

φn+1 = 1

d + 1

(
P(φn) +

d∑
i=1

φn+i/2d

)
. (53)

• Compute �cn from (32).

However, if we solve the subproblems associated
with the operators Bi by the parallel splitting scheme
(3) and do the MBO projection in a sequential fashion,
then the algorithm will look like:

Algorithm 6. (Dimensional MOS MBO scheme) All
the other steps are the same as for Algorithm 5, only
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replace the MBO projection by:

• Set

φn+1 = P
(

1

d

d∑
i=1

φn+i/2d

)
. (54)

Normally, Algorithm 6 is faster than Algorithm 5.
Due to the fact that all the dimensional variables are
treated in a symmetrical manner, it avoids the artifacts
of the dimensional variables. Each subproblem is a one
dimensional problem on the lines parallel to the axes
and they can be solved efficiently using exact solver for
tri-diagonal matrices (Lu et al., 1991, 1992; Weickert et
al., 1998). We have tested all the proposed algorithms,
and it was found that Algorithm 6 combined with the
level set method of §6 is the favorable due to its effi-
ciency and simplicity to implement.

7. Numerical experiments

It should be noted that the basis functions ψi and the
MBO projection operator P are different for the binary
level set method of section §4 and the piecewise con-
stant level set method of section §6. Thus one should
use the correct forms in the different algorithms.

Figure 1. Character and number segmentation from a car plate.

For Algorithms 5 and 5, the subproblems (39) and
(41) are nonlinear. We use the following Picard iteration
to solve these nonlinear equations:

φnew − φn

mτ
= β∇ ·

( ∇φnew

|∇φold |
)

− (u(φold , �cn) − u0)
∂u

∂φ
(φold , �cn). (55)

Normally, we start with the initial value φold = φn . A
CG method can be used to get a φnew through the above
linear equation. We use this φnew as the initial values
again and get another φnew to be used as initial value.
We do a fixed number of iterations for the Picard pro-
cess. In all the experiments shown later, this iteration
number is even set to be 1.

We use the same strategy to solve the nonlinear equa-
tion (52), i.e.

φnew
i − φn

mτ
= β Di ·

(
Diφ

new
i

|∇φold
i |

)
− 1

d
(u(φold

i , �cn) − u0)
∂u

∂φ
(φold

i , �cn). (56)

Similar to the solving of (55), we use φn as the ini-
tial value to get a φnew

i through the above equation,
and then use this φnew

i again as the initial value to get
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Figure 2. Segmentation of the Olympic rings using the MOS MBO scheme. τ = 0.5, β = 0.08.

another φnew
i to be used as the initial value again. As

for (55), we just do one such iteration in all the experi-
ments shown later. Note that the equation (56) reduces
to some one dimensional equations in the xi -direction

Figure 3. Segmentation of the Olympic rings using the AOS MBO scheme. τ = 0.5, β = 0.08.

and thus can be efficiently solved by direct solvers for
tri-diagonal matrices (Lu et al., 1991, 1992; Weick-
ert et al., 1998). Moreover, all these one dimensional
problems can be solved in parallel.
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Figure 4. Difference image between the image segmented by the

MOS MBO scheme and the image segmented by the AOS MBO
scheme.

Figure 6. Segmentation of MRI phantom using MOS MBO scheme and AOS MBO scheme. Last column shows exact segmentation.

Figure 5. MRI image with a change in the intensity values going

from left to right caused by the non-uniform RF-puls.
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Figure 7. 4-phase segmentation using MOS and AOS MBO scheme.

We validate and compare the (dimensional) MOS
MBO scheme, Algorithm 5, and the (dimensional) AOS
MBO scheme, Algorithm 6. We consider only two-
dimensional cases and restrict ourself to gray-scale im-
ages, but the schemes can handle any dimension and
can be extended to vector-valued images as well. Syn-
thesized images, natural images and an MR image are
evaluated. The original image is known for some cases
which we evaluate her. Thereupon it is trivial to find
the perfect segmentation result. To complicate such a
segmentation process we typically expose the original
image with Gaussian distributed noise and use the pol-
luted image as the observation data u0.

All implementation are done in Matlab, and as the
initial φ function we use the input image scaled be-
tween one and the number of phases. In all examples
the iteration is terminated when the relative change in
the level set function φ in L2-norm is less then 10−8.
All tests are run on a 2.8GHz Pentium 4 processor.

In the first example we illustrate a 2-phase segmenta-
tion on a real car plate image. Locating and reading car
plates is a well known problem, and there are a number
of commercial software available. Below we demon-
strate that the MOS MBO scheme and the AOS MBO
scheme can be used for this segmentation. The real
image is 341×446 pixels and is shown in Fig.1(a). We

challenge these two segmentation techniques by adding
Gaussian distributed noise to the real image and use
the polluted image in Fig. 1(b) as the observation data.
The difficult part is to find the optimal choice for τ

and β, and we observe that we need different τ for the
two methods. Both methods perform well, see Fig. 1(c)
and Fig. 1(d). However, with this amount of noise we
miss some details along the edges for the characters
and numbers, even though we have large regularization
parameters. The value we have used is β = 5 for both
schemes. For the MOS MBO scheme the number of
iterations is 14, and the CPU time is 54 seconds. For
the AOS MBO scheme the number of iterations is 30,
and the CPU time is 116 seconds. The MOS MBO is
the faster one in all our results.

In the next example we illustrate a 2-phase segmen-
tation on a noisy synthetic image containing 5 rings as
shown in Fig. 2(a). The size of the image is 110 × 224
pixels. The image is segmented using both the MOS
MBO scheme and the AOS MBO scheme. The results
are shown in Figs. 2 and 3 respectively. In Fig. 2(b) we
have shown the initial φ function, which is the observed
image u0 scaled between one and two, i.e. the num-
ber of phases. For the MOS MBO scheme the number
of iterations is 2, and the CPU time is 1 second. For
the AOS MBO scheme the number of iterations is 9,
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Figure 8. A small difference in the time step τ results in very different segmentations.

and the CPU time is 4.2 seconds. The input data u0

is given in Fig. 2(a) and Fig. 3(a). In Fig. 2(d) and
Fig. 3(d) the φ functions are depicted at convergence.
φ approaches the predetermined constants φ = 1 or 2.
Each of these constants represents one unique phase as
seen in Fig. 2(c) and Fig. 3(c).

The MOS MBO scheme has some artifacts caused by
dimensional splitting. However, the artifacts is hardly
noticeable by human eyes. Fig. 4 shows the differ-
ence between the image segmented by the MOS MBO
scheme and the image segmented by the AOS MBO
scheme.

In our next example segmentation of an MR image
is demonstrated. The image in Fig. 5 is available to the

public at http://www.bic.mni.mcgill.ca/brainweb/. The
size of the image is 296 × 400 pixels. These realistic
MRI data are used by the neuroimaging community
to evaluate the performance of various image analysis
methods in a setting where the truth is known. For the
image used in this test the noise level is 7% and the non-
uniformity intensity level of the RF-puls is 20 %, for
details concerning the noise level percent and the inten-
sity level see http://www.bic.mni.mcgill.ca/brainweb/.
Both the MOS MBO scheme and the AOS MBO scheme
are used to segment the MRI phantom and the results
are depicted in Fig. 6. There are three tissue classes
that should be identified; phase 1: cerebrospinal fluid,
phase 2: gray matter, phase 3: white matter. Because
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Figure 9. A small difference in the time step τ results in very different segmentations.

of this, 4-phase segmentation was used, but we do
not depict the background phase here. We have used
β = 0.52, τ = 0.7 in the MOS MBO scheme and
β = 0.52, τ = 0.35 in the AOS MBO scheme. For the
MOS MBO scheme the number of iterations is 13, and
the CPU time is 42 seconds. For the AOS MBO scheme
the number of iterations is 23, and the CPU time is 80
seconds.

In Fig. 7 we show the results from a 4-phase segmen-
tation of a star image, using the MOS MBO scheme and
the AOS MBO scheme, respectively. The size of the im-
age is 92 × 98 pixels and in both cases β = 0.1, and
τ = 1.

For the MOS MBO scheme the number of iterations
is 2, and the CPU time is 0.32 seconds. For the AOS
MBO scheme the number of iterations is 4, and the CPU
time is 0.49 seconds. In this example, both the τ and β

that give the best result were much easier to find than
for the MR image.

As mentioned, the MBO scheme is very sensitive
to the regularization parameter β and the time step τ .
In some cases a large β is needed in order to keep the
boundary of a phase smooth, and Fig. 8 shows the effect
from a small change in τ . Here β = 30. The difference
in τ in Fig. 8(b) and (c) is very small, yet it leads to
quite different results. Because of the sensitivity to the
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time step illustrated here, finding the good parameters
sometimes requires quite an effort. In these cases we
reach convergence after 7 iterations taking 3.2 seconds
resulting in Fig. 8(b) and 10 iterations taking 4.6 sec-
onds, Fig. 8 (c). Fig. 9 illustrates the same, but here we
have added noise to the input image. Convergence is
reached after 9 iterations taking 4.1 seconds, Fig. 9(b),
and 15 iterations taking 6.9 seconds, Fig. 9(c).

8. Conclusions and remarks

In this work, we propose to combine the MBO scheme
of Merriman et al. (1994) with the piecewise constant
level set methods of Lie et al. (2004, 2003). Numer-
ical experiments show the success of these schemes.
The scheme combining the binary level set method of
Lie et al. (2004) with the MBO scheme of Merriman
et al. (1994) is rather similar to the scheme proposed in
Esedoglu and Tsai (2004), see §4. The schemes using
the piecewise constant level set method of Lie et al.
(2003) and the MBO scheme of Merriman et al. (1994)
in a fashion with the AOS or MOS seem to be new
compared with other proposed schemes. The numeri-
cal experiments show that these schemes are fast and
give good results. Note that only one level set func-
tion is needed to segment any number of phases. The
schemes are rather sensitive to the choice of the time
step τ , some further researches need to be done in order
to find a systematical strategy to choose the time step
for different applications.
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