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Abstract. We describe algorithms for detecting pedestrians in videos acquired by infrared (and color) sensors.
Two approaches are proposed based on gait. The first employs computationally efficient periodicity measurements.
Unlike other methods, it estimates a periodic motion frequency using two cascading hypothesis testing steps to
filter out non-cyclic pixels so that it works well for both radial and lateral walking directions. The extraction of the
period is efficient and robust with respect to sensor noise and cluttered background. In order to integrate shape and
motion, we convert the cyclic pattern into a binary sequence by Maximal Principal Gait Angle (MPGA) fitting in
the second method. It does not require alignment and continuously estimates the period using a Phase-locked Loop.
Both methods are evaluated by experimental results that measure performance as a function of size, movement
direction, frame rate and sequence length.
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1. Introduction

1.1. Research Motivation

Pedestrian detection is critical in many surveillance
systems in order to detect intrusions. Recently there
has been a growing interest in using infrared cameras
for human detection by robot vision techniques because
of the sharply decreasing prices of such cameras and
their ability to work in low light condition. Sensor noise
and target pose variations present challenges. Previous
systems for automatic detecting people by shape and/or
motion using thermal infrared cameras are sometimes
confused by moving foliage, building windows, traffic
signs and more.

For close range pedestrian detection such as driving
assistance systems, shape information can be reliably
extracted. But for targets in middle or far range, it is no
longer dependable and motion cue has to be integrated.
The goal of this work is to develop a general motion
based pedestrian detector in low or regular lighting sit-
uations, where previous shape based methods exhibit
high false alarm rate.

1.2. Algorithm Overview

Object motions that repeat themselves are common in
both nature and man-made environments. Many real-
life motions are periodic such as the wings of flying
birds, a rotating fan and so on. Most human locomo-
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tory motions (e.g., walking, running, skipping, shuf-
fling) are also periodic in the frame of reference that
moves with the person. Knowing that an object’s mo-
tion is periodic is a strong cue for object and action
classification at a distance. Natural repeating motions
tend not to be perfectly regular, i.e., the period varies
slightly from one cycle to the next, or from one body
part to another. For human gait, different parts of the
human body share approximately the same period.

The two methods proposed here are based on peri-
odic motion. One is a bottom-up approach based on
hypothesis testing over periodograms and the other re-
lies on global gait fitting. The first one is designed to
be computationally efficient by identifying periodicity
in pixels. The second is based on a gait feature called
Maximal Principal Gait Angle (MPGA). It is insensi-
tive to alignment error and does not require segmen-
tation but it is more computationally expensive. The
two methods can be used individually or in a combined
manner.

We initialize target candidate by independent motion
detection (Zheng and Chellappa, 1991) or by a method
that uses a hierarchal shape structure, reported in Nanda
and Davis (2002), and track them with a method re-
ported in Zhou et al. (2004). The targets are specified
by bounding boxes in each frame. We focus on peri-
odic motion because gait characterizes pedestrians and
is more reliable when the targets are observed at a dis-
tance. Whether using only period of motion or both
motion and shape, the core task is how to efficiently
use them. We design our methods to detect human:

1. In different poses and from various distances.
2. With a stable statistical performance.
3. With efficient implementation.

The outline of this paper is as follows. Section 2
discusses related work on pedestrian detection. In
Sections 3 and 4 we discuss the pixel level based and
Maximal Principal Gait Angle based methods with pre-
liminary experiments. Section 5 provides a detailed
analysis of sensitivity to several key factors. Finally
Section 6 compares our new methods with other algo-
rithms and provides conclusion.

2. Related Work

In recent years, automatic pedestrian detection in video
has become an active research area in computer vision
(Collins et al., 2000; Maybank and Tan, 2000). This

task is especially difficult for video from moving
platforms and low quality sensors for situation aware-
ness applications. Some of the difficulties in these ap-
plications are (1) non-rigid kinematics of pedestrians;
(2) targets pose and distance change; (3) cluttered back-
grounds and low video quality; and (4) arbitrary camera
motion. Reviews of some of the prior research on this
topic can be found in Gavrila (1999) and Wang et al.
(2003). Useful criteria for classifying pedestrian de-
tectors are the cues they use such as shape or motion.

Examples of algorithms in the first category can be
found in Gavrila (1999) with learning tools such as
wavelets (Oren et al., 2003), neural networks (Zhao
and Thorpe, 2000) and others. Nanda and Davis (2002)
builds a probabilistic shape hierarchy to achieve effi-
cient detection at different scales. The method in Hogg
(1983) and Rohr et al. (1994), uses handcrafted human
models for pedestrian detection, but requires segmen-
tation into body parts which is very difficult. A system
(Pai et al., 2004) proposed by Pai et al. recognizes
pedestrians by measuring the distance between leg sil-
houette after background subtraction, which is not very
applicable to moving platforms. Lipton et al. (1998)
uses a skeleton based ’star’ model to identify humans,
which also depends on the extraction of a foreground
mask. Another approach involves extracting low-level
features such as edges or responses to filter banks, and
using standard pattern classification techniques to de-
termine the presence of a pedestrian as in Papageorgiou
et al. (1998), where the authors extract wavelet features
and then use a SVM to classify. Fang et al. (2003)
compares the multi dimensional features between visi-
ble and infrared images and uses vertical projections of
bright pixels specifically for infrared sensors. Objects
in the background clutter such as windows, traffic
signs and moving foliage often confuse shape based
methods leading to high false alarm rates at acceptable
detection rates. Besides, shape based detectors work
better for close range targets than those far away.

In the motion based category, the gait feature is an-
alyzed based on pixel-wise or region-based oscilla-
tions. The overall statistical periodic behavior pro-
vides classification. For example, Little and Boyd
(1998) use a Discrete Fourier Transform (DFT) to mea-
sure pixel oscillations. Tsai et al. also describes
a similar method using DFT to extract pixel period
in Tsai et al. (1994). Efros et al. (2003) identifies
the cyclic motion in the optical flow domain. Liu,
and Picard (1998) examine the pixel oscillations over
the XT plane to extract the fundamental frequency
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of gait. Seitz and Dyer (1997) present a novel no-
tion for repeating motion: periodtrace to detect mo-
tion trends. Boyd (2004) uses vPLLs (video Phase-
Locked Loops) to measure the period contained in ev-
ery pixel due to gait. Allmen and Dyer (1991), propose
an approach to measure periodicity using a curvature
scale space at each pixel. Polana and Nelson (1997),
show that the recognition of human or animal loco-
motion can be done using low-level, non-parametric
representations and matching against a spatio-temporal
template of motion features. The main limitations
of prior approaches in this second category are the
sensitivity to alignment as well as to changing back-
ground. For videos acquired from moving platforms,
accurate alignment is hard to achieve and hence pixel-
wise periodicity can be corrupted. A method that is
closely related to this paper and motivates our work
can be found in Cutler and Davis (2000). The au-
thors look for the gait period by calculating a simi-
larity matrix for every image pair in a sequence. The
approach is computationally expensive and sensitive
to background clutter. Furthermore, video sensors
in infra-red band contain higher noise levels than in
the visible band, which makes the similarity calcula-
tion easier to corrupt and good alignment harder to
achieve.

Another Major trend in previous methods is to com-
bine shape and motion. Some of them directly train the
detector over shape and motion information simultane-
ously. For example, Viola’s Adaboost detector cascade
in Viola et al. (2003) is a real-time pedestrian detection
algorithm for a static camera. It was trained using pat-
terns of frame difference as well as the static shape
features. Because of the static camera, those regions
which have human-like shapes such as windows, stop
signs and trees etc., are filtered out as non-moving back-
ground by preprocessing and do not enter the classifier
cascade.

There are many multi-stage systems to detect pedes-
trians by using different cues at different steps. One
cue (shape or contour) is used for initial detection and
others (motion, gait) are used as verification. For in-
stance, Curio et al. (2000) proposed a method for the
detection, tracking, and final recognition of pedestrians
crossing a moving observer’s path. The initial detec-
tion process is based on texture analysis and geometric
features. The classification is obtained by a temporal
analysis of the walking process. However their algo-
rithm “is restricted to the detection of pedestrians that
cross the road” (Curio et al., 2000) and hence is not

general enough for robot’s situation awareness such as
intrusion detection.

Another class of methods tried to fit a 3D human
model to 2D image to find the articulation. For exam-
ple, A. Broggi et al. (2000) compare several approaches
relying on the matching between image features and
model features stored in a predefined or dynamically
updated database. A challenge to using model based
fitting is that the complicated nature of human gait and
variations of pose requires a large number of DOF.
Hence it is very difficult to map the non-rigid dynam-
ics. The authors in Broggi et al. (2000) also concluded
that “it is difficult to obtain an exhaustive model set
that gives good results on very different scenes”.

3. Pedestrian Detection by Periodogram

Although gait period is widely used to analyze walking,
few of the proposed method are suitable for detecting
pedestrians. The reason lies in two facts. One is the
high complexity and the other is the sensitivity to pose
change. The state-of-art still lacks of a simple, reliable
and efficient method.

Different known forms of frequency detection are
studied. Phase-Locked Loop and autoregressive mov-
ing average models (ARMA) have been traditionally
used as a convenient tool for estimating frequencies
of sinusoidal time series data. In Quinn and Hannan
(2001), it is estimated from a second order ARMA
model in an efficient fashion. Other frequency estima-
tion techniques are parametric minimum entropy and
subspace methods such as multiple signal classification
(MUSIC) method. The challenge here is how to use
them efficiently to address the very specific problem of
pedestrian detection.

3.1. Pixel Periodicity Extraction

Objects with periodic motion are similar in many as-
pects, including appearance, motion flow, and shape
(Cutler and Davis, 2000). However, environmental
conditions (such as lighting, shadows, cluttered back-
grounds) and internal variations (pose, shape) pollute
the signal and adversely affect detection. Besides,
periodic behavior may only exist in some portion of
an object. We carefully studied and implemented
(Cutler and Davis, 2000) and found that focusing on
the overall similarity between images may fail due to
the large number of non-periodic pixels. In this section,
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we describe our new algorithm which first tests the pe-
riodicity on a pixel-wise level and then analyzes the
overall distribution of periods.

We start from a sequence of bounding boxes. Pre-
processing is carried out to adjust for small alignment
errors and to normalize for size. Assuming that the
intensity at a pixel (i, j) is a sum of a periodic signal
M(i, j)(t) and additive noise n(t) while a non-periodic
pixel contains only noise, we expand the signal in a
Fourier domain.

xt (i, j) = Mt (i, j) + n(t)

= µ(i, j) +
∞∑

k=1

[αk cos(kωt)

+βk sin(kωt)] + n(t) (1)

where n(t) is noise, M(i, j)(t) is the oscillatory signal
and t is time.

To simplify the equations we linearize them and only
use the first 3 coefficients to approximate the original
signal, hence:

xt (i, j) ≈ µ(i, j) + α(i, j) cos(ωt)

+β(i, j) sin(ωt) + n(t), (2)

This approximation enables convenient estimation with
low computation cost. With N observations at t =
0, 1, . . . , N − 1, we have N linear equations and 3
unknown parameters to estimate. We rewrite the N
equations in a matrix form as:

A(ω)


µ(i, j)

α(i, j)
β(i, j)


 = b (3)

where

A(ω) =




1 1 0
1 cos(ω) sin(ω)
...

...
1 cos((N − 1)ω) sin((N − 1)ω)




and

b = [x0(i, j) − n(0), x1(i, j) − n(1), . . . , xN−1(i, j)

−n(N − 1)]T .

For a given period, or frequency ω, the least square
estimator for the parameters is given by:


 α̂(i, j)

β̂(i, j)
µ̂(i, j)


 = (A(ω)T A(ω))−1 A(ω)T b. (4)

The residual sum of squares, for a given ω, is calculated
as:

RSS(ω)

=
N−1∑
t=0

(xt (i, j) − x̂t (i, j))2 (5)

=
N−1∑
t=0

(xt (i, j) − x̂t (i, j))xt (i, j) (6)

=
N−1∑
t=0

x2
t (i, j)−bT A(ω)(A(ω)T A(ω))−1 A(ω)T b (7)

=
N−1∑
t=0

[xt (i, j)−x̄]2−

[A(ω)b]T


 α̂(i, j)

β̂(i, j)
µ̂(i, j)


 −x̄2


 .

The second derivation above results from the orthog-
onality between the original signal and the estimation
error under the Gaussian noise assumption (Quinn and
Hannan, 2001). Thus, the estimate of the period for
the object sequence should be that ω which contributes
a minimal RSS(ω) over all possible frequencies (peri-
ods). Notice that minimizing RSS(ω) is equivalent to
maximizing the second term in (7) with respect to ω.
This enables us to estimate the period directly. More-
over, (A(ω)T A(ω))−1 could be approximated as Quinn
and Hannan (2001):

(A(ω)T A(ω))−1 ≈ 1

N


 1 o(1) o(1)

o(1) 2 o(1)
o(1) o(1) 2 + o(1)


 ,

(8)

where o(1) denotes terms tending to zero, so the cost
function is simplified to:

Ii, j (ω) =
N−1∑
t=0

{
[A(ω)b]T


 α̂(i, j)

β̂(i, j)
µ̂(i, j)


 − x̄2

}
(9)
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≈ bT 1

N




1 + 2 cos 0ω ... 1 + 2 cos(N − 1)ω
1 + 2 cos ω + 2 sin ω ... 1+2 cos(N − 1)ω cos ω+2 sin(N − 1)ω sin ω

...
...

...

1+2 cos(N − 1)ω+2 sin(N − 1)ω
... 1 + 2 cos2(N − 1)ω + 2 sin2(N − 1)ω


 b − N ∗ x̄2

(10)

Substituting b and expanding the result we obtain:

Ii, j (ω) = 2

N

{
N−1∑
t=0

xt (i, j) cos(ωt)

}2

+ 2

N

{
N−1∑
t=0

xt (i, j) sin(ωt)

}2

= 2

N

∣∣∣∣∣
∣∣∣∣∣

N−1∑
t=0

xt (i, j)eiωt

∣∣∣∣∣
∣∣∣∣∣
2

(11)

The quantity Ii, j (ω) is referred to as the periodogram
(Quinn and Hannan, 2001) of the pixel. It has been
proved in Quinn and Hannan (2001) that the maxi-
mizer of the periodogram over all frequencies cannot
be improved on, in terms of asymptotic variance, by
any other technique without extensive knowledge of
the distribution of the noise n(t).

3.2. Periodicity Verification

The periodogram can be regarded as the signal re-
sponse of the system at different frequencies. We
verify the existence of a period via hypothesis test-
ing to confirm the existence of a well-pronounced
peak in the periodogram, i.e. in the strength as a func-
tion of the frequency, for each pixel. By filtering
out non-periodic or stationary pixels, we are able
to focus on periodic pixels only. Given the signal
model as Eq. (2), where the noise is Gaussian, we per-
form the following statistical hypothesis test for every
pixel:

H0 : λ(i, j) = 0 vs. Hλ : λ(i, j) > 0. (12)

where λ is the oscillatory amplitude for function
M(i, j)(t) at the pixel (i, j). It could be approximated
from Eq. (2) as λ ≈ (α2 + β2)1/2. H0 stands for non-
periodic pixels (amplitude is zero) and Hλ for the peri-

odic pixels. We use a Bayesian decision rule based on
the posteriori probability

P(Hλ|X ) <> P(H0|X ) (13)

Using Bayes theorem, the decision rule can be trans-
formed as:

P(X |Hλ)P(Hλ) <> P(X |H0)P(H0) (14)

Under a Gaussian noise assumption, the test rejects
the null hypothesis H0 for large values of the ratio of
the maximized likelihood under Hλ to the maximized
likelihood under H0, i.e.:

− N

2
log

(
2πσ 2

λ

) − N

2
log

(
2πσ 2

0

) − N

2
, (15)

where

σ 2
λ = 1

N

N−1∑
t=0

[xt (i, j) − x̄]2 − max
ωk∈�

Ii, j (ωk)

and

σ 2
0 = 1

N

N−1∑
t=0

[xt (i, j) − x̄]2.

We reject H0 if σ 2
λ /σ 2

0 is too small, or equivalently,

r = maxωk∈� Ii, j (ωk)
1
N

∑N−1
t=0 [xt (i, j) − x̄]2

is too large (Cutler and Davis, 2000).
After performing the hypothesis testing, we are left

with only the periodic pixels and the most likely peri-
ods for them. We then compute the histogram of these
periods and look for the maximum period in this his-
togram. This is done using the same hypothesis testing
method used above, giving us the period of the global
object.

An example of periodicity extraction is shown in
Fig. 1. After the testing, ‘good pixels’ are filtered out
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Figure 1. Left: illustration of periodicity extraction for an infrared surveillance video. Middle: filtered periodic mask for the pixels in the
(red) bounding box. Right: a distinct peaks shows frequency corresponding to human gait.

as the non-black pixels in the middle mask image for the
human on the left image. The higher intensity stands
for a stronger periodicity for that pixel. The histogram
is shown on the right, with a well-pronounced peak
representing gait rate. We also display a complete cycle
of walking sequence as reference at the top of the figure.
Because of the low resolution of the infrared camera,
only a small portion of it shows periodicity. Most of the
periodicity comes from the region around the lower part
(legs) of the human body, which captures most of the
cyclic motion for human gait. In spite of the difficulties,
the algorithm still correctly detects a distinct peak at
the periodic frequency in Fig. 1.

As an extension of such two-stage testing method,
we apply shape constraints to lower the false positives.
For example, the symmetry and relatively fixed loca-
tion of periodic pixels for human legs could help us
discriminate pedestrian walk from other periodic mo-
tion.

3.3. Experimental Results: Pixel-Wise Method

Two datasets were tested. One was obtained using in-
frared cameras and the other employed color ground-
based sensors. The infrared data (HONDA dataset,
UMD dataset I) consists of 40 sequences ranging from
3 minutes to 7 minutes with more than 80 objects (55
pedestrians and 35 vehicles) from both static and mov-

ing sensors. The other dataset (UMD dataset II) con-
tains 55 color/gray sequences with 90 pedestrians and is
also captured from moving and static platforms. They
include typical scenes such as parking lots, roads and
other urban settings containing pedestrians varying in
terms of size, speed, clothes and poses. We claim a
successful detection for a object sequence only if the
bounding boxes cover major portion of a human body
and the motion based classification is correct.

3.3.1. Infrared Sensor. In Fig. 2, we illustrate the de-
tection process for a more challenging sequence cap-
tured by a very low quality interlaced thermal sensor.
The sensor blurs foreground target’s contour and ap-
pearance with background, which makes most shape
and motion based methods fail. For instance, the sim-
ilarity based method such as Cutler and Davis (2000)
yields a weak correlation matrix as shown in the left
bottom image in Fig. 2. Each pixel in that matrix rep-
resents correlation between two frames. If the contrast
is high enough, we will observe darker lines parallel
to the diagonal, which is caused by the similarity be-
tween two images in the same gait phase. Although
no periodicity is observed in this matrix, our method
successfully filters out the ‘good’ periodic pixels (even
a very small portion of the whole image sequence) for
the correct gait rate.

To evaluate the accuracy of the method we compute
the ROC (Receiver Operating Characteristics) curve.
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Figure 2. Detection pedestrian in low contrast infrared sequence. Top row: original object sequence; bottom row (from left to right): original
image; mask generated by Hypothesis Testing; A peak in histogram showing gait rate; similarity matrix using (Cutler and Davis, 2000).

The ROC curve plots the false positive rate against the
detection rate when the classification criterion is varied.
The false positive rate is defined as the total number of
false positive detections divided by the total number
of objects in all sequences; the true detection rate is
the ratio between total number of correct detections
and total number of detections in all sequences. Since
we use a whole sequence for each classification, we
do not divide the above rates by frame number. Our
classification criterion is the likelihood ratio (Eq. (12)).
This criterion depends on other parameters, namely the
frame length N and the noise variance σ 2

A, σ 2
0 . We

adjust only one of these parameters at a time to get
different pairs of detection and false positives rate.

For infrared videos, our method maintains the detec-
tion rate above 80% with a false positives rate lower
than 10% for both the static and the moving platforms.

3.3.2. Color/Gray Sensor. Figure 4 shows the the
pixel-wise classification results for three representative
pedestrians from the data set. Two are from the same
sequence (static camera) with different views: lateral
(across the camera) and radial (towards or away from
the camera), and the other is from a moving sensor in
lateral view. In all cases, the method detects the correct
period and classifies the objects as pedestrians.

We plot the ROC curves for the static and moving
platform for the UMD dataset II in Fig. 5. Compared
to the results from the infrared data, we obtain higher
performance in terms of detection rate at the same false

Figure 3. ROC analysis for infrared dataset from static/moving
sensors.

negative rate. This is due to the higher contrast and
lower sensor noise level.

To compare this method to the predecessor in
Cutler and Davis (2000), we implement a version of
the latter. The first advantage is that ours is more ro-
bust to the background clutter. For a situation-aware
intelligent sentry or surveillance camera, background
texture is inevitable for middle or near range object
classification. Correlation over all pixels for an im-
age pair includes background. When the background
intensity is no longer uniform, the correlation score
for image pairs in the same gait phases will decrease,
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Figure 4. Period detection in Color/gray sensor dataset. top: first frames of original sequences; bottom: corresponding histogram.

Figure 5. ROC analysis for color/gray dataset from static and mov-
ing sensors.

which is demonstrated in Table 1. We calculate the
maximum-to-variance ratio of one row in the correla-
tion matrix for a sequence in Fig. 4. By systematically
increasing the bounding box size, we include more and
more background clutter into correlation calculation.
The same ratio in the histogram from our new method
is also calculated. In Table 1, with the increase of the
box sizes and hence the portion of background clut-
ter, the correlation score ratio decreases sharply for a
method like (Cutler and Davis, 2000), while ours suc-
cessfully filters out the periodic pixels and extracts the
gait rate correctly.

The second advantage is that ours saves computa-
tional power and is amenable for parallel hardware

implementation. Assuming an object sequence with
normalized size X by Y and frame number N , the ma-
jor operation in periodogram based estimation is FFT
and hence is N log(N ). The total number of operations
will be X · Y · N log(N ). In order to have a robust de-
tection, our version of the method in Cutler and Davis
(2000) calculates the full correlation matrix to detect
the lattice pattern. Each correlation between two im-
ages adds up to X ·Y operations. The overall correlation
matrix requires X · Y · C N

2 = X · Y · 2/N (N − 1).
The computational saving is the ratio of the above
two: N log(N )/C2

N , or (N − 1)/(log N · 2) times
faster.

3.3.3. Alignment. This method works better when
we have accurate alignment of the frames since it
uses pixel-wise temporal information. Current detec-
tion and tracking algorithms cannot provide error-free
alignment. We selected a subset sequences (more than
150) with a length of 64 frames and a box size around
40 ∗ 80. To obtain a quantitative estimate of the error
in periodicity estimation resulting from misalignment,
every box of the probing sequence is shifted in both
directions by a quantity (dx, dy), which obeys a zero-
mean uniform distribution U (0, σ ). The periodicity is
re-calculated with various σ . We list in Table 2 the
detected period for one sequence as a function of the
shift parameter σ .

With the increase of alignment error, the hypothe-
sis testing deteriorates. It classifies the pedestrian as
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Table 1. Comparison of sensitivity to background clutter

Object size increasing ratio (%) 0 2.5 5 10 15
Correlation score ratio for Cutler and Davis (2000) 8.63 4.32 3.50 1.93 2.02
Maximum-to-mean ratio for our method 12.9 11.3 14.5 10.0 9.8

Table 2. Comparison of classification at different alignment error levels

σ 0 2.0 4.0 6.0 8.0 10.0
Period 34 32 35 30 – –
Classification Human Human Human Human Non-Human Non-Human

Figure 6. Pedestrian detection with various alignment error in
color/gray sensor data.

non-human when the shift range goes beyond 6 pixels.
Furthermore, we plot the ROC curves in Fig. 6 for a
subset of our data.

The result shows that the method is susceptible to
large alignment errors and only works fine when the
shift level (or alignment error) is within a reasonable
range. In order to reduce the sensitivity to alignment,
we present another method based on an alignment-free
measurment of the cyclic property.

4. Periodicity Analysis by Model Fitting

4.1. Cyclic Motion

Beside the speed of the motion (such as walking or
running), the concept of gait also describes the style or
manner in which a human moves. Periodicity differ-
entiates a pedestrian from other non-periodic motions
such as moving vehicles or foliage in winds, while gait
differentiates humans from other cyclic moving objects
such as machines or animals. By comparing different

Figure 7. Different cyclic motion (a) rotating fan, (b) running dog,
(c) walking pedestrian.

kinds of periodic motion extracted from various ob-
jects illustrated in Fig. 7, we can identify a distinctive
pattern that applies only to pedestrians. In particular,
the swing of the two legs characterizes this pedestrian-
specific oscillation.

We start by investigating the kinematics of human
gait from a synthesized sequence as in Fig. 8. The
figure displays a complete cycle of a pedestrian’s legs.
We develop a computationally efficient human motion
analysis algorithm based on the twin-pendulum model
introduced in Aggarwal and Cai (1999) and Curio et
al. (2000). The twin-pendulum model has a very sim-
ple form that captures the inherent nature of gait. It
focuses on the motion of the legs. Each leg is repre-
sented by two jointed cylinders. The diameters of the
cylinders are constant but the lengths of the cylinders
are changing over time.

4.2. Extraction of Motion Pattern

The discussion above suggests that we classify a mov-
ing object as a human by features related to cyclic mo-
tion pattern. But change of appearance, non-rigid de-
formation of human body and arbitrary motion of cam-
era present challenges. What is a good feature to help
us extract cyclic motion pattern unique to human? The
answer involves two issues. First, good features should
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Figure 8. Motion signature in synthesized sequences (Curio et al.,
2000). The one with (red) boundary represents the best fit using a
twin-pendulum model.

be global and shape-based rather than pixel-based to re-
duce sensitivity to temporal alignment. Second, since
precise shape extraction (segmentation) is very diffi-
cult, we favor a feature derived from the human contour
instead of the contour itself. A closer look at Figs. 8
and 9 reveals that the relative angle between the two
thighs can be used as such a feature. The Principle
Gait Angle is defined as the angle between two legs
during walking. But the non-rigid deformation and
self-occlusion of two legs as well as the arbitrary pose
makes it difficult to continually observe this angle in a
complete stride. Instead we focus on a special case in
which the two legs are maximally separated as in (g) in
Fig. 8, enclosed in a box. We refer to it as the Maximal
Principal Gait Angle (MPGA). This corresponds to a
unique phase in the cycle in which the toe-to-toe dis-

Figure 9. Principle Gait Angle in original and gradient images. Only those with MPGA exhibit a salient angle pattern.

Figure 10. Illustration of twin-pendulum model fitting. White pixels: Edges; Green Pixels: detected lines by Hough Transform; Red Pixels
(line segment pairs along legs): Fitted lines forming Principle Gait Angle.

tance approaches a maximum. The periodicity of the
angle is a strong cue for detection. An example is given
in Fig. 9. We apply an edge detector to pedestrians at
different principle gait angles of walking. Only those
with MPGA exhibit a salient angle pattern.

We next describe how to extract the critical Princi-
ple Gait Angle from a cluttered background. We first
apply an edge operator (i.e. Canny operator) to the im-
age. Then a Hough line detector scans the edge map
and generates a list of the candidate lines in the im-
age with length above a pre-specified threshold. We
categorize these lines into pairs by checking symme-
try and slope and choose the pair with longest average
length to be our candidate in that frame. Finally we
use a Bayes classifier to identify the occurrence of the
MPGA. Intuitively MPGA should arise from line seg-
ments with sufficient length forming the gait angle and
the angle should be related to the model and the pose.
The distance between segments should fall into a nar-
row range. We formulate the detection of the MPGA
in a Bayes linear classifier framework. An observation
vector X is defined as

X = {l, d, α} (16)

where l is the average length of the twin-line, d is the
center distance and α is the angle formed by that pair.
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The first two are normalized by the height of the ob-
ject bounding box. However, in order to construct the
likelihood ratio, the conditional probability must be in
closed form for each class. In applications like ours,
we have to estimate such distribution using samples
from a training set. Since this is impractical, we use an
approximation, namely a linear classifier. We are look-
ing for variable V and v0 such that y = V T X <> −v0

is the classifying function in this two class problem.
When X is normally distributed, y is also normal and
we outline the process to generate a linear Bayesian
classifier from training set as follows (adapted from
Fukunaga, 1990).

1. Compute the sample mean M̂i and covariance ma-
trix �̂i of vector {l, d, α} from a manually labeled
training set;

2. Calculate V for a given weight s by V = [s�̂1 +
(1 − s)�̂2]−1(M̂2 − M̂1);

3. Using the V computed as above, obtain y(i)
j =

V T X (i)
j , i = 1, 2, 3...N .X (i)

j is the j th i-class sam-
ple

4. the y(1)
j and y(2)

j , which do not satisfy y(1)
j < −v0

and y(2)
j > −v0, are counted as errors.

5. Vary v0 to find the v0 which gives the smallest error
6. Vary s from 0 to 1 and repeat Step 2–5; choose the

s giving smallest error as well as the corresponding
V and v0 as the discriminant function

We give some sample fitting results in a sequence of
the lower part of a Pedestrian in Fig. 10.

Such a Bayesian classifier gives us a binary sequence
representing the classification decision for each frame
in the video sequence. That is, for an image with a
positive detection we have a 1 in the binary sequence
and 0 otherwise. Intuitively, the sequence should be
quasi-periodic and its instantaneous frequency should
be the gait rate. In fact, even with false alarms, we
still can observe a strong periodic oscillation in such a
sequence and a more accurate solution will be provided
in the next section.

4.3. Estimation of Period

The motivation for this section is to integrate shape
and appearance with motion, which is expected to give
higher detection rate and fewer false alarms. Hav-
ing detected the presence or absence of the Max-
imal Principal Gait Angle for each frame in a se-
quence, we can test the periodicity by the hypothesis

testing methods used in the previous section. Phase
Locked Loops (PLL) are a useful tool for this problem
(Lindsey and Chie, 1986).

4.3.1. Phase-Locked Loop (PLL). A PLL, or Phase-
Locked Loop, is basically a close-loop feedback con-
trol system, whose operation is based on the detection
of the phase difference between the input and output
signals of a voltage controlled oscillator (VCO). Phase-
locked loops are widely used in communications. An
introduction to PLL can be found in Blanchard (1976).

We use a software version of PLL as in Blanchard
(1976). Fig. 11 shows the classic configuration. The
phase detector is a device that compares two in-
put frequencies, generating an output approximately
proportional to their phase difference (if, for exam-
ple, they differ in frequency, it gives a periodic output
whose frequency is the difference frequency). Let’s
denote the reference signal frequency and the output of
VCO frequency as fIN and fVCO. If fIN doesn’t equal
fVCO, the phase-error signal causes the VCO frequency
to deviate in the direction of fIN. If conditions are right,
the VCO will quickly “lock” to fIN, maintaining a fixed
relationship with the input signal.

4.3.2. Recursive Period Estimation. We use the out-
put of the previous stage, namely the binary sequence
provided by fitting the Principle Gait Angles, as the
input to the dPLL module. The method estimates both
the frequency of the gait and its phase.

In more detail, the method for pedestrian detection
has a cascade structure. It operates on the output of the
model fitting algorithm. The input is a 0-1 sequences
representing the critical phases corresponding to pres-
ence or absence of maximum toe-to-toe distances. This
signal is passed through a low pass filter to remove high

Figure 11. Diagram of a Digital PLL.
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frequency components:

Vi (t) = Lowpass(V1(t)) (17)

Without loss of generality, we write the input signal
and the output signal from the VCO as

Vi (t) = A · sin(ωi (t) + θi ), Vo(t) = cos(ωo(t) + θo)

(18)

If we use a multiplier as the phase detector, the signal
after multiplication will be

VPD(t) = K · A · sin(ωi (t) + θi ) · cos(ωo(t) + θo)

(19)

where K is the gain of the phase detector (multiplier in
our case). Furthermore, we could write it as:

VPD(t) = 1/2 · A · K · + θo]{sin[(ωi (t) + ωo(t)) + θi

+ cos[(ωo(t) − ωo(t)) + θi − θo]}
(20)

When ωo ≈ ωi , the first item in the above repre-
sentation is attenuated by the low pass filter (inside the
loop filter) in Fig. 11. The input of the VCO after low
pass filtering can be approximated as

VVCO,IN(t) = 1/2 · A · K · sin(θi − θo) (21)

When the phase difference is small enough, this
equation can be simplified to

VVCO,IN(t) = 1/2 · A · K · (θi − θo) (22)

VVCO,IN is proportional to θi − θo. We can now ex-
plain how the dPLL locks the gait period. Suppose at
first that the object’s period is unknown. The initial
frequency of the VCO output is set to a gait frequency
guess ω0 (20 frames/cycle). When the gait period (fre-
quency ωt of Vi ) changes, the difference between Vo

and Vi is detected by the phase detector which controls
the VVCO,IN, causing the VCO frequency to deviate in
the direction of ωt . Hence, the period is estimated.
Only when the rate falls into an interval representing
a normal gait range will the object be classified as a
pedestrian.

In practice, the dPLL loop is activated by the initial
hypothesis test described in Sec. 3. Only when the

testing detects a period for the first time will the dPLL
module set to work on the following frames with the
initial VCO frequency set to the detected period.

4.4. Experimental Results: Model-Based Method

We use a module reported in Nanda and Davis (2002) to
initialize detection and the method reported in Zhou et
al. (2004) to track bounding boxes for targets. We test
the system over the Infrared and Color/gray datasets as
for the pixel-based method.

In Fig. 12, we show the results based on tracking two
pedestrians for 200 frames. The period for the first ob-
ject is locked at a frequency of 32 frames/cycle, which
corresponds to the gait rate. The second is locked at
24.0 frames/cycle. We plot the PLL VCO output vs.
locking time in the second row to illustrate how fast
the method adapts to the real signal. In Fig. 13, we
present a sequence from the color/gray set. We track
pedestrians for 150 frames and the PLL locks to the
period after 40 frames.

In order to evaluate the performance of the detector
in fitting the Maximal Principal Gait Angle, we plot the
ROC curves in Fig. 14. We draw the curves for infrared
and color/gray data set respectively using the shape
matching method reported in Nanda and Davis (2002)
and compare the performance improvement when cas-
cading with the our new fitting method. In this ex-
periment, the training set is composed of 827 positive
samples (boxes containing a pedestrian with maximum
toe-to-toe distance) and 3270 negative samples (images
containing pedestrians in other gait phases, other ob-
jects or background). For each data set, two cases are
compared. One is the direct results obtained purely by
using a shape hierarchy (Nanda and Davis, 2002) in
every frame and the other is cascading matching and
cyclic motion verification as initialization and verifi-
cation modules respectively. As we can observe, the
cascaded detectors successfully use the gait angle to
identify true pedestrians with a higher detection rate un-
der the same false positive rate with the help of MPGA
fitting and PLL gate rate estimation.

5. Sensitivity Analysis

Two methods have been proposed in the paper. In
this section we study the sensitivity of detection ac-
curacy to several important independent variables.
The variables considered here are object size (deter-
mined by the distance to the camera), signal length,
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Figure 12. PLL VCO output voltage vs. locking time for infrared data (a) Representative frames. (b) VCO output.

Figure 13. PLL output voltage vs. locking time for color/gray sensor. (a) Representative frames. (b) VCO output.

frame rate and movement directions (camera viewing
angles).

5.1. Object Size

Sensitivity to object size is important for judging a sys-
tem’s ability to detect targets in various distances. We
present the result for a subset of the two data sets with
different down-sample ratios in Fig. 15. The object

size from this subset of sequences is greater than 3200
pixels (based on a bounding box of 40∗80 ). We obtain
consistently correct results for the first method even
when the target size is gradually reduced to 10 × 20.
Notice that during the down-sampling, the detected pe-
riod does not change. This demonstrates that the pixel
based method exhibits only a weak dependence on ob-
ject size. But the second method works on relatively
larger objects, which is not surprising since the MPGA
is extracted from edges.
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Figure 14. ROC comparison between PLL + shape and shape
matching for both datasets.

This results also give us a promising way to re-
duce the computational cost when using the pixel-based
method. By reducing the object size by 2 or even 4, it
saves time while maintaining the performance.

5.2. Video Sequence Length

An interesting issue is the minimal sequence length
needed to reliably extract the gait rate. We would like
the detector to make a decision with minimal delay and
to keep a reasonable detection rate. For shorter lengths,
the signal may not be long enough to exhibit periodicity.
When the length increases, tracking is harder and the

Figure 15. ROC analysis for the two methods at different object sizes.

change of external variables such as pose, size, lighting
etc will corrupt the cyclic signal.

Suppose we estimate the frequency directly from
the periodogram output without any further process-
ing (Quinn and Hannan, 2001). If the true period for
a pixel is ω, and it falls into two adjacent bins: k and
k + 1,

ω ∈ [k × 2π Fsample/N , (k + 1) × 2π Fsample/N ]

(23)

where Fsample is the sample frequency and N is the signal
length, we will have a bias up to the width of the bin.
Hence this method requires longer sequences for higher
resolution. But it is not always easy to achieve long
tracking of small objects in low quality video from a
moving platform. We test the first method for object
sequences with various lengths and display the ROC
curves in Fig. 16. Using the first method, for a typical
human, we need only about two to three stride cycles
(30–40 frames for a 30 fps video) to estimate the correct
period.

For the MPGA fitting based method, a more mean-
ingful measure will be the PLL locking time. Given
the initial guess of the internal oscillator to be a regular
gait rate (for example, 1Hz or 30 frames/cycle in color
sensor and 2 Hz or 15 frames/cycle in IR video for full
frame rate), we draw the figure of the locking time (in
terms of frames) vs. number of lockings in Fig 17. Left
image is for the infrared sensor and right is for visible
spectrum sensor, together with the approximate Gaus-
sian distributions. The histogram for the color sensor
has a clear peak at 36 frames with a narrow bandwidth,
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Figure 16. ROC analysis for the pixel-based method with various
lengths.

showing the quick locking time. We observe two peaks
for infrared data due to the fact that some low quality
thermal sensor has the same response for left and right
legs and so the real ‘period’ is half of the gait rate be-
cause of the symmetry of walking. After locking to the
correct frequency, the module adapts to it without any
re-initialization at a very high speed.

5.3. Frame Rate

Due to sensor limitation, it may be unable to always
have the full frame rate (>25 fps). In addition, robust-

Figure 17. Locking time (in terms of frame number) vs. number of lockings for the MPGA based method. Left: infrared sensor; right:
color/gray sensor.

ness to frame rate could be useful for reducing overall
computational cost. We present results for the two data
sets with different frame rates in Fig. 18. The original
rate is 30 frames/second and we reduce it systemati-
cally to 6 frames/second. We still obtain good results
for both of the methods even when the frame rate is
about 10 frames/second.

Comparing it with the ROC curves in the sensitivity
analysis for size, the results show that the pixel and
model based methods are more sensitive to frame rate
than to object size. At lower frame rates, longer se-
quence length could be used to compensate for the loss
in periodic signal strength.

5.4. Walking Direction

The observed oscillation amplitude of walking in
images varies with different walking directions. It
will approach a minimum when the pedestrian is
walking in radial direction and will increase grad-
ually to a maximum when the walker is moving
in lateral direction. The change of the ampli-
tude of periodicity will directly affect the detector
performance.

We divide part of the data sets into subgroups accord-
ing to walking directions and compare the results for the
pixel based detector in Fig. 19. The results show that
the first method correctly classifies human under dif-
ferent poses ranging from radial to lateral. This could
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Figure 18. ROC analysis for the two methods at different frame rate.

Figure 19. Detection with various walking directions.

Figure 20. ROC analysis at different walking directions. Left: Pixel based; Right: MPGA fitting based.
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be explained by the 2-step hypothesis testing. When a
pedestrian is walking towards the camera, many loca-
tions no longer exhibit strong cyclic pattern. Yet subtle
oscillations still exist around body parts such as limbs
and shoulders. By filtering out the non-periodic pix-
els, a small number of ‘good’ pixels with reasonable
high amplitude can be extracted and support correct
estimation. In Fig. 19, with a box size of 40*80, the
number of ‘good’ pixels decreased from thousands to
hundreds and even to several tens with the movement
direction changing from lateral to radial. A portion of
good samples less than 1/16 (= 200/(40 ∗ 80)) is used
in the final case when the target is moving towards the
sensor.

A comparison of the ROC curves of the sensitivity
to walking directions of the two methods is shown in
Fig. 20 for both detectors. The angle of walking direc-
tion is referred to the camera image plane. The results
demonstrate that the pixel based method is more stable
to walking directions due to the selectivity of periodic
pixels. The MPGA fitting based method, as expected,
drops performance sharply when the walking direction
is over π/3.

6. Conclusion

We have developed two algorithms for pedestrian clas-
sification based on periodic motion. The first method
is simple, efficient and robust to camera motion, sen-
sor noise and walking directions but depends on good
alignment accuracy. The second uses a global descrip-
tor combining shape and motion, which is robust to
alignment and recursively estimates the gait rate. Both
methods can detect pedestrians within a short time pe-
riod (less than 2 seconds). Sensitivity analysis shows
the robust behavior of the proposed methods with re-
spect to a number of important factors such as frame
rate, walking directions and object size.

The pixel-periodicity based method monitors the os-
cillation at each pixel site and statistically extracts the
overall frequency. It works better when alignment is
reliable for both lateral and radial view and is com-
putationally efficient. The model-fitting based method
obtains classification cues from global shape and ap-
pearance and then examines periodic gait dynamics.
It extracts the MPGA in special gait phases and uses
a phase-lock loop to continuously classify targets. It
does not require alignment between frames.

A promising future direction is to use a shape detec-
tor such as Viola’s Adaboosting method (Viola et al.,

2003) or Nanda’s shape hierarchy (Nanda and Davis,
2002) followed by the cyclic motion detector or pixel
periodic detector as a verification module to obtain
higher performance. By doing so we do not need to
search the whole image in every frame and hence it is
more computationally efficient. As part of the results
shown in Fig. 14, this will form an automatic pedes-
trian detection system with lower false alarm rate and
faster speed.
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