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Abstract. A new algorithm is proposed for efficient stereo and novel view synthesis. Given the video streams
acquired by two synchronized cameras the proposed algorithm synthesises images from a virtual camera in arbitrary
position near the physical cameras. The new technique is based on an improved, dynamic-programming, stereo
algorithm for efficient novel view generation. The two main contributions of this paper are: (i) a new four state
matching graph for dense stereo dynamic programming, that supports accurate occlusion labelling; (ii) a compact
geometric derivation for novel view synthesis by direct projection of the minimum cost surface. Furthermore,
the paper presents an algorithm for the temporal maintenance of a background model to enhance the rendering
of occlusions and reduce temporal artefacts (flicker); and a cost aggregation algorithm that acts directly in the
three-dimensional matching cost space.

The proposed algorithm has been designed to work with input images with large disparity range, a common
practical situation. The enhanced occlusion handling capabilities of the new dynamic programming algorithm are
evaluated against those of the most powerful state-of-the-art dynamic programming and graph-cut techniques.
Four-state DP is also evaluated against the disparity-based Middlebury error metrics and its performance found to
be amongst the best of the efficient algorithms. A number of examples demonstrate the robustness of four-state
DP to artefacts in stereo video streams. This includes demonstrations of cyclopean view synthesis in extended
conversational sequences, synthesis from a freely translating virtual camera and, finally, basic 3D scene editing.
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1. Introduction gies!, it is envisaged that the PC will increasingly

be used for interactive visual communication. One
This paper addresses the problem of novel-view syn- pressing problem is that any camera used to cap-
thesis from a pair of rectified video streams with ture images of one of the participants has to be
specific emphasis on gaze correction for one-to-one positioned offset from his or her gaze (¢f Figs. 1

teleconferencing. With the rise of live chat technolo- and 2). This can lead to lack of eye contact and
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Figure 1. Failure of eye contact. In one-to-one video-conferencing,
cameras located on the frame of the computer monitor fail to capture
gaze correctly. Here a person looks at the centre of the screen but,
in the images captured by cameras mounted on either side of the
computer monitor, he does not appear to be looking directly ahead.
The proposed algorithm is capable of synthesizing a virtual view that
procures eye contact.

Computer

-~
Messaging

window Input left image Input right image

Figure 2. The basic teleconferencing setup considers two cameras
placed on the frame of a computer monitor. A window for viewing
the remote participant is marked in blue on the computer screen. The
algorithm described in this paper achieves a corrected gaze image in
an efficient and compelling way.

hence undesirable consequences for human interaction
(Gemmell et al., 2000).

One might think that if it were possible to drill a hole
in the centre of a computer screen and place a camera
there, that would achieve the desired viewpoint.
The first problem with this solution is that “porous”
screens do not exist; but even if they did the user
would be required always to look at the centre of the
monitor, where the extra camera had been inserted.
However in a messaging session the user looks at the
communication window (where the other person’s face
appears) which can be displaced and moved around
the screen at will (Fig. 2). Therefore, the camera needs
to be placed behind the communication window on
the screen; but this cannot be achieved with available
hardware and therefore a software solution is sought.

Previously proposed approaches can be broadly cat-
egorized as model-based or image-based. One model-
based technique is to use a detailed 3D head model,
texture map it and re-project it into the required view-
points. Whilst this can be successful (Vetter, 1998;
Yang and Zhang, 2002), it is limited to imaging heads

with no hair or neck. Nor can it deal with occlusion
events such as a hand in front of the face. A more gen-
eral approach, proposed here, is to use image-based
rendering techniques (/BR (Chen and Williams, 1993))
to synthesize novel views from two input images. The
entire input images, as opposed to the head only, are
processed, thus avoiding the detection and modeling
of heads with all the associated problems. Though we
focus on the gaze correction application, the algorithm
developed in this paper is of general nature and can be
applied to different IBR scenarios.

Many popular IBR algorithms combine a depth map
with input images to produce synthetic images. In or-
der to generate a depth map a dense stereo algorithm is
required, a substantial review of which can be found
in Scharstein and Szeliski (2002), in which the au-
thors evaluate a number of existing dense-stereo tech-
niques. But this evaluation may not be sufficient for
our purposes as: (i) the range of disparities considered
in Scharstein and Szeliski (2002) is smaller than in our
application (0-29 pixels there, whereas we typically
consider 0-80 pixel disparities); (ii) we are primarily
interested in new-view synthesis so it does not matter if
the disparities are relatively inaccurate in texture-less
image regions; all that matters is that the new view
is well synthesized (as noted in Scharstein (1999) and
Szeliski (1999)); (iii) we consider long video sequences
so temporal stability is a significant issue.

In the past, research on dense stereo reconstruction
has been directed largely towards the accurate recov-
ery of disparity maps, though not entirely (Belhumeur
and Mumford, 1992). We have found that while inac-
curate disparities may still produce acceptable synthe-
sized images over matched regions, inconsistent occlu-
sion maps lead to unacceptable artefacts. Therefore, in
this paper we focus on accurate occlusion modelling
and detection.

According to the evaluation in Scharstein and
Szeliski (2002), two of the most powerful dense stereo
techniques use Graph cut (GC) (Kolmogorov and
Zabih, 2002) and loopy belief propagation (Sun et al.,
2002). However, both of these are currently too com-
putationally intensive for real-time applications and,
since near real time performance is one of the goals
of this paper, we turned our attention to more efficient
algorithms such as Epipolar-line Dynamic Program-
ming (Ohta and Kanade, 1985), commonly referred to
as DP. The DP algorithm described in Cox et al. (1996)
has previously been demonstrated for cyclopean view
interpolation (Cox et al., 1993) in video.? In the basic
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Figure 3. Fast cyclopean view synthesis by conventional DP. (a, ¢)
Input left and right views, respectively; (b) Cyclopen view synthe-
sized by dynamic-programming (Cox et al., 1993). Note that gaze is
correct in the cyclopean view. The algorithm runs at near real-time
rate, but produces significant artefacts in the synthesized cyclopean
image.

form of the DP algorithm, in order to obtain compu-
tational efficiency, observations consist of single-pixel
intensities. This, together with the fact that pairs of cor-
responding scanlines are considered independently, in-
troduces a number of artefacts which corrupt the quality
of the output reconstruction, especially for large dispar-
ity ranges as Fig. 3(b) shows.

In particular, DP-based algorithms for novel view
synthesis are characterized by three kinds of artefacts:
(i) artefacts produced by mismatches (horizontal
streaks due to inconsistencies between adjacent
scanlines); (ii) the “halo” in the regions where the
background is visible in only one of the two input
views (occlusion); and (iii) flickering synthesized
pixels, caused by matching ambiguities. The first
two kinds of artefacts are static, while the latter is
temporal in that it appears when processing sequences
of stereo images. This paper sets out to address and
solve those kinds of artefacts while maintaining high
computational efficiency.

Our new contributions have two aspects: accurate
generation of occlusion maps and efficient new-view
rendering. For the first we propose a new DP algori-
thm acting on a four-state matching graph. New labels
are introduced for occlusions, and the cost function is
extended to favour: (a) good grouping of occlusions,
(b) formation of solid occlusion regions at the bound-
aries of foreground objects, and (c) inter-scanline con-
sistency. For the second aspect we introduce minimum-
cost surface projection as a compact technique for gen-
erating synthetic views from arbitrary virtual cameras,
directly from the minimum-cost surface obtained dur-
ing the DP process.? This technique avoids the explicit
construction of a 3D mesh model or depth map.

Paper outline. Section 2 reviews the state of the art
in dense stereo via DP, and consequent issues for
novel view rendering, particularly of occluded regions.

The main contribution of this paper is described in
sections 3 and 4 which introduce our improved multi-
state, dense-stereo algorithm. Section 5 illustrates the
cost filtering algorithm for inter-scanline consistency.
Section 6 presents a comparative evaluation of perfor-
mance of our technique with respect to disparity esti-
mation and occlusion detection. Realistic synthesis of
occluded regions is discussed in Section 7 and virtual-
view generation and rendering in Section 8. Finally,
Section 9 demonstrates the effectiveness of the pro-
posed techniques with a number of examples where
both static images and entire sequences are generated
for various virtual camera locations.

2. Background on Dynamic Programming and
Novel-View Synthesis

This section reviews the principles of dynamic-
programming algorithms for dense stereo (Cox et al.,
1996; Ohta and Kanade, 1985) and discusses issues re-
lated to the synthesis of cyclopean images from the two
input views.

2.1.  Conventional Dynamic-Programming

Figure 4 shows a plan view of the camera setup. The
left and right cameras provide us with the synchronized
and epipolar-rectified input videos.* The focal length
is denoted f, and B is the distance between the two
optical centres (the baseline). A Cartesian coordinate
system is chosen with origin at the mid-point between
the left and right optical centres. A 3D scene point P
is projected into the two input image planes in corre-
sponding image points at positions / and r relative to
the respective image centres. The distance d = [ — r
is commonly known as disparity. We refer to the im-
ages corresponding to a virtual camera, with optical
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Figure 4. Basic camera configuration and notation. O; and O, are
the optical centres of left and right cameras respectively, f is the
focal length of the cameras (assumed identical for both cameras) and
B is the baseline between the two optical centres. The origin of the
reference coordinate system X, Y, Z is denoted O.
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Figure 5. Conventional dynamic-programming. (a) The two-
dimensional matching graph on which DP is based. Each node in
the planar graph corresponds to a pair of pixels, in the left and right
scanlines. A matching cost M(l, r) is associated to each node and
the goal is to find a minimum-cost path (shown in red) joining the
two opposite corners of the graph. Bright colouring indicates high
pixel similarity, i.e. low values of M(l, r). (b) A blown-up view of
(a) showing the three allowed moves between pixel pairs (Cox et al.,
1993); circles represent nodes of the graph in (a).

centre in the origin O, as cyclopean images. As will
be demonstrated, our algorithm is not restricted to cy-
clopean views only but is capable of generating virtual
images from arbitrary viewpoints.

The diagram in Fig. 5(a) represents the matching
graph for a pair of corresponding scanlines in the two
input images (Ohta and Kanade, 1985; Cox et al.,
1996). Note that, since [ >= r VP (i.e. disparities
d = | — r are always non-negative), then it is only
ever necessary to consider the lower half of the match-
ing graph (grey area in Fig. 5(a). The limiting, zero-
disparity case [ = r corresponds to points at infinity.
The 45-degree line in Fig. 5(a) is termed the “virtual
scanline” for reasons that will become obvious in the
next section. The local cost of matching a pixel at po-
sition / along the left scanline with a pixel at position r
along the right scanline is denoted M (/, r). In conven-
tional DP, the cost M(I, r) may be defined simply as
the square difference of pixel intensities, though more
elaborate measures based on patches, colour, wavelets
etc., can be used.

Standard 3-move DP. Dynamic-programming con-
sists of two passes: forward and backward (Cox et al.,
1996). The forward step constructs a matrix of cumu-
lative matching costs C by the following recurrence:

cil—-1,r) + B
Cl,r)=min{ Cl—1,r—1) + MU, r) (1)
cl,r—1) + B

where C(/, r) indicates the cumulative cost of the path
from the point (0, 0) to the point (/,r). Note that
only three moves are permitted: a horizontal, possi-
bly occluded, move, a diagonal matched move and
a vertical, possibly occluded move (Fig. 5b). Thus,
45-degree segments in the minimum cost path corre-
spond to fronto-parallel surfaces (constant disparity);
vertical and horizontal segments represent either oc-
clusions or non-fronto-parallel surfaces. The cost of
a horizontal/vertical move, which may indicate occlu-
sion, is 8. When matching costs M (I, r) are normalised
sothat0 < M(l,r) < 1,avalueof 8 = 0.3 yields good
results on a variety of images. At each iteration the min-
imum cost between the three possible moves is chosen
and a table of backward links is stored for use in the
second pass of DP.

The backward pass of the algorithm follows the
saved back-links; starting from (I = W, r = W) where
W is the image width, to the origin (! = 0, r = 0). This
defines the minimum-cost path P as the sequence of
visited nodes.

Limitations of Conventional DP. The three-move
model is limited since it fails to distinguish completely
between occluded and non-occluded moves. One of the
main contributions of this paper will be to expand the
set of permitted moves to support unambiguous detec-
tion and classification of occlusion events.

2.2.  Direct Cyclopean-View Synthesis from DP

This introductory section explains how cyclopean
views can be generated directly from the minimum-cost
paths estimated by conventional DP. Special attention is
paid to the synthesis of pixels in occluded regions. The
basic cyclopean-view synthesis algorithm is described
in Fig. 6 and illustrated in Fig. 7(a).

The algorithm in Fig. 6 applies to matched pixels
only and occluded areas must be treated differently. In-
discriminate application of the algorithm in Fig. 6 to

For each pair of scanlines, given their matching path P:
e For each point p € P
1. take the colours I’ (1) and I" (r) of the correspond-
ing pixels / and r in the left and right scanlines,
respectively; -
2. compute the average value I = %(I’ O +1Im(r));
3. project the newly obtained pixel orthogonally to the
virtual image scanline, into the virtual image point
viie IV (v) =1.

Figure 6. Cyclopean view synthesis from direct projection of the
minimum-cost path.
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Figure 7. Generating the cyclopean view. (a) A matched point p € P is projected orthogonally onto its corresponding point v on the virtual
scanline. The luminance value of the virtual pixel v is the average of the corresponding pixels / and r on left and right images, respectively. (b)
Halo: treating the occluded segments (dotted lines) in P in the same way as the matched segments produces a lens-like effect that we call the
“halo” artefact (Fig. 8). (c) Fronto-parallel occlusion synthesis: the halo effect is largely removed if a fronto-parallel background assumption is
made: an occluded point p on the continuation of the background is projected orthogonally onto its corresponding point v on the virtual scanline.

Figure 8. Halo artefact. (a) A cyclopean view reconstructed by ap-
plying the algorithm in Fig. 6 to both matched and occluded segments
of the recovered minimum-cost path. A “halo” of deformed back-
ground objects is visible around the head. (b) Regions over which
the halo effect occurs are highlighted.

occluded and unoccluded points alike, would produce
a distorting effect, a “halo” around the foreground
objects in the cyclopean view. An example is shown
in Fig. 8 where the frame of the door and the edge of
the whiteboard have been deformed into curves which
follow the outline of the foreground head. The “halo”
artefact is much more noticeable and disturbing when
video sequences are reconstructed in this way.

Fronto-Parallel Assumption for Occlusion Filling. In
order to overcome the halo effect occluded pixels
must first be reliably detected. For those pixels it is
necessary to make a plausible assumption about un-
derlying 3D structure since this information is not
available given the absence of a stereo match. One
effective assumption is that of a fronto-parallel back-
ground (Scharstein, 1999). As illustrated in Fig. 7(c),

filling of the occluded regions can be achieved under
the fronto-parallel assumption by extending the back-
ground at constant disparity. Fig. 7(c) shows how, for
a left occlusion (vertical dashed line), the values of
the virtual pixels are taken only from the right image:
I'(v) = I"(r), and vice-versa.

The Reset Artefact. The fronto-parallel approxima-
tion can be applied only if occluded regions are cor-
rectly detected. Detection errors (Fig. 9(b)) cause
the sampling of “source” pixel values from incor-
rect locations in the input images—the reset artefact
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Figure 9. The reset effect. (a) The fronto-parallel approximation
used for filling occluded regions. For the left occlusion marked in
red (dashed), the region A, in the cyclopean image is copied from
the corresponding region A, in the right image. See also Fig. 7(c).
(b) A small error in the detection of the occluded region, e.g. a small
matched region inside a large occlusion, produces a large error in the
cyclopean synthesized scanline. In fact, the “source” regions B, and
C, are quite different from A, and far apart from each other. This
produces visible artefacts as illustrated later.
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(cf. Fig. 22). Accurate detection of occlusion is clearly
paramount.

The next two sections introduce our improved DP
algorithm for accurate occlusion detection.

3. Extending the Set of Basic Moves for
Unambiguous Occlusion Modelling

In the standard DP approach slanted (i.e. non fronto-
parallel) surfaces in space are modelled as a combi-
nation of diagonal and horizontal or vertical moves
in the matching graph. In order to disambiguate be-
tween horizontal/vertical matched moves and true oc-
clusion events, the new model has two types of hori-
zontal moves and two types of vertical moves, matched
and occluded. Since a line at any orientation can always
be approximated by a sequence of horizontal and verti-
cal matched moves, the diagonal matched move of the
basic DP model is eliminated without loss. This defines
the four-move model of Fig. 11, to be compared with
Fig. 5(b).

In recent work (Criminisi et al., 2003) we have
tried the five-move model, including a matched diag-
onal move, as suggested also by Ishikawa and Geiger
(1998); but we have found the four-move model as re-
liable as the five-move model and simpler. In the four-
move model, every possible path through the cost space
has equal length (Manhattan distance) so that the costs
of alternative paths are truly comparable. Finally, the
four move model lends itself to a proper statistical in-
terpretation (Kolmogorov et al., 2006).

Lot Loft Occhedod Stato - Lo Left Occhuded State
h o

Lm: Loft Matched State ; ?::}"" M(I‘r)
Y+ M(,r)

Rm: Right Matched State

r r . 4
Q’qﬂl Occludod State Q‘ﬂ“" Ocecluded State
1 1

a

b

4. Imposing Constraints on Occlusions by DP on
a Four-State Graph

Thanks to the four-move model, matches and occlu-
sions are now unambiguously labelled here, unlike the
conventional three-move model. This section describes
another evolution of our DP model which imposes prior
constraints on runs of occluded and matched pixels.
This is achieved by a four-state matching graph with
two occluded states L (occluded in left image) and Ry
(occluded in right image) and two matched states L,,
(left-matched) and R,, (right-matched) (see Fig. 10 and
Fig. 13). In contrast, conventional DP runs on a single
planar graph.

The four-state model reflects naturally the persis-
tence of each of the states. For instance long runs of oc-
clusions can be favoured by setting a high cost for enter-
ing or leaving an occluded state (L, or R,). Similarly, it
is desirable to bias against runs of matched movesin R,
or L,,, ensuring that surfaces close to fronto-parallel are
preferred, as in the conventional DP. Slanted surfaces
are thus described by oscillations of the optimal path
between the L,, and R, states (Fig. 13). The 4-states
framework includes four different cumulative cost ma-
trices: Cr,, Cro, Crn and Cg,,, one for each state in the
graph. The elements of the cumulative cost matrices
are initialised to +00 everywhere except in one row of
the right occluded plane, where:

Cpoli, 0] =i Vi=0...W—-1. 2)

The forward step of 4-state DP computes the four

cumulative cost matrices according to the following

pemin S

v
<j|qm Oceluded State

Figure 10. The proposed four-state model for DP. The graph associated with our new DP algorithm occupies four planes, with 14 allowed
state transitions: (a) state-preserving transitions and (b,c) between-state transitions. Each permitted state transition (shown by arrows) has been

labelled with the associated cost — see text.
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Figure 11. The four-move model for Dynamic Programming al-
lows two matched moves (marked in magenta and cyan), and two
occluded moves (green and red).

recursion:

Croll,r —11 4+«
Comll,r =11 +8 (3)
Crmll,r —11 + B
Croll,r =11  + p
Comll,r—11 +vy
Crmll, r — 1]
Croll,r =11 + p

Croll, r] = min

Crmll,r] = M(, r) + min

where M (I, r) is the cost of matching the /th pixel
in the left scanline with the rth pixel in the right
scanline. In this section we assume given the match-
ing costs M(l,r) and focus on the DP algorithm
only. Section 5 will describe how the cost function is
computed.

The two other cost matrices Cg,[/, r] and Cg,,[/, r]
are defined by invoking symmetry on the definitions of
Cr, and Cy,, above. Note that there are 14 allowed state
transitions, as illustrated in Fig. 10. The cost structure
defined by the four-state DP algorithm and the related
state transitions can be represented compactly as a finite
state machine as in Fig. 12.

In the forward pass, the computation of the four
cumulative cost matrices proceeds from the corner
(I =0, r = 0)intheleft occluded state (L, ) and contin-
uesupto (!l = W—1,r = W —1) in the right occluded
state (R,), where W is the image width. At each iter-
ation, as the cumulative costs matrices are built, back-
ward pointers to the nodes with minimum cumulative
cost are stored, similarly to conventional DP. In the
backward pass, the minimum-cost path is recovered by
following the fourteen different kinds of back-pointers
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Figure 12. Finite State Machine Representation. Our 4-state algo-
rithm can be represented as a finite state machine. The four states
correspond to the basic four permitted matched and occluded moves.
The edge labels represent the costs associated to the 14 different tran-
sitions between states.

fromthe = W — 1,r = W — 1) corner on the left
occluded state L, to (I = 0, » = 0) on the R, state.

Setting the Transition Costs. The penalty parameters
o, B, B and y are chosen as follows:

e The parameter « is set to 1/2, a value chosen just
sufficient to exceed the typical cost M(l,r) (0 <
M(l,r) < 1) of a good match.

e The penalty cost B is set to 1.0—large enough to
avoid erroneous labelling of weak true matches as
occlusions, but not so large as to prevent the mini-
mum cost path ever entering an occluded state.

e The parameter 8’ is set to 1.0—large enough to avoid
reset artefacts (leaving an occluded state too soon),
but not so large as to prevent the minimum cost path
ever entering a matched state.

e The cost y is set to 1/4 to bias against runs of tran-
sitions within the same matched state. Clearly we do
not want to disallow these transitions as these are
used to approximate slanted surfaces, but it is envi-
sioned that in most cases, the minimum cost path will
oscillate between the left and right matched states,
approximating a roughly fronto-parallel surface in a
stair-step fashion (Fig. 13(d)).

It can be proven that the optimal path solution de-
pends only on the sum 8 + f’. Therefore, we can set
B = B’ without loss of generality, thus reducing the
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Figure 13. Minimum-cost 3D path in the four-state graph for DP. (a,b,c) Different views of the 3D minimum-cost path estimated for a pair of
input scanlines. The rapid oscillations between the two matched states (L,, and R,,) illustrate the way matched, slanted surfaces are represented
as alternate horizontal and vertical matched moves. (d) A detail from (c) highlighting the matched oscillations.

number of parameters to three. Optimal values for all
these parameters may be learnt from input ground-truth
data (Kolmogorov et al., 2006). Sensitivity of our al-
gorithm with respect to its parameters is discussed in
Section 6.5.

Figure 13 shows an example of the recovered
minimum-cost 3D path for a pair of corresponding
scanlines extracted from real stereo images. The 3D
minimum cost path resulting from the application of
our DP algorithm weaves its way through the four
states of the graph. Note the two large occlusions (red
and green segments) lying on the corresponding oc-
cluded states. As expected, slanted surfaces are tracked
as series of oscillations between the two matched
states.

Next, we discuss the details of the cost function con-
struction and cost aggregation.

5. Matching Cost Definition and Aggregation

This section describes the computation of matching
costs between pixels pairs and their aggregation to im-
prove inter-scanline consistency.

Computation of Matching Costs. The use of neigh-
bourhood windows in computing the cost of match-
ing two pixels has already been shown to help re-
duce streaky artefacts (Scharstein and Szeliski, 2002).
The matching cost M ([, r) we employ in this paper is
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calculated for every pair of pixels along correspond-
ing epipolar lines with a windowed Normalised Sum
of Squared Differences (NSSD), defined as:

M(,r)
l ZEEQ [(I]l)1+6 - Ilpz) - (11:,-+6 - FPr-)]z

2 D seq (Ié,+6 - Fp/)z + D seq (11:,+6 - I_rpr)2
4

where Q2 is an n x m (n is number of rows) generic
template patch centred at the origin of the coordinate
system; p; and p, are the pixels positions (2-vectors)
in the left and right images, respectively; and 8 is a
variable 2D displacement vector. The bar indicates the
mean operator.

The mean subtraction and rescaling operations in (4)
help deal with changes in the photometric settings
of the two input cameras and possibly with limited
non-Lambertian effects. Our experiments showed that
for horizontally rectified images taller neighborhood
windows (e.g. 7 x 3) help incorporate inter-scanline
information better than square windows of similar
area, with obvious advantages in terms of speed. Fur-
thermore, the costs M(l,r) can be computed effi-
ciently using moving average techniques (Scharstein
and Szeliski, 2002). The normalization property of (4)
O < M(,r) < 1V, r)will turn out to be extremely
convenient when setting the costs of the graph edges
defined in the next sections.

In our experiments we have compared the Normal-
ized SSD cost with the Normalized Cross-Correlation
(NCC) matching cost defined as:

1
Mncc(l’ r) = E

X( Z&eQ (I]iH»& - IlPI)(ILr‘HS - I_i;r) )
2

1 —
— —
\/Zaesz Iy = 1'0) Xsca (Iy 15— 1I"p.)
)

We have found little difference, in terms of results,
between the two implementations but NSSD is consid-
erably faster than NCC (despite our efforts to improve
the efficiency of the NCC code’). Interesting linearity
and consistency properties of the NSSD cost function
are discussed in Kolmogorov et al. (2006).

One of the biggest problems of dynamic program-
ming, dense stereo algorithms is that scanlines are
treated independently. This induces visible “streaky”

artefacts in the output disparity maps and related syn-
thesized images. This issue is addressed here by filter-
ing the matching cost matrix across scanlines, over a
three-dimensional cost space.

5.1.  Inter-Scanline Consistency and Cost
Aggregation

A solution to the issue of inter-scanline consis-
tency (Ohta and Kanade, 1985) is to propagate infor-
mation across scanlines by detecting and matching ver-
tical edges. This has two drawbacks however: (i) the
robust matching of edges is an open issue, especially
for occluding contours (precisely where we need most
accuracy); (i) edge detection and matching algorithms
are slow. Our solution to the problem of encouraging
the propagation of information across scanlines effi-
ciently is to use small window neighborhoods in the
cost computation step followed by a separate cost ag-
gregation step.

The algorithm proceeds as follows: Firstly the cost
matrices M (I, r), associated with each pair of scan-
lines, are built and stacked to form a three-dimensional
cost space as in Fig. 14(a). Secondly, a 2D Gaussian
filter is applied with principal axes a parallel to the vir-
tual image plane (Fig. 14(b)). The axis a of the Gaus-
sian kernel orthogonal to the left and right scanline
axes is responsible for enforcing inter-scanline consis-
tency of the costs; the other axis a’ produces additional
smoothing of sharp corners in the occlusion map by
encouraging fronto-parallel surfaces (Scharstein and
Szeliski, 2002). Typical values for Gaussian smooth-
ing parameters are: o, = 3 pixels along the a axis and
o, = 2 pixels along the a’ axis.

Cost-filtering acts directly on the matching cost func-
tion rather than on the final matching path or the dispar-
ity map. In fact, cost aggregation precedes the optimal
path finding step. The result is effective information
propagation across scanlines with improved occlusion
positioning without necessarily smoothing disparities
(Fig. 16). Furthermore, the cost filtering step, being
a separable 2D convolution can be implemented effi-
ciently by using two 1D convolutions.

Note that if we had used standard, un-normalized
SSD in the cost computation step, then the use of
large window neighborhoods (with Gaussian weight-
ing) would have been equivalent to the cost aggrega-
tion performed in this section. Furthermore, we have
found that normalized SSD costs on small windows
works considerably better than standard SSD. Further
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Figure 14. The 3D cost space for a pair of stereo images. (a) Match
cost space, as Fig. 5(a), now shown for full 3D volume. (b) In order
to propagate cost information across scanlines a 2D Gaussian filter
(represented by the red ellipse) parallel to the virtual image plane is
applied to the 3D cost space.

Input stereo pair

Conventional DP

research is necessary here to assess an optimal match-
ing cost function.

The output of the cost aggregation process is the
new set of M(l, r) costs used, as input to the 4-state DP
algorithm already described in Section 4.

6. Evaluating the Estimated Disparity and
Occlusion Maps

The goal of this section is two-fold: (i) demonstrating
the advantages of our new DP algorithm with respect to
other techniques and, (ii) defining measures of accuracy
of occlusion detection for comparison with state of the
art Graph-Cut techniques.

6.1. Advantages of Four-State Model for DP

Four-state vs conventional DP. Figure 15 demon-
strates the effect of moving from the conventional
DP algorithm to the four-state DP one. Comparing
Fig. 15(a) and (b) one can see that the four-state model
removes most of the incorrect occlusion events which
occur in the background of Fig. 15(a) (isolated red and
green points). The black pixels in Fig. 15(a) and (b)
correspond to matched moves. The four-state model

4-state DP

Figure 15. Comparing the different DP models. (a,b) Occlusion maps obtained from the conventional DP and the 4-state DP algorithms,
respectively. Red indicates left occlusions and right occlusions are green. (a) In conventional DP numerous matched pixels are incorrectly
classified as occluded. True occlusions around the head show as broken up maps of ambiguous labels, and would cause “reset” artefacts in the
synthesized cyclopean view. (b) In 4-state DP true occlusions around the head are correctly detected as unfragmented regions. Throughout, 7 x 3
window patches were used in the computation of matching costs; a value of o, = 2.0 has been used for the cost filtering step. (c,d) Disparities
corresponding to (a,b), respectively. Removal of spurious occlusion labels helps also to clean up the disparity map. The disparity values have

been scaled up 1.5 times for ease of visualization.
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correctly classifies small jumps in disparity levels as
matched moves discretizing slanted surfaces (e.g. the
face or the slanted walls in the background). Further-
more, this new graph structure is used to favour long
runs of occlusions. In Fig. 15(b) the occlusions are: (i)
correctly located along the boundary of the foreground
object, and (ii) detected as compact, solid regions. This,
in turn, leads to better occlusion maps and more con-
vincing synthesis, as will be demonstrated in Section 9.

The Effect of Cost-Space Smoothing on Inter-scanline
Consistency. Figure 16 shows the effect of varying
the o, parameter for cost-space smoothing. As the value
of the standard deviation o, of the Gaussian kernel in-
creases the runs of occlusions become correctly aligned
with the outline of the foreground head. Importantly,
above a certain value of o, the results become quite
stable.

4
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Figure 16.
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6.2. Evaluating Accuracy of Disparities

Here we compare the computed disparities with those
in the standard Middlebury database. Fig. 17 shows
a snapshot of the stereo algorithm evaluation table
in http://www.middlebury.edu/stereo/.
The Middlebury error metrics show our algorithm
amongst the most accurate of the efficient techniques
(e.g. Tree DP, Comp. win, Realtime). Proper
handling of occlusions vs slanted surfaces in large-
disparity images is an advantage of 4-state DP. In this
evaluation identical parameters have been used for all
four tests. Due to its thin structures the “tsukuba” image
pair presents most difficulties. This problem is typical
of scanline dynamic programming techniques which
impose the ordering constraint. However, thin struc-
tures do not seem to appear often in video-conferencing
kind of images.

0.=3.0 O,=4.0

Inter-scanline consistency by cost filtering. Occlusion maps obtained by 4-state DP for different values of o, (Section 5.1). In this

experiment the value of o,/ has been kept fixed at o, = 2 pixel. Cost filtering helps achieve more “compact” occlusion regions.

”Algorithm Tsukuba

_ all untex. disc all
Sym.BPsoccl. | 0.971 0282 5.451 019
Multiw. cut 8.0838 6.5332 25.3337 | 0.6110
Graph cuts 1.8618 1.0045 9.3515| 0.42s
Tree DP kK| 17715 0.385 9.4816 | 1.4424
OUR METHOD >k>k 4.7030 3.6827 21.0522  1.4322
Comp. win. sk |3.3625 3.5425 12.9125 | 1.6127
Realtime % >k|4.2529 4.4730 15.0529 | 1.3222
Cooperative 3.4926 3.652¢ 14.7727 | 2.0328
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13.0029
4.2310
3945
11.352¢

2372

8.0617 | 0.265
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0.595 17.9820 | 0.307
21819 13.2422 | 0.3311
1.8017 12.3320 I 0.8120

3.5229 26.3825 | 0.22:

Figure 17. Evaluating 4-state DP with respect to the disparity error metrics in Scharstein and Szeliski (2002). A snapshot of the evaluation
table in http: //www.middlebury.edu/stereo/. The red stars indicate different levels of reported algorithmic efficiency: double star
for high efficiency (> 1fps), single star for medium (<1fps) and no star for either low (<<1fps) or un-reported frame-rate. Four-state DP ranks
amongst the best of the fast techniques. Additionally, proper handling of occlusions vs slanted surfaces (missing for example in Tree DP) is
provided. However, being at the top of this table is not the main objective of this paper; while accurate new-view synthesis is.
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While we cannot expect 4-state DP to beat the fully
two-dimensional MRF techniques, its near real-time
performance and accurate occlusion modelling present
considerable advantages, especially for live view syn-
thesis applications. Since realistic new view synthesis
is the main objective of this paper the next sections
will focus on evaluating the accuracy of the recovered
occlusion maps.

6.3. Assessing the Quality of Occlusions

Figure 18(a)—(d) illustrates the results of applying 4-
state DP to four of the Middlebury test image pairs. Oc-
clusions are recovered correctly only where they occur,
while slanted surfaces are modelled by matched moves
only. In all the above experiments the parameters were
kept fixed for all image pairs and identical to those
used in Section 6.2. For comparison, ground-truth oc-
clusion maps for the Middlebury datasets (Fig. 18(a)—
(d')) were computed by taking the left and the right dis-
parity maps and cross-projecting them. The presence
of both disparity maps enabled un-ambiguous detec-
tion of true occlusion while correctly modeling slanted
surfaces.

The results of estimating (left) occlusion and dis-
parity maps are quite convincing, even for non
videoconferencing-like images. However, our algo-
rithm has been designed to cope with situations in-
volving much greater disparity ranges than the ones

s
mnm

shown in Scharstein and Szeliski (2002). For the next
experiment we have created our own test stereo pair,
characterized by a much larger disparity and occlusion
range.

6.4. Quantitative Assessment of Occlusion Errors.

Figure 19 compares our results with the ones obtained
by three well known graph-cut techniques which es-
timate occlusions (Buehler et al., 2002; Ishikawa and
Geiger, 1998; Kolmogorov and Zabih, 2001) and the
conventional 3-move DP (Cox et al., 1996). Except-
ing the graph-cut method in Kolmogorov and Zabih
(2001).° the other algorithms are based on our own
implementations.

Figure 19(a) and (b) are the two input images used
in this experiment. The photographed scene is made
of two background slanted planes and one foreground
fronto-parallel plane. The stereo pair is characterized
by a maximum disparity range of 90 pixels and a max-
imum occlusion gap of 72 pixels which corresponds
to 22.5% of the image width (image dimensions are
320 x 240); more than twice the occlusion gap of the
Map stereo pair in Fig. 18. The ground truth dispar-
ity and occlusion map (Fig. 19(c)) was obtained by
least-square fitting of the two planes in the background
and the planar surface of the foreground object. The fit-
ting process was initialised by dense matches produced
by DP. The segmentation of the foreground object was
perfomed manually and the correctness of the resulting

L

Figure 18. Accuracy of occlusion estimation on Middlebury stereo pairs. (a—d) Estimated occlusions and disparities for the left view of Map,
Sawtooth, Cones and Teddy pairs, respectively. (a’-d") Corresponding ground-truth occlusions and disparities (blue denotes unlabelled
pixels). Good correspondence between the ground-truth occlusions and those estimated by 4-state DP is evident. Measured occlusion detection

n. correctly detected occlusions
n. a]l detected occlusions

accuracy (

) for the four cases is: (a) 93%, (b) 90%, (c) 79%, (d) 85%. The maximum occlusion gap of 55 pixels

(12% of image width) occurs at the edge of the Cones image. The maximum occlusion for Map is about 9% of the image width.
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g h

Figure 19. Comparing the occlusion maps returned by different al-
gorithms. (a,b) Input left and right images, respectively. (¢) Ground-
truth occlusion (and disparity) map with reference to the left camera.
As usual, green indicates right-occlusion. (d-h) Left-referenced oc-
clusion maps recovered by using: (d) 4-state DP; (e) Buehler et al.
graph-cut algorithm (Buehler et al., 2002); (f) Kolmogorov et al.
graph-cut algorithm (Kolmogorov and Zabih, 2001); (g) Ishikawa
et al. graph-cut algorithm (Ishikawa and Geiger, 1998); (h) Cox et al.
dynamic-programming algorithm (Cox et al., 1996).

ground truth was verified by manual inspection. Some
graph-cut algorithms such as Kolmogorov and Zabih
(2001) produce left and right occlusion maps and not
the cyclopean map. Therefore, in order to reduce the
possibility of error we have decided to compare the
performance of the selected algorithms always with
reference to the left camera. Fig. 19(d)—(h) show the
results of computing the left-referenced occlusion and
disparity maps via different algorithms.

In order to quantify the occlusion accuracy we define
a new error measure, the Misclassification rate.

Misclassification Rate  is estimated by comparing the
occlusion maps recovered by each algorithm with
ground truth (Fig. 19(c)) and counting the number N,,
of misclassified pixels (both false positives and false
negatives).

Comparative Results. The misclassification rate has
been measured for all the occlusion maps in
Fig. 19(d)—(h) and the results collected in the table in
Fig. 20.

The three graph-cut algorithms (Buehler et al., 2002;
Ishikawa and Geiger, 1998; Kolmogorov and Zabih,
2001) perform comparably and considerably better
than conventional DP. The reduced misclassification
error obtained by 4-state DP is due to the extended
four-label pixel classification and the enforcement of
occlusion-run constraints. While the GC framework
in Kolmogorov and Zabih (2001) supports runs of
occlusions, these are not correctly modeled in the
sense that occluded moves are used to approximate
slanted surfaces. Furthermore, right and left occlu-
sions are not differentiated. An alternative GC algo-
rithm (Ishikawa and Geiger, 1998) that does use ex-
plicit labels for occlusion produces poor results for
lack of constraint enforcement. The effect of approx-
imating slanted surfaces with occluded moves can be
observed in figs. 19(e), (f), (h); where the background
is constellated by a large number of vertically aligned
occluded pixels (marked in green). These results show
that the combination of both an extended occlusion
model for correct pixel classification and the enforce-
ment of constraints on occluded areas achieves the best
results. Figure 20 also shows our algorithm being the
second fastest, immediately after the very efficient (but
relatively poor quality) Cox DP.

Further Notes on Our Experimental Procedure. The
different energy minimization algorithms analysed in

Algorithm | Misclass. rate  Runtime
4-state DP 2.61% 1.57s
Buehler et al. [ BGCMO02] 6.45% 468 s
Kolmogorov et al. [KZ01] 6.57% 65s
Ishikawa et al. [1G98] 6.61% 912s
Cox et al. [CHRM96] 8.17% 0.31s

Figure 20. Accuracy of occlusion detection. Comparing accuracy
and performance of different state-of-the-art dense stereo algorithm
in estimating occlusion maps.
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this section have been applied to exactly the same cost
space, which was computed only once.” This was done
to eliminate variability due to different matching cost
functions or cost smoothing parameters. Furthermore,
for each algorithm we have selected the combination
of parameters which has lead to the best results for
that specific algorithm. In the case of the algorithm
in Kolmogorov and Zabih (2001) the parameters were
automatically selected by the original implementation.
Finally, all algorithms were run on the same machine,
a3 GHz, 1 Gb RAM Pentium IV desktop computer.

Our results place 4-state DP amongst the most ac-
curate efficient algorithms for shape and occlusion re-
covery from large-disparity image stereo pairs. Further-
more, we propose a novel error metric (for occlusions)
which should be added to the set of metrics defined
in Scharstein and Szeliski (2002).

6.5. Parameter Sensitivity

In order to assess the sensitivity of our algorithm
with respect to its parameters we have measured the
“percentage of bad pixels” (Scharstein and Szeliski,
2002) and misclassification rate for different values of
o, B and y. Figure 21 shows some exemplary error
plots illustrating sensitivity of «. Both disparity-based
(Fig. 21(a)) and occlusion-based (Fig. 21(b)) error met-
rics show a flat behaviour in the range @ € [0.35, 0.65].
Sensitivity with respect to the § and y parameters has
been found to be about ten times lower. Generally, good
stability of the output errors has been found for rela-
tively large ranges of parameter values and for both
disparity-based and occlusion-based error metrics.

The previous sections have: (i) illustrated 4-state DP
for the reliable estimation of occlusion and disparity
maps and (ii) evaluated our algorithm against state of
the art techniques. The next sections focus on the new-
view rendering problem, how to best make use of the
extracted geometric information for the purposes of
efficient virtual-image generation.

7. Rendering Occlusions

High-quality virtual image generation requires effec-
tive synthesis over occluded regions. We have investi-
gated two strategies for occlusion filling: static filling,
which applies to single pairs of stereo images and fem-
poral filling which, instead, models what lies behind
the occlusions from long sequences of stereo images.
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Figure 21. Sensitivity to parameters. (a) Sensitivity of the “per-
centage of bad pixels” error metric with respect to . Note the flat
behaviour fora > 0.35. (b) Sensitivity of occlusion misclassification
rate with respect to «. In all cases errors are measured on standard
Middlebury stereo pairs. Occlusion errors are measured on the two
stereo pairs with the largest occlusions. 4-state DP is not particularly
sensitive to values of o varying within a reasonable range.

Static Occlusion Filling. Given an input stereo pair
of images ‘fronto-parallel’ synthesis of the occluded
regions is done via the algorithm illustrated in
Fig. 7(c). As discussed in Section 2.2 effective filling
of the occlusions is disrupted by inaccurate labelling.
Figure 22(b) shows an example of realistic occlusion
synthesis achieved by 4-state DP. Note that Fig. 22(b)
is free from any “halo” or “reset” artefacts.

Temporal Occlusion Filling. When the static filling
algorithm is applied to long image sequences, tem-
poral artefacts become visible in occluded regions.
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Conventional Dynamic Programming
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Synthetic cyclnpeém

Disparity

4-State Dynamic Programming

Synthetic cyclnpeén

Disparity

Figure 22. Eliminating the reset artefact. (a) Occlusion map and reconstructed cyclopean view for conventional DP. Small islands of spurious
matched pixels inside occlusion regions cause the reconstruction of the occluded areas to fail. Note also that many pixels on slanted surfaces have
been incorrectly classified as occluded. (b) Occlusion map and reconstructed cyclopean view for the proposed four-state DP. The compactness
of the recovered occlusion regions produces a more accurate cyclopean reconstruction: the background door frame is now straight and almost

completely artefact-free.

Moreover, because of the lack of pixel correspondence,
stability of synthesis is a particular issue in the occluded
areas. One solution to this problem is the construction
and dynamic update of a model of the background used
to fill in the regions of missing information. The algo-
rithm is in two steps: the first step segments the fore-
ground from the background at each time instance; the
second step uses the newly uncovered (disoccluded)
pixels of the background to improve the background
model.

The segmentation step, performed at each time
instance, proceeds as follows:

Given the estimated min-cost surface S:

1. Along each scanline in the min-cost surface, for
each run of occlusions, the disparity at the highest
disparity end of the run is histogrammed (Fig. 24).

2. The valley in the resulting bimodal histogram deter-
mines the adaptive threshold disparity valued that is
used for the background/foreground segmentation.

Figure 24(b) shows a typical histogram. The peak
near the origin is due to the long and thin occlusion
bands at the edges of the image, while the peak at
higher disparity values is due to the foreground object

and is the one we are mostly interested in. This kind
of bimodal histogram turns out to be characteristic
of sequences of talking heads scenes. This approach
for automatic threshold detection works better than
histogramming the whole set of estimated disparities.
This is because the selected pixels (marked in white in
Fig. 24(a)) are more representative of the foreground
object. The technique has been proven to work also in
situations where part of the background are very close
(in depth) to the foreground talking head (e.g. a reced-
ing wall).

In the second step of the algorithm a background
model is constructed and updated at each time instance.
The background model is made of three elements: its
disparity map Dp in cyclopean coordinates, and the
corresponding left and right images 5 and I}, respec-
tively. At each time instance ¢ the background model
is updated by the following rule:

Diy(p) = ¢Dy ' (p) + (1 — ¢)D'(p)
) = ¢l )+0—9I"(p) (6
Iy (p) = ¢l (p)+ (1 — )" (pr)

where p is a pixel whose disparity D(p) falls below the
automatically computed foreground threshold d (and
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Figure 23. Temporal background generation. (top row) Synthesized cyclopean views for different frames. More examples of synthesised
cyclopean views are provided in the results section. (bottom row) Corresponding background models. As new regions of the background are
discovered the background model is updated and the blank region (occlusion) progressively filled.

thus belongs to the background). The points p; and p,
are the corresponding positions on left and right input
images, respectively. D’ (p) is the disparity of the pixel
p in the current background model at time ¢. The scalar
factor ¢ represents a decay constant (0 < ¢ < 1).
The update rule in (7) applies to all the pixels which
belong to the background and are visible and does not
apply to occluded pixels. The use of the exponential
memory parameter ¢ allows for a relaxation of the static
background assumption. In our experiments ¢ = 0.9
achieves a good balance between keeping the previous
values of the background pixels and updating them in
the case of dynamic events on the background.

Figure 23 illustrates the results of the tempo-
ral background filling algorithm. During the video-
communication session the head moves and disoc-
cludes portions of the background. The background
model is updated and, after a few frames, if the head
moves substantially, the background is completely re-
constructed.

Advantages and Disadvantages of Static and Temporal
Filling Strategies. The static occlusion filling strat-
egy is based on the assumption of a fronto-parallel
background, which, although most of the time pro-
duces good results, may not make sense for scenes
with very slanted surfaces. Furthermore, the static
occlusion filling requires solid and accurate occlu-
sion areas which are achieved by four-state DP but

are not in conventional DP or graph-cut techniques.
On the other hand, in temporal occlusion filling, the
background model is learnt from the disocclusions of
previous frames. This introduces the need for back-
ground/foreground segmentation and the assumption
of a quasi-static background.

Temporal occlusion filling and background model-
ing is especially useful in the next section which intro-
duces the three-dimensional motion of the virtual cam-
era. In fact, as the virtual camera centre moves away
from the baseline of the two input cameras less informa-
tion is available from the current pair of stereo frames
about the occluded regions, and temporally acquired
background information becomes extremely useful for
reconstructing unseen regions. Overall, we have found
that a combination of the two techniques works best: we
use static filling in the half-occluded areas which have
not yet been observed, and temporal filling in those
occluded regions which have been disoccluded in pre-
vious frames.

8. Rendering from Variable Viewpoint

The ability to create virtual images from generic view-
points is of considerable interest both for interactive
video and teleconferencing applications. Convention-
ally, one way of generating novel views from virtual
camera locations is by: (i) transforming the computed
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Figure 24. Foreground/background segmentation. (a) The pixels
corresponding to the higher-disparity end in each horizontal run of
occlusion is marked in white. (b) The histogram corresponding to
the disparities extracted in (a).

disparity map into a 3D surface (e.g. by means of a tri-
angle mesh), (ii) texture mapping it with one of the two
images, (iii) projecting the texture-mapped surface into
the plane of the virtual camera. This section describes
a novel, compact technique for rendering virtual views
directly from the estimated disparity surface, thus over-
riding the need to construct an explicit 3D model of the
scene.

The Geometry of the Virtual Camera. Figure 25
shows a plan view of the system with the optical centre
of the virtual camera being placed in the generic loca-
tion denoted O,. A 3D scene point P is projected on the
left and right images into the points p; = (x;, y;) " and
pr = (x, y,)T, respectively. Also, P is projected on
the cyclopean camera (with optical centre in O, = O)
in the point p, = (x., y.)' (not shown in the figure)
and on the virtual camera in the point p, = (x,, yo) .
The disparity between the corresponding left and right

BP(XYZ)
/lf’ ~
P S
# ] ~
# ~
,/ !.' %
s + Virtual g
N
o X\;: camera s,
.Y e ¢ X
/ z
. Oy ~ ;
eft . "o ;_ N Right

camera 0| O' camera

Figure 25. Notation for virtual image generation. Q;, O, and O,
are the optical centres of left, right and virtual cameras respectively.
The optical centre of the virtual camera can be placed anywhere
in space and the corresponding virtual image is synthesized by our
algorithm.

image points is easily computed as

d:m—mzfg. )

In the cyclopean camera, by triangle similarity we
can compute

X
=17 @®)

For a virtual camera with optical center in O, =
(T, Ty, T;)" we can write: (X —Ty) :x, = (Z —T,) :
f, from which

X —T

= f— . 9
w=I57 )
By substltutmg (7) and (8) into (9) we obtain:
Xy, = % which, together with the analo-

gous equation for the y, coordinate, can be rewritten
in homogeneous coordinates as:

X 1 0o -1/B o™
wl=l01 -1/B o0 ZC (10)
w) Loo —ryum 1|

Equation (10) represents a projection of 3D points into
aplane (Hartley and Zisserman, 2000). It can be proven
that (10) corresponds to projecting points of the min-
cost surface into the corresponding points on the plane
of the virtual image (up to a scale, diagonal matrix) as
illustrated in Fig. 26(a).

From (10) the centre of projection Q is readily com-
puted as the null vector of the projection matrix, thus
yielding: Q = (% % 1 %‘E )T. Note that for T, = 0
the transformation (10) is a parallel projection (Q is
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Inwards virtual
camera motion,

Legend:

M Outwards, 4 Upwards, % Downwards, e Right, ¥ Left.

Figure 26. Virtual camera motion. (a) The 3D motion of the virtual camera is achieved by direct projections of points on the minimum cost
surface onto the virtual image plane. The reference coordinate system (x., y., d) has origin in the centre of the virtual image plane. (b) The
virtual image is generated directly by projecting points from the minimum-cost surface S into the virtual image plane. (c) Moving the centre of
projection Q corresponds to translating the virtual camera. The coloured arrows indicate the mapping between moving the centre of projection
Q in our diagram and the corresponding translations of the virtual camera in the scene.

b=l

background

Right scanline

Left scanling

Figure 27. Occlusion filling for generic virtual camera placement.
The only difference with respect to the cyclopean occlusion filling
illustrated in Fig. 7(c) is that now the generic direction of projection
is dictated by the position of the centre Q.

at infinity). This, in turn means that sidewise motion
(in the X direction) and up/down motion (in the Y di-
rection) of the virtual camera can be easily simulated
by projecting points of the disparity surface S onto the
virtual image plane via parallel rays. On the contrary,
the inwards/outwards translation of the virtual camera
(T, # 0) is achieved by means of a central projection
with finite centre of projection Q. The simple mapping
between the motion of the centre of projection Q and
the corresponding translation of the virtual camera s il-
lustrated in 26(c) and (d). For instance, inwards camera
translation (not zoom) is achieved by moving the centre
Q from 400 towards the plane of the virtual image.
Note that for Q = (—=1/2,0,1,0)" (ie. O, =
(—B/2,0,0)") the virtual image corresponds to the
input left image, for Q = (1/2,0,1,0)" (ie. O, =
(B/2,0,0)7) the virtual image corresponds to the in-
put right image, and for Q = (0,0,1,0)" (i.e. O, =

Figure 28. Example of gaze correction. (a) Cyclopean image syn-
thesized via the algorithm in Cox et al. (1993). This image is identical
to that in Fig. 3(b) and is repeated here for clarity. The input left and
right images are shown in Fig. 3(a) and (c), respectively. (b) The cy-
clopean, gaze-corrected view generated by our algorithm. The gaze
has been corrected while eliminating the artefacts of (a).

a

Figure 29. Another example of gaze correction. The central image,
(b) has been generated from the two input views (a,c) and shows
correct gaze (the person is looking at us). There are no significant
“halo” effects or streaky artefacts.

(0,0, 0)7) the virtual image corresponds to the cyclo-
pean image.

Synthesizing Virtual Images from Generic Viewpoints.
Given a point p on the minimum-cost surface and its
corresponding virtual position p, (Fig. 26(a) and cf.
Fig. 7(a)), the corresponding pixel value (intensity or
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Forward Backward

Figure 30. Forward/backward translation of virtual camera. The bottom row shows the synthesized cyclopean views with (left) forward virtual
camera translation, (centre) no virtual camera translation, (right) backward virtual camera translation. Notice the parallax effect around the head.

1 —

Figure 31. In-plane translation of virtual camera. The left and right input images are the same as in Fig. 30. This table shows the synthesized
images corresponding to translation of the virtual camera along the x and y axes. Notice the parallax effect around the head. Also, the door
frame is reconstructed nicely despite it being partially occluded in the right input view.

colour) is given by a combination of the pixel values of
the corresponding pixels p; and p, in the input images
according to the following equation:®

- ! . . .
with p = lox‘#; where the subscript indicates the x

component of optical centres of the two input cameras.

Occlusion Filling and Rendering. The filling of oc-
I’(p,) =10 —wl I(pl) + wl"(p,) (1 clusions for generic virtual view placement is very
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Figure 32. Cyclopean image synthesis for long sequences. Some frames of a cyclopean video sequence synthesized by 4-state DP. The two
input left and right sequences are not shown here.

Figure 33. Another example of virtual image synthesis in sequences. Frames extracted from a reconstructed cyclopean sequence. The input
images are not shown here. Notice the quality of the synthesized images.

Figure 34. Background replacement. Four-state DP allows, amongst other things, for the foreground to be segmented from the background.
This, in turn, allows the real background to be replaced by alternative images, or videos.
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similar to the cyclopean case illustrated in Fig. 7(c).
As shown in Fig. 27 now the direction of projec-
tion is dictated by the position of the centre Q, the
cyclopean case being a special case of this general
projection.

The rendering algorithm described here is an ex-
tension of the cyclopean rendering presented in
Section 2.2. By inspection of (11) one can see that
in the cases where O, = O; or O, = O,, the orig-
inal left and right views are resynthesised exactly,
and independently from the recovered disparities, as
expected. Further advantages of our rendering tech-
nique are: (i) direct view-dependent texture rendering
which negates the need for surface triangulation and
(ii) effortless occlusion reconstruction by simple pro-
jection of the minimum-cost surface. High-quality out-
put images are obtained by standard reverse mapping
and bilinear interpolation techniques. Note that rota-
tions of the virtual camera have not been considered
here. Rotations may be achieved by homography-based
image warping. However, virtual-camera rotation
does not seem to be an important requirement in
video-conferencing.

9. New View Synthesis Results

This section presents a number of synthesis results
achieved on real input sequences. In particular, we
demonstrate: gaze correction, cyclopean view gener-
ation, three-dimensional translation of the virtual cam-
era, simple editing such as background substitution.

Gaze Correction by Cyclopean View Synthesis. Fig-
ure 28 shows an example where the input left and right
images of Fig. 3 have been used to generate the cyclo-
pean view via the proposed algorithm. Note that the
spatial artefacts (streaks in Fig. 3(b)) have been re-
moved. In the output image (Fig. 28) the gaze has been
corrected. Another example of gaze correction from
stereo images is illustrated in Fig. 29.

3D Translation of the Virtual Camera. Figure 30
shows an example of translating the virtual camera to-
wards and away from the visualized scene. Note that
this is different from simple zooming or cropping of
the output image. Parallax effect may be noticed in the
boundary between the head and the background, thus
providing the correct three-dimensional feel.

Figure 31 shows an example of in-plane translation
(with O, onthe XY plane) of the virtual camera. Notice

the relative displacement of the head with respect to the
background.

Cyclopean View Generation in Long Sequences. Fig-
ure 32 and 33 demonstrate the effectiveness of
the proposed algorithm for reconstructing cyclopean
views of extended temporal sequences. It can be
observed that most of the spatial artefacts (e.g.
streaks, halo) and temporal artefacts (e.g. flicker-
ing) are attenuated. The background close to the
foreground/background transitions is correctly syn-
thesized. Exemplary synthesized videos are available
at http://research.microsoft.com/vision/
cambridge/i2i/movies/4pdp.zip

Basic 3D Scene Editing. The proposed algorithm
generates novel, virtual views, but also, as a by-
product, a 3D representation of the observed scene.
The latter can be advantageous for 3D scene editing.
As an example, Fig. 34 demonstrates the possibility
of replacing the original background with a differ-
ent one, either taken from real photographs or artifi-
cially generated. This is made possible thanks to the
foreground/background segmentation step described
in Section 7. Recent developments of the background
substitution technique may be found in Kolmogorov
etal. (2005). Sophisticated matting techniques for high-
quality layer compositing are not the focus of this paper.

10. Conclusions and Future Work

This paper has described an efficient algorithm for the
synthesis and geometric manipulation of high-quality
virtual images generated from a pair of synchronized
stereo sequences with large disparities. In this paper we
have focused on one-to-one teleconferencing applica-
tions but the techniques are more general and can be
employed in other fields requiring high-quality novel
view generation and dense stereo.

The main contributions of the paper can be summa-
rized as:

e A new four-state DP algorithm for the correct detec-
tion and classification of occlusion events;

e A compact geometric technique for the rendering of
novel views directly from the minimum-cost surface
estimated by the DP algorithm.

The effectiveness of the new algorithmic components
has been demonstrated in a number of examples where
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the artefacts typical of DP techniques have been elimi-
nated while keeping quite a high frame rate. The current
implementation exploits SSE2 instructions and pro-
duces virtual images at about 7 frames per second (on
320 x 240 images, on a 3.0 Ghz Pentium IV with 1Gb
RAM). The viability of the proposed algorithm has also
been demonstrated by comparing the accuracy of the
estimated occlusion maps with the ones generated by
state of the art techniques amongst which three of the
most recent graph-cut algorithms.

Despite recent progress, the depth maps obtained by
4-state DP still lack the level of accuracy necessary for
seamless background substitution. Fusion of different
cues, such as depth, motion, colour ans contrast seems
very promising. Progress to date in this area is reported
in Kolmogorov et al. (2005); Kolmogorov et al. (2006).
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Notes

1. e.g.messenger.msn.co.uk/,messenger.yahoo.com
/,www.aol.co.uk/aim/

2. We refer to cyclopean view as the image generated from a virtual
camera located in the mid-point between the two input cameras.

3. The minimum-cost surface is defined to be the collection of all
the minimum-cost paths estimated (independently) by the DP
algorithm at each scanline.

4. We used the epipolar rectification technique described in Hartley
and Zisserman (2000).

5. www.idiom.com/~zilla/Work/nvisionInterface

6. Original algorithm available from www.cs.cornell.edu/
People/vnk/software.html

7. Note that we had to adapt the source code in Kolmogorov and
Zabih (2001) to read our filtered cost space as input. Then, graph-
cut was used for energy minimization only.

8. Equation (11) is strictly valid only for matched pixels; while
values of occluded pixels are taken only from the image where
they are visible (Fig. 7(b)).
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