
International Journal of Computer Vision 70(3), 241–255, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11263-006-8066-7

Splines in Higher Order TV Regularization

GABRIELE STEIDL
University of Mannheim, Faculty of Mathematics and Computer Science , 68131 Mannheim, Germany

steidl@math.uni-mannheim.de

STEPHAN DIDAS
Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science,

Saarland University, 66123 Saarbrücken, Germany
didas@mia.uni-saarland.de

JULIA NEUMANN
University of Mannheim, Faculty of Mathematics and Computer Science , 68131 Mannheim, Germany

jneumann@uni-mannheim.de

Received June 2, 2005; Revised December 12, 2005; Accepted January 4, 2006

Abstract. Splines play an important role as solutions of various interpolation and approximation problems that
minimize special functionals in some smoothness spaces. In this paper, we show in a strictly discrete setting that
splines of degree m−1 solve also a minimization problem with quadratic data term and m-th order total variation (TV)
regularization term. In contrast to problems with quadratic regularization terms involving m-th order derivatives,
the spline knots are not known in advance but depend on the input data and the regularization parameter λ. More
precisely, the spline knots are determined by the contact points of the m–th discrete antiderivative of the solution
with the tube of width 2λ around the m-th discrete antiderivative of the input data. We point out that the dual
formulation of our minimization problem can be considered as support vector regression problem in the discrete
counterpart of the Sobolev space W m

2,0. From this point of view, the solution of our minimization problem has a
sparse representation in terms of discrete fundamental splines.

Keywords: higher order TV regularization, splines, support vector regression, Legendre-Fenchel dualization
taut-string algorithm

1. Introduction

In this paper, we are interested in the solution of the
minimization problem

1

2

∫ 1

0
(u(x)− f (x))2+λ|u(m)(x)| dx → min (1)

and some of its 2D versions involving first and second

order partial derivatives. More precisely, we work in a
strictly discrete setting which is appropriate for tasks
in digital signal processing. For a discrete signal u =
(u(1), . . . , u(n))T, we use the m-th forward difference

�mu( j) :=
m∑

k=0

(−1)k+m

(
m

k

)
u( j + k),

j = 1, . . . , n − m (2)
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as discretization of the m-th derivative. Then, for given
input data f ∈ Rn , we are looking for the solution of
the minimization problem

1

2

n∑
j=1

(u( j) − f ( j))2 + λ

n−m∑
j=1

|�mu( j)| → min,

(3)

where we refer to the penalty term as m–order TV
regularization. Of course, other discretizations of (1)
are possible. In contrast to the solution of the well
examined version of (3) with quadratic penalty term
|�mu( j)|2, the solution of (3) does not linearly depend
on the input data. This results in some advantages over
the linear solution as better edge preserving. For two
dimensions and first order derivatives in the penalizer,
problem (3) becomes the classical approach of Rudin,
Osher and Fatemi (ROF) Rudin et al. (1992) which has
many applications in digital image processing. Mean-
while there exist various solution methods for this prob-
lem, see Vogel (2002) and the references therein. Most
of these methods introduce a small additional smooth-
ing parameter to cope with the non differentiability of
|·|. There are two approaches which avoid such an addi-
tional parameter, namely a wavelet inspired technique
Welk et al. (2005) and the Legendre–Fenchel dualiza-
tion technique, see, e.g., Chambolle (2004); Chan et al.
(1999) which is also relevant in the present consider-
ations. We further mention that other cost functionals
than the quadratic one have to come into the play when
dealing, e.g., with denoising of images corrupted with
other than white Gaussian noise. In this context we only
refer to recent papers of Nikolova (2004); Chan et al.
and the references therein.

In this paper, we are interested in the structure of the
solution u even for m > 1. We show that u is a discrete
spline of degree m − 1, where the spline knots, in con-
trast to the linear problem with quadratic regularization
term, depend on the input data f and on the regulariza-
tion parameter λ. More precisely, the spline knots are
determined by the contact points of the m–th discrete
antiderivative of u with the tube of width 2λ around
the m–th discrete antiderivative of f . We will see that
the dual formulation of our minimization problem can
be considered as support vector regression (SVR) prob-
lem in the discrete counterpart of the Sobolev space
W m

2,0. The SVR problem can be solved by standard
quadratic programming methods. This provides us with
a sparse representation of u in terms of discrete fun-
damental splines. We formally extend the approach to
two dimensions. Here further research has to be in-

volved to see the relation, e.g., to classical radial basis
functions.

This paper is organized as follows: since discrete
approaches can be best described in matrix–vector no-
tation, the next section introduces the basic difference
operators as matrices. Section 3 shows that our mini-
mization problem (3) is equivalent to a spline contact
problem. To this end, we have to define discrete splines.
Based on the dual formulation of our problem, Section
4 treats the spline contact problem as support vector re-
gression problem and presents some denoising results.
Section 5 gives future prospects to two dimensional
problems. The paper is concluded with Section 6.

2. Difference Matrices

The discrete setting can be best handled using matrix-
vector notation. To this end, we introduce the lower
triangular n × n Toeplitz matrix

Dn :=

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0

−1 1 . . . 0 0
. . .

. . .
0 0 . . . 1 0
0 0 . . . −1 1

⎞⎟⎟⎟⎟⎟⎠ .

By straightforward computation we see that the inverse
of Dn is the addition matrix

An := D−1
n =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
1 1 . . . 0 0

. . .
. . .

1 1 . . . 1 0
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎠ . (4)

Remark 2.1. While application of Dm
n is a discrete

version of m times differentiation, Am
n realizes m–fold

integration, i.e., Am
n f is a discrete version of the m-th

antiderivative of f . For example, the components of
Am

n f are given for m = 1, 2 by
m = 1 m = 2

f (1) f (1)
f (1) + f (2) 2 f (1) + f (2)
f (1) + f (2) + f (3) 3 f (1) + 2 f (2)

+ f (3)
...

...
f (1) + f (2) + . . . + f (n) n f (1) + (n − 1) f (2)

+ . . . + f (n)
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and may be considered as discrete version of
A1 f (x) = ∫ x

0 f (t) dt and A2 f (x) = ∫ x
0

∫ t1
0 f (t) dtdt1,

respectively. For general m, the j–th component of

Am
n f is

j∑
k=1

( j+1−k)(m−1)

(m−1)! f (k). Here k(m) := 1 for m = 0

and k(m) := k(k + 1) . . . (k + m − 1) for m ≥ 1 is a
discrete equivalent of the m–th power function.

Let 0n,m denote the matrix consisting of n×m zeros,
1n,m the matrix consisting of n×m ones and In the n×n
identity matrix. Then the m–th forward difference (2)
can be realized by applying the m–th forward difference
matrix

Dn,m := (
0n−m,m |In−m

)
Dm

n

and our minimization problem (3) can be rewritten as

1

2
‖ f − u‖2

2 + λ‖Dn,mu‖1 → min . (5)

The functional in (5) is strictly convex and has there-
fore a unique minimizer. The matrix Dn,m has full rank
n − m, i.e., R(Dn,m) = Rn−m . Moreover, the range
R(DT

n,m) of DT
n,m and the kernel N (Dn,m) of Dn,m are

given by

R(DT
n,m) = { f ∈ Rn :

n∑
j=1

j r f ( j) = 0,

r = 0, . . . , m − 1},
N (Dn,m) = span {( j r

)n

j=1 : r = 0, . . . , m − 1}
= �m−1,

see, e.g., Didas (2004). The space �m collects just the
discrete polynomials of degree ≤ m. Then we have the
orthogonal decomposition

Rn = R(DT
n,m) ⊕ N (Dn,m). (6)

Obviously, Dn,m is given by cutting of the first m rows
of Dm

n . The following relations between Dm
n and Dn,m

are proved in the appendix.

Proposition 2.2. The difference matrices fulfill the
properties

i) DT
n,m = (−1)m Dm

n

(
In−m

0m,n−m

)
,

ii) Dn,m Dm
n = Dn+m,2m

(
0m,n

In

)
,

iii) Dn+m,m

(
0m,n

In

)
= Dm

n .

Proof:

i) Since Dn,m f = (�m f (1), . . . , �m f (n − m))T we
can rewrite Dn,m as

Dm,n = Dn−(m−1),1 · . . . ·
Dn,1 = (0n−m,1|In−m)

×Dn−(m−1) · . . . · (0n−1,1|In−1)Dn

Using that by definition

DT
n,1 = DT

n

(
01,n−1

In−1

)
= −Dn

(
In−1

01,n−1

)
we obtain for the transposed matrix

DT
n,m = DT

n,1 · . . . · DT
n−(m−1),1

= (−1)m Dn

(
In−1

O1,n−1

)
· . . . ·

Dn−(m−1),1

(
In−m

01,n−m

)
.

Multiplication of f T from the left is again succes-
sive application of first order differences. Equiva-
lently we can apply m–th order finite differences
and cut off all additional components which results
in assertion i).

ii) By definition of Dn,m we have

Dn+m,2m

(
0m,n

In

)
= (

0n−m,2m |In−m
)

D2m
n+m

(
0m,n

In

)
= (

0n−m,m |In−m
) (

0n,m |In
)

×D2m
n+m

(
0m,n

In

)
.

Since the cutoff of the first m rows and columns of a
Toeplitz matrix results in the same Toeplitz matrix
but with m times reduced order the last equation
can be rewritten as

Dn+m,2m

(
0m,n

In

)
= (

0n−m,m |In−m
)

D2m
n
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and finally, by applying again the definition of Dn,m

as

Dn+m,2m

(
0m,n

In

)
= Dn,m Dm

n .

iii) Using the definition of Dn,m , we obtain

Dn+m,m

(
0m,n

In

)
= (

0n,m |In
)

Dm
m+n

(
0m,n

In

)
= Dm

n .

This completes the proof.

3. Spline Contact Problem

In this section, we will see that our higher order TV
problem (5) is equivalent to a discrete spline interpo-
lation problem, where the spline knots are not known
in advance but depend on the input data f and λ. For
m = 1, the resulting spline contact problem is well ex-
amined and can be solved by the so–called ‘taut string
algorithm’, see, e.g., Hinterberger et al. (2003).

A necessary and sufficient condition for u to be the
minimizer of (5) is that the zero vector is an element of
the functional’s subdifferential

0n,1 ∈ u − f + λ ∂‖Dn,mu‖1 .

By (Rockafellar, 1970, Theorem 23.9) and since the
subgradient of |x | is given by

x

|x | :=
⎧⎨⎩ 1 if x > 0,

−1 if x < 0,

[−1, 1] if x = 0,

this can be rewritten as

u ∈ f − λ DT
n,m

Dn,mu
|Dn,mu| ,

where ·/| · | is taken componentwise. These inclusions
in their present form are not very convenient for the
computation of u. However, multiplying with Am

n and
applying Proposition 2.2i) leads to

Am
n u ∈ Am

n f − (−1)m λ

(
In−m

0m,n−m

)
Dn,mu

|Dn,mu| .

Setting (
F I

FR

)
:= Am

n f ,

(
U I

U R

)
:= Am

n u (7)

with the splitting into the inner vector F I ∈ Rn−m and
the right boundary vector FR ∈ Rm , the inclusions can
be rewritten as

U I ∈ F I − (−1)m λ
Dn,mu

|Dn,mu| ,
U R = FR .

It remains to replace Dn,mu. By (7) and (4), we see that

f = Dm
n

(
F I

FR

)
, u = Dm

n

(
U I

U R

)
(8)

and further by Proposition 2.2ii) that

Dn,mu = Dn+m,2m

(
0m,n

In

) (
U I

U R

)
.

Introducing an artificial left boundary U L := 0m,1 and
extending our vector by

U := (U T
L , U T

I , U T
R)T

our inclusions become finally

U I ∈ F I − (−1)m λ
Dn+m,2mU

|Dn+m,2mU | ,
U R = FR .

Consequently, U is the unique solution of the following
spline contact problem, where we have to explain the
spline notation later.

Spline Contact Problem
(C1) Boundary conditions:

U L = 0m,1 and U R = FR .
(C2) Tube condition: ‖F I − U I ‖∞ ≤ λ

U I lies in a tube around F I of width 2λ.
(C3) Contact condition:

Let �I := { j ∈ {m + 1, . . . , n − m} :
�2mU ( j − m) 
= 0}.
If j ∈ �I , then U ( j) contacts the boundary
of the tube, where
(−1)m�2mU ( j − m) > 0 =⇒

U ( j) = F( j) − λ (lower contact),
(−1)m�2mU ( j − m) < 0 =⇒

U ( j) = F( j) + λ (upper contact).
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Remark 3.1. (Continuous and Discrete Natural
Splines)
We recall that a natural polynomial spline of degree
2m − 1 with knots x1 < · · · < xr is a function
s ∈ C2m−2 such that

s(2m)(x) = 0, for x ∈ (x j , x j+1), j = 1, . . . , r − 1,

s(m)(x) = 0, for x < x1, x > xr .

These splines are the solutions in W m , the Sobolev
space of (m − 1) times continuousely differentiable
functions with m-th weak derivative in L2, of

1

2
‖ f (m)‖2

2 → min

s.t. f (x j ) = γ j , j = 1, . . . , r.

Mangasarian and Schumaker (1971, 1973) have intro-
duced the discrete natural polynomial spline of degree
2m −1 with knots � = {i1, . . . , ir }, i j < ik for j < k,
as a vector s = (s(1), . . . , s(N ))T which satisfies for
j 
∈ � the relations

�2ms( j − m) = 0, j = m + 1, . . . , N − m;

�ms( j) = 0, j = 1, . . . , i1 − 1;

ir + 1, . . . , N − m.

As its continuous analogue the discrete natural polyno-
mial spline of degree 2m − 1 solves the minimization
problem

1

2

N−m∑
j=1

(�m y( j))2 → min (9)

s.t. y(i j ) = γ j , j = 1, . . . , r.

For relations between continuous and natural spline in
the limiting process N → ∞ see also Mangasarian and
Schumaker (1971, 1973).

Setting N := n + m and using the spline knots
� = {1, . . . , m} ∪ �I ∪ {n − m + 1, . . . , n}, we can
interpret U defined by (C1) – (C3) is a discrete natural
polynomial spline of degree 2m − 1. In contrast to (9),
the inner spline knots �I are only determined by (C3)
and not known in advance. This reflects the nonlinear
character of our problem solution.

We extend the discrete spline concept to splines of
even degree as follows: we call s = (s(1), . . . , s(n))T

a discrete spline of degree m − 1 with inner knots � =
{i1, . . . , ir } ⊆ {�m

2 � + 1, . . . , n − �m+1
2 �} if

�ms

(
j −

⌊
m

2

⌋)
= 0, j = �m

2
� + 1, . . . ,

n −
⌊

m + 1

2

⌋
; j 
∈ �.

Then the discrete interpolation problem

s(i j ) = γ j , i j ∈ � ∪
{

1, . . . ,

⌊
m

2

⌋}
∪{

n −
⌊

m + 1

2

⌋
+ 1, . . . , n

}
has a unique solution. Thus, for given spline knots �I ,
we could solve a spline interpolation problem. Unfortu-
nately, the spline knots depend on the input data f and
λ. Therefore, the solution of the spline contact problem
in its present form is only convenient for m = 1, see
Remark 3.2. For larger m and the continuous setting,
an attempt to solve the contact problem is contained
in Mammen and van de Geer (1997). For our discrete
setting, we will see in the following section that the
contact problem can be treated by simply solving a
constraint quadratic minimization problem.

Remark 3.2. (Taut String Algorithm for m = 1)
For m = 1, condition (C3) means that the polygon
through U is convex at upper contact points and con-
cave at lower contact points. Thus, the construction of
U satisfying (C1) – (C3) is equivalent to the construc-
tion of the uniquely determined taut string within the
tube around F of width 2λ fixed at (0, 0) and (n, F(n)).
In other words, the polygon through U has minimal
lengths within the tube, i.e., it minimizes

n−1∑
j=0

(1 + (U ( j + 1) − U ( j))2)1/2,

subject to the tube and boundary conditions. An exam-
ple of a taut string is shown in Figure 1. For solving
this problem there exists a very efficient algorithm of
complexity O(n), the so–called ‘taut string algorithm’,
which is based on a convex hull algorithm, see, e.g.,
Davies and Kovac (2001); Mammen and van de Geer
(1997).
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Figure 1. Solution of the spline contact problem (C1) – (C3) for a
signal F of lengths n + m with n = 40 and m = 1.

Interestingly, it was shown in Steidl et al. (2004);
Yip and Park (2003) that for m = 1 the spline knots
fulfill a so–called ‘tree–property’.

Remark 3.3. (Tree Property of Spline Knots for
m = 1)
Let λmax be the smallest regularization parameter such
that �I = ∅. It is not hard to show that λmax =
‖P f ‖W1(Dn,1)′ , where P denotes the orthogonal pro-
jection of f onto R(DT

n,1) and W1(Dn,1)′ is the dual
space of W1(Dn,1) := R(DT

n,1) equipped with the norm
‖u‖W1(Dn,1) := ‖Dn,1u‖1.

If λ moves from λmax to 0 and �I (λ) denotes the
corresponding set of inner spline knots, then, for λ j >

λk ,

∅ = �I (λmax) ⊆ �I (λ j ) ⊆ �I (λk) ⊆ �I (0)

= {m + 1, . . . , n − m}.

Figure 2 shows a tree of inner spline knots. The tree
property does not hold for m ≥ 2.

4. Support Vector Regression with Spline Kernels

In this section we want to show the relation of the dis-
crete spline contact problem with discrete SVR. We
start by a brief introduction to SVR in the continuous
setting, where we emphasize the role of splines in the
solution of the SVR problem in Sobolev spaces. Then
we switch to the discrete context to explain the solution
of (5) from the SVR point of view.

4.1. Support Vector Regression - Continuous
Approach

The SVR method searches for approximations of func-
tions in reproducing kernel Hilbert spaces (RKHS)
and plays an important role, e.g., in Learning The-
ory. Among the large amount of literature on SVR
we refer to (Vapnik, 1998, Chapter 11). SVR can be
briefly explained as follows: Let H ⊂ L2(Rd ) be
a Hilbert space with inner product (·, ·)H having the
property that the point evaluation functional is con-
tinuous. Then H possesses a so–called reproducing
kernel K ∈ L2(Rd × Rd ) with reproducing property
(F, K (·, x j ))H = F(x j ) for all F ∈ H and is called a
reproducing kernel Hilbert space (RKHS). Given some
function values F(x j ), j = 1, . . . , p, the soft margin
SVR problem consists in finding a function U ∈ H
which minimizes

μ

p∑
j=1

Vλ(F(x j ) − U (x j )) + 1

2
‖U‖2

H ,

where Vλ(x) := max{0, |x | − λ} denotes Vapnik’s
λ-insensitive loss function. In other words, Vapnik’s
cost functional penalizes those U (x j ) lying not in a λ

neighbourhood of F(x j ). If μ tends to infinity, then
our cost functional must become zero and we obtain
the hard margin SVR problem

1

2
‖U‖2

H → min (10)

s.t. |F(x j ) − U (x j )|∞ ≤ λ, j = 1, . . . , p.

By the Representer Theorem of Kimmeldorf and
Wahba (1971), the solution of (10) has the form

U (x) =
p∑

k=1

c(k)K (xk, x),

i.e., only the given knots xk are involved into the rep-
resentation. Then (10) can be rewritten as

1

2
cT K c → min (11)

s.t. ‖F − K c‖∞ ≤ λ

with F := (F(x j ))
p
j=1, c := (c(k))p

k=1 and K :=(
K (x j , xk)

)p

j,k=1. This is the usual hard margin SVR
formulation.
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Figure 2. Original signal f (left), tree of spline knots with increasing regularization parameter λ from leaves to root (right).

Based on the Karush – Kuhn – Tucker conditions it
follows that c(k) 
= 0 implies |F(xk)−U (xk)| = λ. Let

� := {k ∈ {1, . . . , p} : c(k) 
= 0}.
Then the solution U can be rewritten as

U (x) =
∑
k∈�

c(k)K (xk, x). (12)

The functions K (xk, x) with k ∈ � are called support
vectors. Obviousely, U depends only on these support
vectors and has a sparse representation in terms of the
support vectors if |�| is small compared to p. In the
image processing context, SVR regression is mainly
applied in high dimensional function spaces (d � 1),
where often the Gaussian is involved as reproducing
kernel.

For our purposes we will consider other well–known
reproducing kernel Hilbert spaces, namely the Sobolev
spaces H = W m

2,0 of real–valued functions on R hav-
ing a weak m–th derivative in L2 [0, 1] and fulfilling
F (r )(0) = 0 for r = 0, . . . , m − 1 with inner product

〈F, G〉W m
2,0

:=
∫ 1

0
F (m)(x)G(m)(x) dx .

These RKHS were for example considered in (Wahba,
1990, p. 5–14). The reproducing kernel in W m

2,0 is

K (x, y) :=
∫ 1

0
(x − t)m−1

+ (y − t)m−1
+ /((m − 1)!)2 dt,

(13)
where (x)+ := max{0, x}. For fixed y, the func-
tions K (·, y) are splines fulfilling K (·, y) ∈ C2m−2,
K (·, y) ∈ �2m−1 in [0, y] and K (·, y) ∈ �m−1 in
[y, 1].

In this context we mention that another minimization
problem having so–called smoothing splines as solu-

tions was considered the literature, see, e.g., Wahba
(1990); Unser and Blu (2000): find U ∈ W m

2,0 such that

1

2

p∑
j=1

(F(x j ) − U (x j ))
2 + λ‖U‖2

W m
2,0

→ min .

Again by the Representer Theorem, this problem has a
solution of the form U = ∑p

k=1 c(k) K (·, xk). Conse-
quently, U is a continuous spline of degree 2m −1 with
knots xk , k = 1, . . . , p. However, in contrast to the so-
lution (12) of (10), all coefficients c(k) are in general

= 0 and we obtain no sparse representation.

4.2. Support Vector Regression – Discrete Approach

To see the relation between our spline contact problem
and SVR methods, we consider the dual formulation
of problem (5).

Proposition 4.1. The solution u of (5) is given by
u = f − DT

n,m V I , where V I is the unique solution of
the minimization problem

1

2
‖ f − DT

n,m V I ‖2
2 → min (14)

s.t. ‖V I ‖∞ ≤ λ.

For a proof see, e.g., Steidl (2006).
By (8) and Proposition 2.2 i) and iii) we obtain that

‖ f − DT
n,m V I ‖2 = ‖Dm

n

(
F I

FR

)
−(−1)m Dm

n

(
In−m

0m,n−m

)
V I ‖2

= ‖Dn+m,m(F − (−1)m V)‖2,
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where V := (0T
m,1, V T

I , 0T
m,1)T. Setting U := F −

(−1)m V , problem (14) can be rewritten as

1

2
‖Dn+m,mU‖2

2 → min (15)

s.t. ‖F I − U I ‖∞ ≤ λ, U R = FR .

The unique solution U of this problem which can be
computed by standard quadratic programming (QP)
methods is also the unique solution of our spline contact
problem. Figure 3 illustrates the solution for m = 3.

Remark 4.2. Regarding Remark 3.2, we see that for
m = 1 the minimization problems

n∑
j=1

(
1 + (U ( j + 1) − U ( j))2)1/2 → min,

and

‖Dn+1,1U‖2
2 =

n∑
j=1

(U ( j + 1) − U ( j))2 → min

subject to the tube and boundary constraints lead to the
same solution.

We will see that problem (15) can be considered as
a hard margin SVR problem. To this end, we only have
to define the appropriate RKHS. Let Wm

2,0 := {F ∈
Rn+m : F( j) = 0, j = 1, . . . , m} equipped with the
inner product

Figure 3. Solution of the spline contact problem (C1) – (C3) for a
signal F of lengths n + m with n = 40 and m = 3 .

〈F, G〉Wm
2,0

:=
n∑

j=1

�m F( j)�m G( j)

:= 〈Dn+m,m F, Dn+m,m G〉
=

〈
Dm

n

(
F I

FR

)
, Dm

n

(
G I

G R

)〉
.

Then the minimization term in (15) is just the norm of
U in Wm

2,0. Now we can straightforwardly determine
the reproducing kernel in Wm

2,0. Setting

K := (
(Dm

n )T Dm
n

)−1 = Am
n (Am

n )T, (16)

we see that the columns K 0,k of

K 0 := (
0n,m |K )T ∈ Rn+m,n

form a special basis of Wm
2,0, namely with reproducing

property 〈F, K 0, j 〉Wm
2,0

= F( j+m). Let us have a closer
look at the structure of K . Straightforward computation
shows that the components of our discrete kernel are
given by the discrete counterpart of (13), namely

K ( j, k) =
min( j,k)−1∑

r=0

( j−r )(m−1) (k−r )(m−1)/((m−1)!)2,

with (m) defined as in Remark 2. By Proposition 2 ii)
and i) we obtain that

Dn+m,2m K 0 = Dn+m,2m

(
0m,n

In

)
Am

n (Am
n )T

= Dn,m Dm
n Am

n (Am
n )T

= (−1)m
(
In−m, 0n−m,m

)
.

In other words, we have for j = m +1, . . . , n −m that

�2m K0,k( j − m) = 0, k = 1, . . . , n − m; j 
= k,

�2m K0,k(k − m) = (−1)m, k = 1, . . . , n − m,

�2m K0,k( j − m) = 0, k = n − m + 1, . . . , n,

(17)

i.e., K 0,k is a discrete spline of degree 2m −1 with one
inner knot k + m for k = 1, . . . , n − m and a discrete
polynomial in �2m−1 for k = n − m + 1, . . . , n. For
n = 32 and m = 1, 2, some columns of K 0 are depicted
in Figure 4.
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Figure 4. Discrete splines K 0,k , k = 1, 5, 10, 20, for n = 32 and m = 1 (left), m = 2 (right).

For every U ∈ Wm
2,0, there exists a uniquely deter-

mined c ∈ Rn such that U = K 0c and by the repro-
ducing property of K 0, problem (15) can be rewritten
as

1

2
cT K c → min (18)

s.t. ‖F I − (K c)I ‖∞ ≤ λ, (K c)R = FR .

This is the usual form (11) of a hard margin SVR prob-
lem. Let c be the solution of (18) and let

�̃I := { j ∈ {m + 1, . . . , n} : c( j − m) 
= 0}

so that

U =
∑
j∈�̃I

c( j − m)K 0, j−m +
n∑

j=n−m+1

c( j)K 0, j . (19)

The vectors K 0, j−m , j ∈ �̃I are called (inner) support
vectors. By (19) and property (17) of K 0 they are related
to the spline knots as follows:

Proposition 4.3. The support vector indices �̃I of
the solution U in (19) of the SVR problem are exactly
the spline knots �I , i.e.,

�2mU ( j − m) 
= 0 ⇐⇒ j ∈ �̃I .

If the number of contact points |�I | is small com-
pared to n, then c has only a small number of nonzero
coefficients and (19) provides us with a sparse repre-
sentation of U . This can also be seen by noting that our

SVR problem (18) means to find U = K 0c such that
the equality constraints are fulfilled and

1

2
‖F − U‖2

Wm
2,0

+ λ‖c‖1 → min .

Compare with Girosi (1998) in a general SVR context.
In contrast to the 2–norm, the 1–norm of c in the penalty
term implies for sufficiently large λ that some of the
coefficients c( j) are 0. This implies a sparse represen-
tation of U from another point of view.

Finally, we see by (16) and (8) that

u = Dm
n Am

n (Am
n )Tc = (Am

n )Tc (20)

is the corresponding sparse representation of our orig-
inal solution u. By Proposition 2.2i) we have that
Dm,n(Am

n )T = (−1)m(In−m |0n−m,m) so that the first
n − m columns of (Am

n )T are splines of degree m − 1
with one inner knot and the last m columns are poly-
nomials in �m−1. For m = 1 and 2 some columns of
(Am

n )T are illustrated in Figure 5. In the context of sparse
representation, the following observation is interesting:
by (20), (8) and Proposition 2.2i) and iii), our original
problem (5) can be rewritten as

1

2
‖ f −(Am

n )Tc‖2
2+λ‖(In−m |0n−m,m) c‖1 → min .

(21)

Remark 4.4. Finally, let us mention that a contin-
uous version of our considerations reads as follows:
For a function u := 	(2m)

u we have that 	u = k ∗ u,
where k is the causal fundamental solution of the 2m–
th derivative operator, i.e., the spline k(x) = x2m−1

+ .
If u plays the discrete role of u then our discrete
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Figure 5. Discrete splines (Am
n )T

k , k = 1, 5, 10, 20, for n = 32 and m = 1 (left), m = 2 (right). For m = 1, we have added 0.1, 0.2 and 0.3 to
the last columns to better visualize the discrete step functions.

function (U T
I , U T

R)T = Am
n u = K Dm

n u plays the role of
U := 	(m)

u = k ∗ u(m).

4.3. Denoising Example

In this section, we show the performance of our ap-
proach (5) and (15) by a denoising example. We are
mainly interested in the behaviour for various differen-
tiation orders m. Our aim is to demonstrate the spline
interpolation with variable knots for various m and not
to create an optimal denoising method. To this end,
we have used the signal shown in Figure 6 (top, left)
and have added white Gaussian noise. First, we have
determined the optimal parameters λ with respect to
the maximal signal–to–noise–ratio (SNR) defined by
SNR(g, u) := 10 log10

( ‖g‖2
2

‖g−u‖2
2

)
with original signal

g. For the solution of the quadratic problem (15) we
have applied the Matlab quadratic programming rou-
tine which is based on an active set method. Then we
compared the quality of the results obtained for vari-
ous m. The following table contains the results for λ,
the SNR and the peak signal–to–noise–ratio (PSNR)
defined by PSNR(g, u) := 10 log10

(
n‖g‖2

∞
‖g−u‖2

2

)
, where

n denotes the number of pixels. The noisy signal in
Figure 6 (top, right) has SNR 6.94 and PSNR 10.72.

m λ SNR PSNR
1 20.2 16.00 19.78
2 57.8 18.41 22.18
3 275.0 17.97 21.69
4 1453.1 17.22 20.99

The corresponding signal plots are given in Figure 6.
For this signal the methods with orders m ≥ 2 perform
better than the usual method with m = 1 where the
the linear method (m = 2) achieves the best restora-
tion. In general higher order methods with l1 regular-
ization term neglect the staircasing effect appearing
in the piecewise constant approximation with m = 1
and preserve on the other hand local singularities better
than linear methods with quadratic regularization term.
Various other examples for the denoising of signals by
solving (5) were presented in Steidl et al. (2005).

5. Generalization to Two Dimensions

In this section, we briefly consider a possible general-
ization of our concept to two dimensions. This may be
considered as starting point for future research.
Concerning first order derivatives, we consider the
ROF model

1

2

∫



(u(x) − f (x))2 + λ|∇u| dx → min (22)

and the model

1

2

∫



(u(x)− f (x))2 +λ(|ux |+ |uy |) dx → min (23)

treated, e.g., in Hintermüller and Kunisch (2004). Of
course the second model is not rotationally invariant.

In the following, we restrict our attention for sim-
plicity to quadratic n × n images and reshape them
columnwise into a vector of length N = n2. We
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Figure 6. Denoising results with (5). Top left: original signal. Top right: noisy signal. Middle left: denoised signal for m = 1. Middle right:
denoised signal for m = 2. Bottom left: denoised signal for m = 3. Bottom right: denoised signal for m = 4.

discretize the first order derivatives as proposed by
Chambolle in Chambolle (2004). To this end, we in-
troduce the gradient matrix

D :=
(

In ⊗ D0
n

D0
n ⊗ In

)
∈ R2N ,N with D0

n :=
(

Dn,1

01,n

)
and the Kronecker product ⊗. The matrix D has rank
N − 1 and DT plays the role of −div = ∇∗. Further,
we have that �N := DTD is the finite difference dis-
cretization of the Laplace operator with the five point
scheme and Neumann boundary conditions and that

R(DT) = R(�N ) = { f ∈ RN :
N∑

j=1

f ( j) = 0},

N (D) = N (�N ) = {μ 1N ,1 : μ ∈ R} = �0.

(24)

Finally, the discrete version of |∇u| = (u2
x + u2

y)1/2

reads |Du|, where

∣∣∣∣( F1

F2

)∣∣∣∣ := (
(F1)2 + (F2)2)1/2

= (
F1 ◦ F1 + F2 ◦ F2)1/2 ∈ RN

and ◦ denotes the componentwise vector product. Now
we can discretize (22) and (23) by

1

2
‖ f − u‖2

2 + λ‖ |Du| ‖1 (25)

and

1

2
‖ f − u‖2

2 + λ‖Du‖1, (26)
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Figure 7. Column 528 of �−2
D (left) and of �−1

D (right) for n = 32.

respectively. Then, by the dual approach, see, e.g.
Chambolle (2004); Steidl (2006), we obtain that u =
f − DTV , where V is the solution of

1

2
‖ f − DTV‖2

2 → min

s.t. ‖ |V | ‖∞ ≤ λ, in case (25), (27)

s.t. ‖V‖∞ ≤ λ, in case (26). (28)

The first minimization problem can be solved for exam-
ple by using Chambolle’s semi–implicit gradient de-
scent algorithm Chambolle (2004), while the second
problem can be solved by standard QP methods. An
example for the solution of both problems is presented
at the bottom of Fig. 8. By the absence of rotation
invariance, the solution of the second problem shows
harder segmentation effects in x and y directions.

In the following, we assume that f ∈ R(DT), i.e.,
f = DT F for some F ∈ R2N . Otherwise we consider
f − mean( f )1N ,1. Then, since Du = DuR, and

1

2
‖ f − u‖2

2 = 1

2
‖ f − uR‖2

2 + 1

2
‖uN ‖2

2,

where uR is the orthogonal projection onto R(DT) and
uN the orthogonal projection onto N (DT), it follows
that the minimizer u of (25) and (26) is also in R(DT).

Now U = F − V solves the problem

1

2
‖DTU‖2

2 → min

s.t. ‖ |F − U | ‖∞ ≤ λ, in case (25),

s.t. ‖F − U‖∞ ≤ λ, in case (26).

With respect to Remark 3 we note that the dis-
crete G–norm defined for v ∈ R(DT) by ‖v‖G :=
infv=DTV ‖ |V | ‖∞ plays the role of the W1(Dn,1)′

norm.
For higher order derivatives even the choice of an

appropriate disretization which preserves the basic in-
tegral identities satisfied by the continuous differential
operators is a nontrivial question, see, e.g., Hyman and
Shashkov (1997). However, operators of higher order
were considered in image processing, e.g., in Chan et al.
(2000); Chambolle and Lions (1997); Hinterberger and
Scherzer (2003); Lysaker et al. (2003); Nielsen et al.
(1997); Schnörr (1998); You and Kaveh (2000); Steidl
(2006). Here we restrict our attention to

1

2

∫



(u(x) − f (x))2 + λ|�u| dx → min .

As discretization we choose

1

2
‖ f − u‖2

2 + λ‖�Du‖1 → min (29)

where �D denotes the finite difference discretization
of the Laplace operator with the five point scheme and
Dirichlet boundary conditions. Then �D is invertible.
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Figure 8. Top: Original 256 × 256 image (left). Solution of (30) (right). The image involves artefacts (white points). Bottom: Solution of (27)
(left). Solution of (28) (right). The right-hand image shows a stronger segmentation in x and y direction. All problem were solved with λ = 10.
For problem (27) we have used the semi–implicit gradient descent algorithm Chambolle (2004). Problems (30) and (28) were computed by the
ILOG CPLEX Barrier Optimizer version 7.5. This routine uses a modification of the primal–dual predictor–corrector interior point algorithm
described in Mehrotra, S. (1992).

The dual approach to (29) leads with f = �D F and
u = �DU to the contact problem

1

2
‖�DU‖2

2 → min (30)

s.t. ‖F − U ‖∞ ≤ λ,

which can be solved by standard QP methods. An ex-
ample for the solution of this problem in shown at
the top of Fig. 8. The solution contains some artefacts
in form of white points which were also mentioned
in You and Kaveh (2000). Therefore the approach
(29) seems to be not suited for applications in image
processing. Obviously, �−2

D is a reproducing kernel in
RN equipped with the norm given by the minimization

term and U = �−2
D c and u = �−1

D c are in general
sparse representations. The images corresponding to a
central row of �−2

D and �−1
D are depicted in Figure 7.

With respect to the kernel �−2
D let us finally note the

following remark.

Remark 5.1. (Thin Plate Splines)
The so–called thin plate spline Duchon (1997) K (x) :=

1
8π

|x |2 ln |x | is the fundamental solution of the bihar-
monical operator �2. For appropriately chosen x j the
solution of

1
2

N∑
j=1

( f (x j ) − u(x j ))
2 + λ

∫



u2
xx + 2u2

xy + u2
yy dx

→ min
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has the form u(x) = ∑N
j=1 c j K (x − x j ) + a0 + a1x +

a2 y.

6. Conclusions

We have shown the equivalence of the following prob-
lems in a discrete 1D setting:

i) minimzation of a functional with quadratic data
term and TV regularization term with higher order
derivatives,

ii) spline interpolation with variable knots depending
on the input data and the regularization parameter,

iii) hard margin SVR in the discrete counterpart of the
Sobolev space W m

2,0,
iv) sparse representation in terms of fundamental

splines with penalization the of l1 norm of the co-
efficients.

Based on (6) a slightly different approach which han-
dles the boundary conditions in advance (as done in
2D) is possible. Moreover, more general spline con-
cepts as those of exponential splines, see, e.g., Unser
and Blu (2005) and other data terms incorporating only
few knots or related to other than Gaussian white noise
can be considered in a similar way. Finally, the 2D set-
ting deserves stronger investigation.

References

Chambolle, A. 2004. An algorithm for total variation minimization
and applications. Journal of Mathematical Imaging and Vision,
(20):89–97.

Chambolle, A. and Lions, P.-L. 1997 Image recovery via total varia-
tion minimization and related problems. Numerische Mathematik,
76:167–188.

Chan, R. H., Ho, C. W., and Nikolova, M. Salt-and-pepper noise
removal by median noise detectors and detail preserving regular-
ization. IEEE Transactions on Image Processing, page to appear.

Chan, T. F., Golub, G. H., and Mulet, P. 1999. A nonlinear primal–
dual method for total-variation based image restoration. SIAM
Journal on Scientific Computing, 20(6):1964–1977.

Chan, T. F., Marquina, A., and Mulet, P. 2000. High-order total
variation-based image restoration. SIAM Journal on Scientific
Computing, 22(2):503–516.

Davies, P. L. and Kovac, A. 2001. Local extremes, runs, strings and
multiresolution. Annals of Statistics, 29:1–65.

Didas, S. 2004. Higher order variational methods for noise re-
moval in signals and images. Diplomarbeit, Universität des
Saarlandes.

Duchon, J. 1997. Splines minimizing rotation-invariant seminorms
in sobolev spaces. In Constructive Theory of Functions of Several
Variables, pages 85–100, Berlin, Springer–Verlag.

Girosi, F. 1998. An equivalence between sparse approximation
and support vector machines. Neural computation, 10(6):1455–
1480.

Hinterberger, W., Hintermüller, M., Kunisch K., von Oehsen M., and
Scherzer, O. 2003. Tube methods for BV regularization. Journal
of Mathematical Imaging and Vision, 19:223–238.

Hinterberger, W. and Scherzer, O. 2003. Variational methods on
the space of functions of bounded Hessian for convexifica-
tion and denoising. Technical report, University of Innsbruck,
Austria.

Hintermüller, W. and Kunisch, K. May 2004. Total bounded vari-
ation regularization as a bilaterally constrained optimization
problem. SIAM Journal on Applied Mathematics, 64(4):1311–
1333.

Hyman, J. M. and Shashkov, M. J. 1997. Natural discretizations for
the divergence, gradient, and curl on logically rectangular grids.
Comput. Math. Appl., 33(4):81–104.

Kimmeldorf, G. S. and Wahba, G. 1971. Some results on Tcheby-
cheffian spline functions. J. Anal. Appl., 33:82–95.

Lysaker, M., Lundervold, A., and Tai, X. 2003. Noise removal us-
ing fourth-order partial differential equations with applications
to medical magnetic resonance images in space and time. IEEE
Transactions on Image Processing, 12(12):1579–1590.

Mammen, E. and van de Geer, S. 1997. Locally adaptive regression
splines. Annals of Statistics, 25(1):387–413.

Mangasarian, O. L. and Schumaker, L. L. 1971. Mangasarian,
O. L. and Schumaker, L. L. 1971. Discrete splines via math-
ematical programming. SIAM Journal on Control, 9(2):174–
183.

Mangasarian, O. L. and Schumaker, L. L. 1973. Best summation for-
mulae and discrete splines via mathematical programming. SIAM
Journal on Numerical Analysis, 10(3):448–459.

Mehrotra, S. 1992. On the implementation of a primal-dual inte-
rior point method. SIAM Journal on Optimization, 2(4):575–
601.

Nielsen, M., Florack, L., and Deriche, R. 1997. Regularization, scale-
space and edge detection filters. Journal of Mathematical Imaging
and Vision, 7:291–307.

Nikolova, M. 2004. A variational approach to remove outliers and im-
pulse noise. Journal of Mathematical Imaging and Vision, 20:99–
120.

Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press,
Princeton.

Rudin, L. I., Osher S., and Fatemi, E. 1992. Nonlinear total variation
based noise removal algorithms. Physica D, 60:259–268.
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