@ International Journal of Computer Vision 69(1), 7-25, 2006
— (©) 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.
DOI: 10.1007/s11263-006-6849-5

Stochastic Motion and the Level Set Method in Computer Vision: Stochastic
Active Contours

OLIVIER JUAN, RENAUD KERIVEN* AND GHEORGHE POSTELNICU
The Odyssee Lab (ENPC CERTIS/ENS Paris/INRIA Sophia)

Received April 7, 2004, Revised November 17, 2004, Accepted November 23, 2004

First online version published in April, 2006

Abstract. Based on recent work on Stochastic Partial Differential Equations (SPDESs), this paper presents a simple
and well-founded method to implement the stochastic evolution of a curve. First, we explain why great care should
be taken when considering such an evolution in a Level Set framework. To guarantee the well-posedness of the
evolution and to make it independent of the implicit representation of the initial curve, a Stratonovich differential
has to be introduced. To implement this differential, a standard Ito plus drift approximation is proposed to turn an
implicit scheme into an explicit one. Subsequently, we consider shape optimization techniques, which are a common
framework to address various applications in Computer Vision, like segmentation, tracking, stereo vision etc. The
objective of our approach is to improve these methods through the introduction of stochastic motion principles.
The extension we propose can deal with local minima and with complex cases where the gradient of the objective
function with respect to the shape is impossible to derive exactly. Finally, as an application, we focus on image
segmentation methods, leading to what we call Stochastic Active Contours.
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1. Introduction o .
cases, the minimization process gets stuck into some lo-

1.1, Why Adding Noise? cal minimum, while no multi-resolution approach can
be invoked. To deal with those two frequent problems,
one can naturally turn to a stochastic optimization ap-
proach. Even a simple Simulated Annealing method
might be powerful enough to escape from local min-
ima and to cope with an approximation of the shape
gradient. Indeed, adding noise to the motion of a curve
is a prerequisite to developing this idea.

Shape optimization techniques are a common frame-
work to address various applications in Computer Vi-
sion, like segmentation, tracking, stereo vision etc. The
objective of our approach is to improve these methods
through the introduction of stochastic motion princi-
ples. These problems are most of the time stated as
the minimization with respect to some hyper-surface I'

of RV of some objective function E(T"). This is usu- 1.2.  Context

ally achieved using a gradient-descent method. Yet,

in complex cases, E does not have any computable We are interested in letting I'(¢) evolve according to
gradient with respect to I" (see Section 5.2). In other the equation
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where p is some parameterization of I', n the normal to
['(¢) at point I'(¢, p) and where the normal velocity S
depends on some stochastic perturbation 7—here, the
notation 7, standing for the “derivative” of the noise 7,
w.r.t. time, will become clear further. The mean cur-
vature motion = k as well as many other problem
oriented choices of 8 and their implementation with
the Level Sets method (Osher and Sethian, 1988) are
well known. The novelty in our work is the implemen-
tation of the recently proposed stochastic flow (1) (see
(Walsh, 1994)) and its application to Computer Vision.

Stochastic dynamics of interfaces have been widely
discussed in later years in the physics literature. The
work in fields like front propagation or front transi-
tion is aimed at modeling and studying the proper-
ties of a moving frontier between two media that is
subject to macroscopic constraints and random per-
turbations (which are due to the bulk). The natural
translation of this dynamic in mathematical language
is done through Stochastic Partial Differential Equa-
tions (SPDEs). These equations were introduced by
Walsh in Walsh (1994) and their mathematical prop-
erties were studied using mostly partial differential
equations tools. Nevertheless, the problems researchers
have to deal with are various and there is more than one
way to add a stochastic perturbation to a PDE. An up
to date survey of the existing models on stochastic mo-
tions by mean curvature can be found in Yip (2002).
It was only in recent years that the notion of viscos-
ity solution for a SPDE was developed by Lions and
Souganidis in a series of articles (Lions and Sougani-
dis, 1998a, b, 2000a, b). Their notion of weak viscosity
solution is very attractive for numerical applications,
since they define the solution as a limit in a convenient
space for a set of approximations. Since their pioneer-
ing work, related work has been done by Yip (1998) and
by Katsoulakis et al. (2001). Another independent ap-
proach concerned with viscosity solutions of stochastic
partial differential equations is due to Buckdahn and
Ma (2001). Their approach is not well suited for Level
Sets evolutions, though, since they do not allow certain
functional dependencies that are common to all Level
Sets evolutions.

1.3.  What Should not be Done!

Mistake #1: Considering Eq. (1), one should be
tempted to make the perturbation 7 depend on the
parameter p, or, to make it intrinsic,! on o, the arc
length parameter of the curve. Such an evolution,

namely

aT’ .
E(l’ p) = ]’]([, O'(t, p))n(t’ p)

is actually unstable, even if  has some regularity with
respect to o and even if o is normalized with respect to
the total length of the curve. Suppose the curve develops
a kink at some point. Then, its length will increase at
that point and that will lead to adding more noise around
the point where the kink formed itself. Consequently,
that might lead to an unstable character of the evolution.
Thatis why we will consider the stochastic perturbation
as a function of space and the corresponding evolution:

ar .
g(t’ p) = n(t, F(t, p))n(t’ p)

Our noise will be regular in space and white in time.
Indeed, there is no reason one would expect the random
perturbations be correlated from one time step to the
other, but considering noise that is white in space
may have disastrous effects w.r.t. the regularity of the
contours.

Mistake #2: A first simple choice for 7 is to suppose
it constant in space and to consider that each of the
increments 7(¢) is an independent Gaussian random
variable. Therefore, 1(¢) is a Brownian motion W:

oT .
- = W()n(, p) @

ot
An error would be to believe that it should be imple-
mented with the explicit scheme:

[t + At, p) = T(t, p) + At No.p()n(t, p) (3)

where Ao 1)(f) denotes a standard Gaussian random
variable. This would be incorrect, since the statistical
properties of the curve would then depend upon the
discretization of the time grid. To see this, con-
sider independent variables x,-NJ\/(O,l) and notice that
the previous evolution at time 7 would amount to
Y xiAr =" Lx; where At = T/n is the dis-
cretization step. Given the independence of the x;, the
previous sum is a Gaussian variable N 0.12)> thus de-
pending upon the discretization of the time interval
[0, T']. We will see that the correct scheme involves
/At instead of Az (see Eq. (13)):

T(t + At, p) = T'(t, p) + VAt No.y(@)n(t, p)
)
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The previous argument is actually a trivial example that
shows the difference between stochastic integration and
Stieltjes integration. This is to say that our modelization
will have to obey rules of Stochastic Calculus relying on
intrinsic properties of Brownian motion. But we must
also rely on the theory of viscosity solutions, since it
is a necessary ingredient in the Level Set framework—
allowing for rarefactions and shocks in evolutions and
providing stable numerical schemes. The theory we
need must then fill the gap between Stochastic Calculus
and viscosity solutions. This is where the recent theory
developed by Lions and Souganidis comes into place.

Mistake #3: Let us now try to implement (2) in a
Level Set framework, where I'(¢) is the zero level set of
some implicit function u(¢, x) driven by the evolution
%—lt‘ = | Du|W(t). Actually, a more correct way to write
this SPDE is:

du = |Du|dW (1) )]

As pointed out in Lions and Souganidis (1999), this
equation is not reasonable and suffers from:

— Non invariance: Let «(-) be some smooth increasing
function with «(0) = 0. If u(#, x) is solution of (5)
given some initial condition uy(x), then o (u(?, x))
is not solution of (5) with initial condition «(u).
Moreover, the solution of (5) with initial condition
a(up) has not the same zero level set than u(z, x): the
evolution depends on the implicit representation of
the initial curve (see Section 2.2)!

— Ill-posedness: Let us take N = 1 for the sake of
simplicity. The equation du = wu,dW + Au,,dt,
obtained by adding the curvature term Au,, to
(5), reveals to be an inverse heat equation for
0<i<1/2

It turns out that the differential used in (5) is the Ifo
differential, and that those two difficulties are overcome
introducing the Stratonovich differential:

du = |Du| o dW(t) (©6)

In the sequel, we briefly introduce the essential
notions needed to understand the difference between
the Ito and the Stratonovich cases. Citing (Lions and
Souganidis, 1998a), we will see that the notion of vis-
cosity solution can be extended to the SPDE case.
We propose an effective implementation of (6), that

we extend to the case when the noise term depends
on the space variable as well; then we investigate
some geometrical properties of the evolution that could
guide the user toward correct noise parameters. Subse-
quently, we explain how the stochastic motion can im-
prove the shape optimization based methods in Com-
puter Vision. Finally, as an application, we focus on
image segmentation, leading to what we call Stochas-
tic Active Contours.

2. Mathematics
2.1.  Some Notions of Stochastic Calculus

This subsection is meant to offer the reader an intuition
of the notion of Stochastic Calculus and of the supple-
mentary challenges it poses. Focusing on the definition
of the integral itself, we suppose the reader is famil-
iar with the Brownian motion. We shall equally use
the idea of a standard probability space, martingale,
quadratic variation. Rigorous and complete introduc-
tions of Stochastic Calculus can be found in Karatzas
and Shreve (1991), Gard (1988) or Kunita (1990). Let
(2, F, F:, P) be a standard probability space. We will
consider that W = (W (¢), ..., W, (t));>0 is a stan-
dard m-dimensional Brownian motion issued from 0.
We are interested in finding an appropriate way of
introducing the notion of stochastic differential with
respect to the process W. To better understand the dif-
ficulty here, it is worth while mentioning that the paths
of the Brownian motion are only %—Holder continu-
ous, so they are nowhere differentiable. Hence, in or-
der to give a meaning to what the term d W (¢) might
mean, one can first define an integral with respect to
W—the stochastic integral. Once this integral is de-
fined, the differential is obtained using the integral de-
fined. To keep the presentation as clear as possible, we
suppose that m = 1 and all our processes are real-
valued. The considered approach for the construction
of such an integral is to define it as an isometry in
the appropriate functional space. Indeed, consider a
square integrable process ® = (P(¢, w));>o. Trying
to define the stochastic integral fOT O(t, w)dW(t), one
would start with Riemann approximations

n—1

IN@NT) =) @, 0) (W(ti1) — W) (7)
i=1

with A ={0=16h <t < --- <t, =T} and
hope to find a suitable space where the above sum
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would converge when |A] — 0. By proving some
completeness results, one can show that every square
integrable continuous process is integrable w.r.t. the
Brownian motion and one can obtain the Ito stochas-
tic integral as the unique, square integrable martingale
I(P) = (I(P)(?))r>0 whichis the limit of (/5 (P)(?))r>0
when |A| — 0. The convergence happens in the

oo min(l,\/E(X2))
n=1 .

pseudo-metric | X|| = > - >

The price to pay for the convergence of the Rie-
mann sums is that it happens in a process space, hence
the limit, which is denoted as the stochastic integral
fOT O(s)dW(s), does not hold a meaning path-wise,
but only as a process. This means that the set of events
w € 2 where the Riemann sums mentioned above do
not converge to the above introduced integral is of mea-
sure 0. In the sequel, the convergence suggested above
can be extended to an arbitrary dimension. Moreover,
the extension can be taken with respect to local continu-
ous martingales. For details, the reader is referred to one
of the references above. Once this integral is defined,
it is imperative one is given some chain rule formula.
This is where the Ito lemma comes in. Consider a pro-
cess X = (X;);>0 and @ : R — R a function of class
C?. Then the Ito formula states that ¥ = (a(X ®)))i=0
verifies the dynamics

dY (1) = o/ (X(1))dt + %a”d(X, X))@  (@8)

The main difference when compared to the regular
chain rule is the appearance of an extra term, also
called Ito term, or drift, which involves the sec-
ond derivative of « and the quadratic form (X, X),
also known as the quadratic variation of the process
X. The quadratic variation is not zero when X has
some dependence upon a stochastic process and can
be computed in the following manner. Suppose that
Xi(t) = fot fi1(s)dW(s)+ A,(t), where f] is some con-
tinuous square integrable function and A} : R — R
is continuous and increasing. Suppose similarly that
Xa(t) = [y fo(s)dW(s) + Ax(t). Then

(Xl,Xz)(t)Zfo f1() fals)ds

Note that (X, X), depends solely on the stochastic part
of the dynamics and is independent of the bounded
variation part. When f = 0, then the classical chain
rule is obtained in (8).

Now, using the Ito formula, a variation of the stochas-
tic integral introduced above can be obtained so that

the classical chain rule is satisfied. Consider a pro-
cess X(t) = x + M(t) + B(t) where M is a local
continuous martingale’ and B an increasing process.
Consider equally another continuous process Y (t) =
v+ N(t)+ C(¢) where N is a local continuous martin-
gale and C an increasing process. The Stratonovich
integral of Y with respect to X is then given by the
formula

/ Y(s)o dX(s):/ Y(s)dX(s)—f-%(M, N)(?)
0 0
)

Suppose now o is of class C? and apply the Ito
formula (8) to a/(X). Then

do(X(1)) = " (X(1)dW (1) + %a@)(X(t))dt

and consequently d(a/(X), X)(t) = o"(X())dt.
Hence,

ot(Xt)=Oé(X(0))+/ o' (X(s)) o dX(s) (10)
0

by noticing that the quadratic variation term that we
obtained is equal to the Ito term in Eq. (8).

We conclude this section by the approximation of
the stochastic integral mentioned above. For the Ito
integral, we saw that, if A = {0 =1# < < --- <
t, = T}, then

n—1 T
lim ZY(li)(X(ti+1)—X(ti))=/O Y(s)dX(s)
i=0

|A]—0

For the Stratonovich case, it can be proved that we have
the two equally useful limits:

S Y(t) + Y(tit1)

‘ iifilo 2 7 (X(tiy1) — X))
T
= / Y(s)o dX(s) (1)
0
- ti+tis
‘illlllo ; Y(T)(X(IH—I) - X))
T
= / Y(s)o dX(s) (12)
0

As an example that is meant to emphasize the dif-
ference between the two integrals previously intro-
duced, consider as before a Brownian motion W and
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Arel0,1]l.letA={a=1t<t <--- <t, = b},
AW; = W(ti41) — W(t;) and consider ¢*(t;) = (1 —
MW (t;) + AW(t;11). It can be proved that

b
/ W(s)o dW(s) = ‘ii‘motp%(t[)AW,»

= %[Wz(b) - W(a)]

b
f WEAW) = lim 6% AW,

—1[W2(b> W2(a)] 1<b )
—E — a —5 —a

Note also that one should be careful when simulating
AW; (see Section 1.3):

AW; ~ Noiy—15 ~ Vtis1 — tiNo) (13)

2.2.  Proposed Model for the Stochastic Curve
Evolution

In applications, the stochastic term will add to a de-
terministic force F(D?u, Du, x,t) (one of the sim-
plest examples, analyzed in detail in Yip and Sougani-
dis (2004), is concerned with the coupled evolution
du = «|Du|dt + W|Du|dt). Hence, a naive way to
write down the coupled evolution is

du = F|Du|dt + W|Du|dt
The above equation will have a meaning if written as
du = F|Du|dt + |Du|dW(t) (14)

Concentrating on the stochastic part again, we re-
mark that we made an implicit choice by considering
the Ito integral in the above formula, but we could have
decided to go for the Stratonovich integral. So what is
the difference between the two integrals from a Level
Sets point of view? Let us consider the following in-
variance property that is required when working within
a Level Sets framework: consider just a random evolu-
tion of the type

du = |Du|dW(t) with u(0, -) = ug (15)

where W is a one-dimensional Brownian motion.
Then this evolution codes for the corresponding

contour evolution

ar
~; = Wn with T(0) = T (16)

where W is Gaussian white noise and I'y is the zero-
level of uqy. The idea behind the Level Sets evolution
framework is to have all the level sets of the implicit
function given by (15) evolve according to the same
dynamics (16). A smooth change of scale of a function
satisfying (15) that leaves the zero-level unchanged
should not influence the dynamics of the level sets
contour—since the corresponding contour evolution
(16) is not affected by this change of scale. Consider
then a function « : R — R such that ¢’ > 0 and
a(0) = 0 and the initial value problem

du = |DuldW(@t) with u(0,-) =uo(-) (17)

If we consider u the solution of (17), then v = a(u)
should verify the same dynamics, but with a different
initial condition

dv =|Dv|dW() with v(0, ) = a(uy(-))

as is the case in the deterministic framework. Never-
theless, one can apply the Ito rule to the dynamics (15)
and see that

dv =da(u) = o'(u)du = |Dv|dW(t)
1
+§a”(u)|Du|2dt

and the assertion is not verified due to the additional
Ito term. Hence, the problem (15) is ill-posed from
a Level Sets point of view: for a given initial curve
I'(0), the choice of the initial implicit function u
modifies the solution of the equation!. However, as
observed by Lions and Souganidis, this invariance con-
dition is verified if one replaces the Ito integral with the
Stratonovich integral, since the latter does not include
any additional term anymore. Hence, the right way to
insert stochastic evolutions in the Level Sets framework
is through the Stratonovich integral. We rewrite (15)
accordingly

du = |DulodW(t) with u(0,-) = uo(-) (18)

Then, if we consider v = «a(u) (hence the corre-
sponding initial condition will be (1)) the dynamics
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verified by v are

dv =ao'(u) o du = o'(uw)|Du| o dW(t)
= |Dv| o dW(t)

and the invariance property is verified this time. Now,
given the previous ingredient, the proposed random
curve evolution model is given by

du = Fdt + |Du| o dW(t) (19)

Here, we used the Stratonovich integral, as opposed
to (14).

A second example that suggests Stratonovich inte-
gration should be used when working with stochastic
partial differential equations is concerned with the 1-
dimensional perturbed heat equation du = u,dW () +
Auydt. It can be shown that this equation reduces to
a backward heat equation when considering Ito inte-
gration for A € (0, %)—hence ill-posed. Once again, the
extra term Stratonovich integration solves this problem
(for more details, see (Lions and Souganidis, 1999)).

What is the difference between the evolution (19)
and a classical Level Sets evolution such as du = Fdt?
Suppose the initial condition function is a signed dis-
tance function. Since the stochastic term only depends
upon |Du| (which equals 1 in this case) and the time
parameter, all the points of the contour will have an ex-
tra random force which will be the same on the entire
contour at each time step. This type of perturbation is
indeed very important from a theoretical point of view,
but we would like something more flexible in our ap-
plications. Typically, we would be interested in having
white noise in both the time and spatial parameters.
Nevertheless, white noise in space appears to add a lot
of technical difficulties to the problem and the return
on investment is quite small, since most of our mod-
els will evolve on discrete grid spaces. That is why we
have opted for colored spatial noise, that is typically
given by

W(t,x) =) ¢:(x)Wi(t)
i=1

=

where ¢; : R¥ — R are smooth functions with com-
pact support. Note that other choices of colored spa-
tial noise are possible. The final evolution model we
propose is thus

du = F|Duldt + |Du| Y _ ¢i(x) 0 dWi(t) (20)

i=1

As a simplification, in practice we choose the functions
with the same profile, but centered around a number of
points x;, that we call noise sources. Thus, our typical
choice is

¢i(x) = p(x — x;)

where ¢ is some convenient regular function.

2.3.  Stochastic Viscosity Solutions

The theory developed earlier needs some sort of con-
vergence results. As mentioned before, the proper type
of solutions need to be used, so that the previous re-
sults from the Level Sets theory apply here. The no-
tion of stochastic viscosity solution for fully nonlin-
ear, second-order, possibly degenerate, stochastic par-
tial differential equations such as the ones considered
previously is put forward in a series of articles: Li-
ons and Souganidis (1998a, b, 2000a, b). Their theory
is meant to apply precisely to equations such as (20),
with F = F(D?u, Du, x, t). So far, a limit of their
theory, which stands even today as an open question,
is that they do not treat equations where the noise de-
pends upon the space parameter (they only treat the case
¢; = 1, with our previous notation). However, experi-
mental data suggests that their theory applies in cases
like ours as well (see Section 3). Precisely, consider the
equations

du = F(D*u, Du, x, t)dt + €|Du| o dW(¢)

with  u(-, 0) = ug(-) 21
du = F(D*u, Du, x, t)dt + | Du|&y(1)
with  u(-, 0) = uu(+) (22)

where € > 0 and &, is a family of smooth functions
&, : Ry — R.Then we can cite the following theorem,
summarizing their results:

Theorem 1. The following hold a.s. in w:

1 There exists a unique solution to (21).

2 Let {£,(t)}i=0 and {ng(t)}p=0 be two families of
smooth functions such that as o and 8 — 0, &,
and ng converge to W uniformly on any com-
pact in t and a.s. in o. Let {uy}o=0 and {vglg-o
in BUC(R; X RY)? be the solutions of (22). If
limy g0 [tta(-, 0) — vg(-, O)llcwry = O, then, for
all T > 0, limg g0 llue — vgllcqo,rixryy = 0. In
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particular, any smooth approximations of W pro-
duce solutions converging to the unique function
stochastic viscosity solution of (21).

3 As € — 0, the solution u® of (21) converges in
C(R, x RY) to the solution of (21) with € = 0.

Consequently, their result allows us to simulate the so-
lutions of such equations and be sure that the result
of our computer simulation is what we expect it to
be. Furthermore, we mention that according to Lions,
the convergence takes place in C(R, x RY), which
means that the numerical solutions we develop will be
continuous and that they will be converge uniformly
almost surely in o € €.

We end this theoretical part with an example by
Souganidis on the explicit solution of the equation

du = |Dulidt  with u(0,x)=|x]  (23)

where n : R, — R is a function of class C! such
that 7(0) = 0. The explicit viscosity solution of this
equation is given by

u(r,x) = max [ (x| 4+ (1) max (). |

where (x); = max(0, x) (for a simple proof of the
statement above, consider the case when 7n(t) = 1 and
compute the viscosity solution of the equation in that
case); then, one can see that uniform convergence of
n — W is sufficient to obtain the solution of the as-
sociated SPDE. Moreover, this simple case allows one
to see that the random path n has a different effect on
the solution that depends mainly on its sign. Indeed, as
it can be observed from formula (23), there is a quali-
tative difference between the behavior of the solution
depending on whether 77 > O or /7 < 0. This can be bet-
ter understood watching a sample evolution in Fig. 1.
Moreover, numerical artifacts will develop due to very
frequent changes of sign of 7, since the use of 7 is only
for heuristic purpose (the Brownian motion is nowhere
differentiable). As a result, the regular reinitialization
of the implicit function—a standard technique of the
Level Set framework—is indispensable in the stochas-
tic case.

2.4.  Numerical Scheme
The main problem when implementing Stratonovich

evolutions is that they amount often to implement-
ing implicit numerical schemes. Consider again the

é > 0 u(z)

u(z) |
X ’ x
L §< 0 Ju) | E> 0 [y :
X X
! I 1 ‘
T=1T,>1] T=1T5>1Ts

Figure 1. Examples of a typical evolution following the dynamics of Eq. (23). The extremely frequent changes of sign of the increments will
alter the profile of the implicit function which does not remain a distance function. Hence, from an implementation point of view, some regular

reinitialization of u is advisable.
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simple evolution du = |Du| o dW(t). According to
the approximating scheme (11), the direct way of sim-
ulating such a process is through the following implicit
scheme:

1
Uit = i + S(|Dui + | Duipi AW,

To avoid working with an implicit scheme, notice that
the schema presented for the simulation of the Ito
integral is an explicit one and use the fact that the
Stratonovich integral is equal to the Ito integral plus
an additional drift. Consider the evolution

du = H(Du, x) o dW(t) 24)

where we have compacted the notation used previously.
Here H(p, x) is a function from RY x R with real val-
ues. The typical example is H(p, x) = |p|¢(x), where,
¢ is some convenient regular function which is smooth
enough. Such an evolution is equivalent, according to
the definition of the Stratonovich integral, with the Ito
evolution given by

du = H(Du, x)dW () + %d(H(Du, x), W)
(25)

To compute the drift, we start by rewriting the above
dynamics in an integral form

u(t, x) = up(x) + / H(Du(s, x), x) odW(s)
0

We can then take the derivative with respect to the spa-
tial parameter x and obtain

Du(t, x) = Dupy(x)
+/ [Dzu(s,x)DpH(Du(S,x),x)
0

+D.H(Du(s, x), x)] odW(s)

where D, H (resp. D, H) denotes the gradients of H
w.r.t. p (resp. x) and D?u denotes the spatial Hessian.
Then, applying the Ito rule, we have

H(Du(t, x), x) = H(Duy(x), x)
+/ [D,H - (D*uD,H)
0
+D,H - D H]odW(s)

Finally, if we consider the simplifying notation A[u] =
A(u, u), when A is some quadratic form, then the drift
from Eq. (25) can be written as

%(H(Du, x), W)()

= % / (D*u(s, x)[D,H(Du(s, x), x)]
0
+ D,H(Du(s, x), x) - DyH(Du(s, x), x))ds

When H = |p|¢(x), the previous formula becomes
(H(Du, x), W)(t)
_ ' 2 2 DM(S, x)
_/0 |:¢> x)D u(s,x)|:7|Du(s’x)|i|
+(x) Dp(x) - Du(s, x>}zs

We can remark that the second order term in the above
formula is a smoothing term. It can also be written

2 Du . Du
D“u = Au — |Du|div
| Du| | Du|

= Au — |Dulk

where « denotes the mean curvature of the level set at
point x. One can be alarmed by the presence of —| Du/|«.
Nevertheless, the overall term is positive, since D%u is
a positive semi-definite matrix.

The above calculation remains valid if the dynamics
depends on more than one Brownian motion. In con-
clusion, to simulate an evolution of the type

du = F|Du|dt + |Du| Zd)i(x) odW;(t) (26)

i=1

Ww¢E use

du = F|Duldt +|Du| Y ¢;(x)d Wi(t)
i=1

1 5 , [ Du
+z((§¢f‘“>’”[m}
+ (Z¢,~(x)0¢,-(x)> : Du)dt 27)
i=1

or, in the general case when the stochastic Hamiltonian
is given by H(p, x):
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du = F|Du|dt + H(Du, x)dW(t)
1
+ 5(DZu[D,,H] + D,H - D,H)dt

3. Validation

In this section, we test our scheme and investigate some
simple geometrical properties the evolution that could
guide the user toward a correct choice of noise.

3.1. One Gaussian Noise

Let us begin with the simple case of a Gaussian noise
constant in space. We thus consider du = |Du|o dW (t)
and implement:

du = |DuldW (1) + %Dzu(t,x)[M}

| Du(t, x)|

We use a standard WENO3 scheme (Jiang and Peng,
2000) in space with step Ax and a first order explicit
scheme in time with step At and verify the convergence
of the approximation when the space step and/or the
time step tend to zero. Again, please recall the use of

VAt

u(t + At, x) = u(t, x) + | Du(t, x)|v/ AtN.1(t)
Du(t, x) :|

|Du(t, x)|

—i—lDz(t)
3 u(t, x

Convergence w.r.t. time step

0.03

0.025

0.015

var(area)

0.01

0.005

T
— Ax=1/64 Incorrect use of At
—*— Ax=1/16
— Ax=1/32

-©- Ax=1/64

1/DT

error on mean(area(T)) starting from o(u(0)) instead of u(0)

Because of the stochastic character of the evolution,
one can only compare the different approximations
through some statistical quantity*. For a given initial
condition and a given final time 7', the variance of
the area of the interior of the final curve provides a
simple and meaningful way to compare two approx-
imations. The left part of Fig. 2 shows, for different
values of Ax, the convergence of this variance when
1/ At increases. As areminder to avoid a naive mistake,
we also implemented the evolution with At instead of
/At and verify that the variance of the area tends to
zero!

As atest of the invariance of the Stratonovich differ-
ential, we compare, for a given initial curve I"(0), the
mean of the area of the curve at a given final time T
for different choices of the initial implicit function u(0)
(namely the signed distance function dr ) to I'(0) and
a(dr o)) with a(x) = e* — 1). The right part of Fig. 2
shows, for different values of 7 and different initial
curves, the relative difference between the means of the
final area for the initial conditions dr () and for a(dr())
in both the Ito and the Stratonovich cases . Note how
the Stratonovich scheme is much more insensitive with
respect to the choice of u(0).

It could be proved (Juan et al., 2004) that, for a given
initial curve, the variance of the area of the curve at time
T isapolynomial of degree N in T where N is the space
dimension. In practice, for reasonable values of T, the
relation between T and this variance is linear. As a final
test, the left part of Fig. 3 shows,for N = land N = 2,
how this relation is respected by our scheme.

Invariance wrt u(0). Error on the area at time T

0.035

0.03

0.025

0.02

0.015

0.005

T T
—— lto. Starting from a rectangle.
—%— Stratonovich. Starting from a rectangle.
—©~ lto. Starting from a circle.

—+ Stratonovich. Starting from a circle.

Stratonovich

20'T

Figure 2. One Gaussian source. Left: convergence of the variance of the area at a given time 7" when At tends to O (plus the erroneous case
when using (3)). Right: invariance of Stratonovich w.r.t. the choice of the initial implicit function.
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x 107 linearity of var(area(T)) (dimensions N=1 and N=2)

var(area(T))
@
T

L L L L L L L L L

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
T

Figure 3. Left: Linear dependency between the final time and the
to the choice of the implicit function (several Gaussian sources).

3.2.  Several Gaussian Noise Sources

Having the whole curve shrink or grow at the same
time is not very useful. We will use a spatially de-
pendent noise although the viscosity solution result is
still an open question in this case. For a given num-
ber m of random sources, we implement the evolu-
tion (26) with F = 0 using the scheme (27). The
m sources are equally distributed on a grid {x;} and
¢i(x) = ¢(x — x;) where ¢ is such that ¢;(x;) = §;;
and ¢; decreases smoothly from x; to its neighbors.
In practice, although not derivable in x;, the classical
multi-linear interpolation functions are sufficient. Note
also that Y 7" | ¢;(x)d W;(¢) is no longer of variance 1
for all x, so that the stochastic motion would be weaker
between two sources. Using ¢; (x)/ (Z'};l d)?(x))“ 2 in-
stead of ¢; (x) recovers a constant variance 1.

The drift will have a spatial derivative term (see (27)).
Like Fig. 2 for one noise, the right part of Fig. 3 shows,
for different values of m, how the Stratonovich scheme
makes the evolution invariant with respect to the choice
of u(0).

With more than one source of noise, the points of
the curve do not move at the same speed anymore,
leading to the desired stochastic global deformation.
As one should expect, with a large number of sources,
the deformation is very noisy but the contributions of
the sources tend to annihilate one each other. Thus,
the curve does not move very far from its initial po-
sition. On the contrary, with a medium number of
sources, the deformation is smoother but with am-

0.1

Invariance wrt u(0). m noise sources. Dimension N=2

S 16% - - :
2 —&— lto. m=9N
o
VI N

T 14% Ito. m=4
2 —*— lto. m=2N i
c
= 129% Stratonovich. m=9N
B
3 —&— Stratonovich. m=4"
5
g€ 1% —+ Stratonovich. m=2" \
o
E’ 0.8 %
£ 08%f
s Ito
@
T 06%F
?“/ .
£ 3 Stratonovich
= 0.4% / +
©
[
€
S 02%f
s g
G 0 L L L L L

20 40 60 80 100 120 140

variance of the area (one Gaussian). Right: invariance of Stratonovich wrt

pler motions (see Fig. 4). Depending on his/her own
application, the user might want to choose the opti-
mal number of sources. As a first attempt to quantify
the phenomenon, we measure how long it takes to the
curve to move away from its initial position. For a given
distance §, we call the expected exit time the quantity
T(8) = E(inf{z : 3x € '), d(x,T(0)) > §}) where
[E denotes the expectation. For a Brownian motion, the
expected exit time from a ball is a quadratic function of
the radius of the ball. In our case, such a result would
be certainly hard to prove. Yet, our experiments show a
similar relationship 7'(8) & £(m)8?: (see the left part of
Fig. 5). This useful relationship indicates clearly how
long the user has to wait to see his/her curve getting
away from its initial position. The right part of Fig. 5
plots & as a function of the number of sources. As ex-
pected, a large number of sources m induces a larger
exit time, thus a larger £. Surprisingly, the smallest
values of m give also a large £. We do not have any
satisfactory explanation for this phenomenon... Any-
way, these are only some very first steps toward the
understanding of the geometric properties of this kind
of stochastic motion and many other quantities would
be of great interest: the variations of the curvature, the
time to get the curve split, etc.

4. Applications to Computer Vision

Many Computer Vision problems consist in recovering
a certain surface or region through a shape optimization
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Figure 4. Different number of Gaussian noise sources. Top row: starting from the initial curve (top left), three time steps of the evolution with
a large number of Gaussian sources. Middle row: from the same initial curve, four time steps of the evolution with a spatially smoother noise
(small number of sources). Bottom row: a 3D example starting from the cortex of a monkey.
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Figure 5. Several Gaussian sources. Left: Quadratic relation between the distance § and the expected exit time from the band of thickness §.

Right: variation of the exit time w.r.t. the number of sources.

framework (Caselles et al., 1997; Faugeras and
Keriven, 1998; Vese and Chan, 2002; Paragios and
Deriche, 2002). These methods suffer from being
sometimes stuck in local minima. The dynamics

presented earlier, coupled with a decision mechanism,
can be used to overcome this problem. As a first step
toward more sophisticated genetic methods, we turned
our attention to the Simulated Annealing algorithm.
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Based on the work of Metropolis et al. (1953), Sim-
ulated Annealing was first mentioned by Kirkpatrick
in Kirkpatrick et al. (1983) as a nice application of
statistical physics to optimization problems. Its pur-
pose is to introduce a probabilistic decision mechanism
for finding global minima in higher dimension. First,
we would like to briefly comment upon the previous
works oriented toward the use of genetic programming
in Computer Vision.

4.1. Comparison with Previous Work in Computer
Vision

In a lot of cases, the stochastic theory is used to
help researchers develop an intuition of the macro-
scopic dynamics at a microscopic level. This is the
case in Ben-Arous et al. (2002), Unal et al. (2003),
where an algorithm for stochastic approximations to
a curve shortening flow is built. Another example is
given by Unal et al. (2002), where the authors develop
a model of anisotropic diffusion using the information
gained by analyzing the stochastic differential equa-
tion associated to a linearized version of the geometric
heat equation. Note that one should not confuse these
stochastic simulations of a deterministic motion with
our use of stochastic motion. In other cases, stochastics
are actively used in selection algorithms meant to over-
come some classical dynamics difficulties. In Storvik
(1994) Storvik used Simulated Annealing combined
with a Bayesian dynamics and developed applications
in medical imagery. He used a node-oriented represen-
tation technique for the contour representation. Thus,
his algorithm can only detect simply connected do-
mains in an image. Moreover, self-intersections are not
allowed, due to the complications they would involve.
More recently, Ballerini et al developed in Ballerini
(1999) an interesting application to medical image seg-
mentation using a genetic algorithm, genetic snakes.
They used a model that they fit using a number of con-
trol points. Their application cannot, therefore, be ex-
tended to a more general framework.

Please note that the main ingredient of our work is
not the Simulated Annealing part, but rather the imple-
mentation of the stochastic motion and its use in shape
optimization problems. It is obvious that the stochastic
approach adds to the power and flexibility of the Level
Sets technique into a very powerful tool. We can thus
use this mechanism through skillfully applied controls,
while continuing to allow for topological changes and
weak regularity assumptions. Simulated Annealing is

used in our experiments. In the future, more evolved ge-
netic programming selection techniques might be con-
sidered, but it is encouraging that such simple ingredi-
ents added to the Level Sets framework provide good
practical results.

4.2.  Principle

Given some Computer Vision problem in a variational
framework where we have to find the region I" that min-
imizes an energy E(I') = E(u), we use the following
simple Simulated Annealing decision scheme:

1. Start from some initial guess ug

2. Compute u,; from u, using some dynamics, e.g.
du = |Dul 377, ¢i(x) o dW;(1)

Compute the energy E(u,+1)

4. Accept u,y1:

o if E(upy1) < E(uy,)

e otherwise, accept u,;; with probability exp
(— E(un+|)—E(un))
T(n)

et

5. Loop back to step 2, until some stopping condition
is fulfilled

Here, T(n) is a time-dependent function that plays
the same role as a decreasing temperature. Its choice
is not obvious. If the temperature decreases too fast,
the process may get stuck in a local minimum; on
the contrary, decreasing too slowly, it may postpone
convergence. A classical choice is T(n) = Ty//n.
The classical way to solve the previous minimiza-
tion problem is to use a gradient descent method. The
Euler-Lagrange equation is computed, leading to some
evolution dI'/d¢r = B.n, or equivalently, in the Level
Set framework, to du/dt = B.|Du|. We will actually
use the classical motion as heuristics that drive the
evolution faster toward a minimum, and replace the
dynamics of step 2, by

du = B|Duldt + |Du| Y " ¢i(x) 0 dWi(t) (28)

i=1

As often with genetic algorithms, the proof of the con-
vergence of this algorithm toward a global minimum
is still an open problem. However, we use numerical
experiments to show how this algorithm performs bet-
ter by avoiding some local minima that are problem-
atic in the deterministic case. This is our main moti-
vation, since local minima are the major problem of
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Figure 6. Segmentation of two regions modeled by two unknown Gaussian distributions (same mean, different variances). Top row: the initial
curve, the final state of the classical approach stuck in a local minimum, and the final state of our method. Bottom row: evolution of the energy
(dashed: deterministic method, solid: our method). The two results were obtained with identical common parameters; moreover, the result is not

too sensitive wrt. the choice of the stochastic parameters.

classical approaches. Note also, as already mentioned,
that our framework can be used in cases when the
shape gradient is too complex from a mathematical
or computational point of view, or even impossible to
compute.

5. Stochastic Active Contours

Our scheme could be used in the Geodesic Active Con-
tours framework (Caselles et al., 1997) where segmen-
tation is based upon gradient intensity variations. Yet,
a multiscale approach is often used successfully in that
context to overcome the local minimum problem. Other
segmentation schemes (Paragios and Deriche, 2002)
use a region model (eg. texture, statistics) that is less
adapted to multiscale. We will first focus on one such
case, namely the single Gaussian statistics model in
Rousson and Deriche (2002).

5.1. Single Gaussian Model

In their unsupervised segmentation framework
(Rousson and Deriche, 2002), the authors model
each region of a gray-valued or color image I by a
single Gaussian distribution of unknown mean p; and
variance ¥;. The case of two regions segmentation
turns into minimizing the following energy:

E, 1, Ty, 42, X2)
= / e1(x) +/ e(x) + vlength(I')
Ql Qz

where €2; is the region inside I', I, the outside,
and ¢;(x) = —log p,5,(1(0) With p5,(I(x) =
Cmi|—1/26—(1(96)—;L,-)T>3,-’1(1(x)—m)/2 being the condi-
tional probability density function of a given value
I(x) with respect to the hypothesis (u;, X;). The
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Figure 7. Segmentation of two regions modeled by two unknown Gaussian distributions. Top row: the initial curve, the final time step of the
classical method, again stuck in a local minimum and the final step of our method. Bottom row: evolution of the energy (dashed: deterministic
method, solid: our method).

parameters (i;, ;), estimated from the pixel actually 5.2.  Gaussian Mixtures

inside and outside I', are functions of I". Thus, the en-

ergy is a function of I only: E(T', iy, X1, i2, £p) = As an illustration of the case when the Euler-
E('). Its Euler-Lagrange equation is not obvi- Lagrange equation cannot be computed, we extend
ous, but finally simplifies into the minimization the previous method to region statistics modeled by
dynamics a mixture of Gaussian distributions of parameters

O = () pl Bl T with 3 =
1. The conditional probability density function of a

Be = ea(x) —e1(x) + vdiv(lg—u') given value /(x) becomes:
u

Po ) = 3 7,p,05 (1)

The authors successfully segment two regions, even

i=1
when they have the same mean but only different vari- !
ances. However, Fh? evolutiqn could ?aSﬂY be stuck The number of Gaussian distributions can be given,
mFo some 19031 minimum while a multiscale aPPTOZ}Ch estimated at the initial time step, or dynamically
might modify .the statistics so that no segment.atlon evaluated using a Minimum Description Length cri-
would be possible anymore. As demonstrated Fig. 6, terion (Rissanen, 1989) or the Minimal Message
a simple Simulated Annealing scheme with dynamics Length method (Wallace and Boulton, 1968). A
(28) overcomes this problem. Figure 7 shows the same large literature is dedicated to the problem of es-
phenomenon on a real image. Note that this image was timating ®; from input samples. We have used
succ.essfully segmented by the authors of Paragios and the original K-Means algorithm pioneered by Mac-
Deriche (2002). Yet, they used an adapted model of Queen (1967), although we have tested exten-
texture. Here, the Stochastic Active Contours frame- sions like the Fuzzy-K-Means (Bezdek, 1981; de-
work succeeds in making a simple unsupervised single Gruijter and McBratney, 1988), the K-Harmonic-

Gaussian model recover the correct regions. Means (Zhang and Hsu, 1999), and the Expectation-



Stochastic Motion and the Level Set Method in Computer Vision: Stochastic Active Contours 21

Convergence stuck because of an incorrect gradient
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Figure 8. A case where the gradient is not correct (see text). Top row, from left to right: initial position, final position with the classical method
(the model is not correctly recovered - see percentages in the hexagons), leading to rounded corners), final position with our method (the model
is correctly recovered). Bottom left: evolution of the energy in both cases. Bottom right: energy for a translation of the curve that goes through

the correct segmentation.

Maximization algorithm (EM), first proposed in
Dempster et al. (1977). The latter solves iteratively
©; = argmaxg, fx o log pe, (I (x)) dx (Please refer
to (McLachlan and Krishnan, 1997; McLachlan and
David, 2000) for details and to (Ueda et al., 2000) for
extensions).

Our segmentation problem still consists in minimiz-
ing the same energy, withnow ¢;(x) = —log pe,({(x)).
Unfortunately, we now have to deal with a complex
dependency of ®; with respect to I'. In fact, the learn-
ing algorithm acts as a “black box” implementing
I' - ©;(I'). As a consequence, the Euler-Lagrange
equation of the energy E(T", ®(I"), ©®,(I")) = E)
cannot be computed. A deterministic contour evolution
driven by B, = e, — e1 + vk may get stuck just be-

cause f.n is not the exact gradient. Yet, the Stochastic
Active Contours can still be used, with S. as heuris-
tics. As a simple illustration of this, let us consider
the synthetic example of Fig. 8. The region to segment
is a square. The square and the background are each
modeled by a mixture of two equally weighted Gaus-
sian distributions: ©; = (3, 1}, X, 1, u?, ©). As an
initial guess, we shift the square toward the bottom-
right corner. Although a bit of the background is in
R, O is correctly estimated. Yet, for some reason,
the K-Means algorithm estimates ®, approximatively
by (1 — e, M%;M%, ¥ €, M, ). During its con-
vergence, the deterministic method keeps such an in-
correct ®, and finally gets stuck at a roughly cor-
rect place but with an incorrect model, leaving some
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Figure9. Segmentation of two regions modeled by two unknown Gaussian mixtures. Top row: the initial curve, the final state of the deterministic

method, stuck in a local minimum and the final state of our method. Bottom row: evolution of the energy.

interior pixels outside (especially in the corners, be-
cause of the smoothing term of the energy). The col-
ored hexagons below the images indicate the means
and variances of the mixtures components and their
respective weights. See also how the energy increases
in the end! On the contrary, our method does not rely
completely on the incorrect gradient only and finally
“discovers” the correct model, leading to a somehow
better fit. Notice the energy level drop-down when the
K-Means algorithm ejects the interior pixels as negli-
gible and shifts to the correct model. The last graph of
Fig. 8 is a plot of the energy when the initial square is
manually translated from the bottom-right corner to the

upper-left one, going through the correct position. into
some local minimum. It clearly shows that the heuris-
tic gradient by itself gets stuck in a local minimum ,
whereas our method comes much closer to the desired
minimum.

6. Results

Even when the deterministic scheme converge more or
less, our method shows a better ability to overcome lo-
cal minima: Fig. 9 shows how I" can be stuck leading to
a dramatic evolution toward completely false regions.
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06- 000000
200~  00=0-

Figure 10. Segmentation of two regions modeled by two unknown Gaussian mixtures. Left column: the initial states. Right column: the
corresponding final states of our method.

In all the cases, the common parameters were iden- some more examples on other real images. Anima-
tical in the standard and stochastic cases. Moreover, tions corresponding to all the presented examples can
the method is not too sensitive wrt. the choice of be downloaded at http://cermics.enpc.fr/

the stochastic parameters. Finally, Fig. 10 shows “juan/IJCV/.
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7. Conclusion

Based on recent work on Stochastic Partial Differen-
tial Equations by Lions and Souganidis, we have pre-
sented a simple and well-founded method to implement
the stochastic motion of a surface in a Level Set frame-
work. This method is used as the key point of a stochas-
tic extension to standard shape optimization methods
in Computer Vision. In the particular case of segmen-
tation, we introduced the Stochastic Active Contours,
a stochastic extension of the well-known active con-
tours. Our method is more likely to overcome local
minima and can also be used when the Euler-Lagrange
equation of the energy is out of reach. This extension
is not time consuming: the only computational effort
is computing the energy. Convincing results are pre-
sented with the segmentation of regions modeled by
unknown statistics, namely single Gaussian distribu-
tions or mixtures of Gaussian distributions. The way
is now open for applying our principle to other Com-
puter Vision problems but also in different fields where
shape optimization problems arise, like in theoretical
chemistry (Cances et al., 2004).

Notes

1. That is to say, depending on the curve itself but not on the choice
of the parameterization p.

2. Typically, this would be some Ito stochastic integral M(t) =
Jo ®dW.

3. The space of Bounded Uniformly Continuous functions.

4. Actually, for a given time step A¢, we might fix the event w and
compare the approximations for different Ax but with the same
Brownian. We also successfully used such a path-wise compari-
son when testing the invariance property of our scheme.
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