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Abstract. Active Appearance Model (AAM) framework is a very useful method that can fit the shape and appearance
model to the input image for various image analysis and synthesis problems. However, since the goal of the AAM
fitting algorithm is to minimize the residual error between the model appearance and the input image, it often fails to
accurately converge to the landmark points of the input image. To alleviate this weakness, we have combined Active
Shape Models (ASM) into AAMs, in which ASMs try to find correct landmark points using the local profile model.
Since the original objective function of the ASM search is not appropriate for combining these methods, we derive a
gradient based iterative method by modifying the objective function of the ASM search. Then, we propose a new fitting
method that combines the objective functions of both ASM and AAM into a single objective function in a gradient
based optimization framework. Experimental results show that the proposed fitting method reduces the average fitting
error when compared with existing fitting methods such as ASM, AAM, and Texture Constrained-ASM (TC-ASM) and
improves the performance of facial expression recognition significantly.
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1. Introduction

Since ASM (Cootes et al., 1995) and AAM (Cootes et al.,
2001; Matthews and Baker, 2004) were introduced,
many researchers have focused on these methods to
solve many image interpretation problems, especially
for facial and medical images (Dornaika and Ahlberg,
2003; Lanitis et al., 1997; Kuilenburg et al., 2005;
Thodberg and Rosholm, 2001; Ginneken et al., 2002).
ASM and AAM have some similarities. They use
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the same underlying statistical model of the shape of
target objects, represent the shape by a set of landmark
points and learn the ranges of shape variation from
training images. However, the two methods have several
differences as well (Cootes et al., 1999):

1. ASM only models the image texture in the neighbor-
ing region of each landmark point, whereas AAM uses
the appearance of the whole image region.

2. ASM finds the best matching points by searching
the neighboring region of the current shape positions,
whereas AAM compares its current model appearance
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to the appearance sampled at the current shape posi-
tions in the image.

3. ASM seeks to minimize the distance between model
points and the identified match points, whereas AAM
minimizes the difference between the synthesized
model appearance and the target image.

Cootes et al. (1999) found that ASM is faster and has a
broader search range than AAM, whereas AAM gives a
better match to the texture. However, AAM is sensitive to
the illumination condition, especially when the lighting
condition in the test images is significantly different
from that in the training images. It often fails to locate
boundary points correctly if the texture of the object
around the boundary area is similar to the background
image (Yan et al., 2002). Until now, ASM and AAM
have been treated as two independent methods in most
cases even though they share some basic concepts such
as the same linear shape model and the same linear
appearance model (here, the term appearance is used
with a somewhat broad meaning; it can represent the
whole texture or the local texture).

As pointed out by Cootes and Taylor (2001) and Scott
et al. (2003), the existing intensity-based AAM has some
drawbacks: It is sensitive to changes in lighting condi-
tions and it fails to discriminate noisy flat textured area
and real structure, and thus may not lead to accurate fitting
in AAM search. To alleviate this problem, Stegmann and
Larsen (2002) proposed a few methods: Augmenting the
appearance model using extra feature band that includes
color and gradient channels. Scott et al. (2003) proposed
to use some nonlinear transforms such as cornerness, ed-
geness, and gradient directions (Scott et al., 2003) for the
feature band. Experimental results showed that the non-
linear descriptions of local structure for the texture model
improved the fitting accuracy of the AAMs. Ginneken
et al. (2006) pointed out the problem of AAM formula-
tion where only the object’s interior is included into the
appearance model, which means that the cost function
can have minimum value when the model is completely
inside the actual object. To avoid this, they simply con-
catenated the appearance vector with the texture scanned
along whiskers that are outgoing normal direction at each
landmark points.

Another approach to improve the fitting performance
is to combine the ideas of the AAM and ASM. Yan
et al. (2002) proposed the TC-ASM that inherited the
ASM’s local appearance model because of its robust-
ness to varying light conditions. They also borrowed the
AAM’s global texture, to act as a constraint over the shape
and providing an optimization criterion for determining
the shape parameters. In TC-ASM, the conditional distri-
bution of a shape parameter given its associated texture
parameter was modeled as a Gaussian distribution. There
was a linear mapping �st = R�t between the texture �t and

its corresponding shape �st , where R is a projection matrix
that can be pre-computed from the training pairs {(�si ,�ti )}.
The search stage computes the next shape parameters by
interpolating the shape from a traditional ASM search
and the texture-constrained shape. Using the texture con-
strained shape enabled the search method to escape from
the local minima of the ASM search, resulting in im-
proved fitting results.

In this paper, we propose a new fitting method that in-
tegrates AAM and ASM in a unified gradient-based opti-
mization framework. The goal of ASM is to find shape pa-
rameters so that the profile at each model point is similar
to the pre-learned profile, while keeping the shape param-
eters within the learned range in the parameter space. The
goal of AAM is to find the shape and appearance model
parameters such that the model instance is most similar
to the input image. The model instance obtained from the
current model parameter is as similar as the input image.

One simple and direct combination of ASM and AAM
is to alternate between the two. In this case, the parame-
ters may not converge to a stable solution because they use
different optimization goals and techniques. To guarantee
a stable and precise convergence, we changed the profile
search step of the ASM to a gradient-based search like
the AAM search method and combined the error terms
of the AAM and ASM into a single objective function in
a gradient-based optimization framework. The gradient-
based ASM search method can be seen as a simplified
version of the Active Contour Model (ACM) (Kass et al.,
1998), because the active contour model uses all bound-
ary points while the gradient-based ASM uses only the
specified model points.

Figure 1 shows how the proposed fitting method1

works. The proposed AAM + ASM algorithm
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Figure 1. The proposed fitting method.
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pre-computes the linear shape, appearance, and profile
model independently from a set of the landmark train-
ing images and uses these models simultaneously to find
the optimal model parameters for an input image. By
integrating the AAM and ASM error terms and optimiz-
ing them simultaneously, we could obtain more accurate
solutions than using only the AAM error term. This im-
provement is due to the fact that the ASM error term
enforces to move the shape points to nearby edge-like
points. If we only take the AAM error term, the AAM
fitting often fails to converge to the ground truth points
because there are no distinctive texture patterns in the
cheek area of the face. One thing to note here is that
the purpose of the proposed algorithm is not obtaining an
illumination robustness fitting but obtaining a more accu-
rate fitting. Experimental results show that the proposed
fitting method successfully improves the fitting results
in terms of root mean squared (RMS) positional errors
when compared to ASM, AAM, and TC-ASM.

This paper is organized as follows. Section 2 briefly
reviews the shape and appearance models in ASM and
AAM. Section 3 explains the proposed fitting method that
incorporates the shape and appearance models of ASM
and AAM in a unified framework. Section 4 presents the
experimental results and discussion. Finally, Section 5
presents our conclusion.

2. Background

Assume a set of landmarked face images D = {Ii , �vi }N
i=1,

where N is the number of images, Ii is the i-th image, and
�vi = (x1, y1, . . . , xv, yv)t ∈ R2v×1 are the coordinates of
the landmark points for Ii .

2.1. Shape Model

In ASM and AAM, a shape �s = (x1, y1, . . . , xv, yv)t is
represented as a linear combination of the mean shape �s0

and n orthonormal bases �si as

�s =
n∑

i=0

pi�si , (1)

Figure 2. An example of shape bases, �s1 to �s5.

where pi is the i th shape parameter and p0 = 1. These
shape bases are obtained by collecting a set of shape vec-
tor {�vi }N

i=1, aligning them by removing the variations due
to scaling, rotation, and translation, and applying PCA to
the resultant aligned shape vectors. Figure 2 illustrates an
example of the shape model, where the five shape bases
�s1 to �s5 are displayed.

The shape at the j-th landmark point �s j ( j = 1, . . . , v)
that is synthesized by the shape parameters pi (i =
0, . . . , n) and a global similarity transformation �q =
(q1, q2, q3, q4)t is given by

�s j =
[

1 + q1 q2

−q2 1 + q1

] (
n∑

i=0

pi�s j
i

)
+

[
q3

q4

]

= Q R

(
n∑

i=0

pi�s j
i

)
+ QT , (2)

where �s j
i represents a subvector of the i-th shape basis

corresponding to the j-th model point.

2.2. Appearance Models

ASM and AAM use different appearance models: the
ASM uses a local profile model and the AAM uses a
whole appearance model. We introduce these different
appearance models in this section.

2.2.1. Local Profile Model. ASM represents the local
appearance at each model point by the intensity or gradi-
ent profile (Cootes et al., 1995). For each landmark point
in the training image, the intensity profile �I j is obtained
by sampling the intensity along the direction that is nor-
mal to the line that connects two neighboring landmarks
of a given landmark point. Then, the gradient profile �G j

is obtained, which is a derivative of the intensity profile
�I j . Figure 3 illustrates an example: (a) landmarks and a
normal vector direction at a specific landmark point, (b)
the intensity profile, and (c) the gradient profile. In this
work, we consider the gradient profile because it is not
sensitive to global intensity variations.

The gradient profile �g j of the j-th model point is also
represented as a linear combination of a mean gradient
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Figure 3. An example of intensity profile (b) and gradient profile (c) along the normal direction indicated in (a).
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Figure 4. A mean and the first three gradient profile basis vectors.

profile �g j
0 and l orthonormal gradient profile basis vectors

�g j
i as

�g j =
l∑

i=0

βi �g j
i , (3)

where βi is the i-th gradient profile parameter and β0 = 1.
The gradient profile basis vectors are obtained by collect-
ing a set of gradient profile vectors { �Gi }N

i=1, and applying
PCA. Figure 4 shows the mean and the first three gradient
profile basis vectors. In this figure, the first and second
bases appears as a quadrature pair, which implies inac-
curate positioning of landmarks on intensity contours.

Figure 5. Examples of the five modes of appearance variation.

When we collect the gradient profile data, we landmark
the position of the feature points manually. Hence, they
cannot be aligned precisely. This may produce the quad-
rant pairs in the basis vectors of the gradient profile.
However, this misalignment does not affect the fitting
performance much.

2.2.2. Whole Appearance Model. In AAM (Cootes
et al., 2001; Matthews and Baker, 2004), the whole ap-
pearance is defined on the mean shape �s0 and the appear-
ance variation is modeled by the linear combination of
a mean appearance A0 and m orthonormal appearance
basis vectors Ai :

A(�x) =
m∑

i=0

αi Ai (�x), (4)

where αi is the i-th appearance parameter and α0 = 1.
The appearance basis vectors are computed by apply-
ing PCA to the shape normalized appearance images that
are warped to a mean shape �s0 from landmarked training
images using piece-wise affine warping (Matthews and
Baker, 2004). Figure 5 illustrates an example of the ap-
pearance model, where the five appearance basis vectors
added to the mean appearance are shown.

Although Cootes et al. (2001) proposed the combined
AAM, in which a third linear model is used to repre-
sent the variations of the shape and appearance param-
eters simultaneously, we have adopted the independent
AAM scheme, in which independent shape and appear-
ance models are used.
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3. A Unified Approach

Our goal is to find the model parameters that minimize the
residual error of the whole and local appearance model
simultaneously in a unified gradient-based framework.
This required the definition of an integrated objective
function that combines the objective functions of AAM
and ASM in an appropriate manner.

3.1. Integrated Objective Function

The objective function of the proposed method con-
sists of three error terms: the error of whole appear-
ance Eaam , the error of local appearance Easm, and a
regularization error Ereg. The last error term is intro-
duced to prevent the shape parameters from deviating too
widely. We explain each error term and then introduce the
overall objective function that consists of the three error
terms.

First, we define the error of the whole appearance
model for AAM as

Eaam(�α, �p, �q)= 1

N

∑
�x∈�s0

[
m∑

i=0

αi Ai (�x) − I (W ( �x ; �p, �q))

]2

,

(5)

where N is the number of the pixels �x ∈ �s0, and �α, �p,
and �q are the appearance, shape, and similarity transfor-
mation parameters.

Second, we define the error of local appearance model
for ASM as

Easm(�β, �p, �q) = K

v · Np f

v∑
j=1

∑
z

E j
asm(z)

2
α j

= K

v · Np f

v∑
j=1

∑
z

{
l∑

i=0

β
j

i �g j
i (z)

− �g(W j (z; �p, �q))

}2

α j , (6)

where Np f is the length of the gradient profile vector, K is
a scaling factor to balance the magnitude of Easm with that
of the Eaam , β

j
i is the i-th gradient profile model param-

eter corresponding to the j-th model point, W j (z; �p, �q)
represents a warping function that transforms a scalar
coordinate z of the 1-D gradient profile vector into a 2D
image coordinate of the image to be used for reading the
image gradient profile �g at each j-th model point, and α j

is adaptive weight control term that will be explained in
Section 3.4. The warping function can be represented as

W j (z; �p, �q) = �s j (�p, �q) + z�n j , (7)

where �s j (�p, �q) and �n j are the j-th model point of the
current shape corresponding to current shape parameters
�p and �q , and the normal vector of the j-th model point.

Third, we define a regularization error term Ereg, which
constrains the range of the shape parameters pi , as

Ereg(�p) = R ·
n∑

i=1

p2
i√
λi

2
, (8)

where λi is the eigenvalue corresponding to the i-th shape
basis �si and R is a constant that controls the effect of
regularization term. If the value of R is set to a large
value, the fitting result tends to be close to the mean
shape. While the shape parameters are directly limited
not to exceed ±3

√
λi after each iteration in ASM (Cootes

et al., 1995) and AAM (Matthews and Baker, 2004),
we add Ereg into the objective function to obtain similar
effect.

By combining (5), (6), and (8), we define an integrated
objective function E as

E = (1 − ω)(Eaam + Ereg) + ωEasm, (9)

where ω ∈ [0, 1] determines how significant Easm term
will be in the overall objective function E . Thus, the
proposed algorithm operates like AAM when ω = 0,
and like ASM when ω = 1.

3.2. Derivation of Updating Parameters

The integrated objective function is optimized using the
Gauss-Newton gradient descent method. To derive the
formula for updating parameters, we need to compute
the steepest descent vector of the parameters. After the
steepest descent vector of each term is obtained, its cor-
responding Hessian matrix can be easily computed. In
the following, we describe the detailed derivation of the
steepest descent vectors of the three error terms. During
the derivation, we omit the constants 1/N in Eaam term
and K/(v · Np f ) in Easm.

3.2.1. Steepest Descent Vector of Eaam. The whole ap-
pearance error term Eaam is almost the same as that of the
traditional AAM. The difference is that Eaam is divided by
the number of pixels to effectively balance the error func-
tion with Easm. Various gradient based fitting methods for
this type of error function have been proposed (Matthews
and Baker, 2004; Baker et al., 2003), which are extended
from the Lucas-Kanade image matching method (Kanade
and Lucas, 1981).

When we take the traditional Gauss-Newton nonlinear
optimization method to minimize the first term Eaam of
Eq. (5), the increments ��α, ��p and ��q are determined
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to satisfy the following condition:

Eaam(�α + ��α, �p + ��p, �q + ��q) < Eaam(�α, �p, �q),

(10)

where

Eaam(�α + ��α, �p + ��p, �q + ��q)

=
∑
�x∈�s0

[
m∑

i=0

(αi + �αi )Ai (�x) − I (W (�x ; �p + ��p, �q

+ ��q))

]2

(11)

and

Eaam(�α, �p, �q)=
∑
�x∈�s0

[
m∑

i=0

αi Ai (�x) − I (W ( �x ; �p, �q))

]2

.

(12)

After obtaining the increment vectors ��α, ��p and
��q , the additive update formula modifies the appear-
ance parameter �α and the warping parameters �p and �q
as

�α← �α + ��α, W (�x ; �p, �q) ← W (�x ; �p + ��p, �q + ��q).

(13)

We can simply rewrite Eq. (11) as

Eaam =
∑
�x∈�s0

⎧⎪⎨⎪⎩Eaam(�x) + SDaam(�x)

⎡⎢⎣ ��α
��p
��q

⎤⎥⎦
⎫⎪⎬⎪⎭

2

, (14)

where

Eaam(�x) =
m∑

i=0

αi Ai (�x) − I (W (�x ; �p, �q)), (15)

and

SDaam(�x) =
[

A1(�x), . . . , Am(�x), −∇ I t

(
∂W

∂ �p ,
∂W

∂ �q
)]
(16)

by applying the first order Taylor series expansion to
Eq. (11) and simplifying it. Note that the steepest descent
vector SDaam must be re-computed at every iteration
because the gradient of the image ∇ I = ( ∂ I

∂x , ∂ I
∂y )t and the

Jacobian of the warping function ( ∂W
∂ �p , ∂W

∂ �q ) depend on

the warping parameters �p and �q that are updated at every
iteration, i.e., ∇ I is computed at W (�x ; �p, �q) and the

warping function W is differentiated at current �p and �q.
Therefore, the Hessian matrix is also re-computed in each
iteration.

3.2.2. Steepest Descent Vector of Ereg. As in the case
of Eaam , we apply the additive Gauss-Newton update to
the Ereg of Eq. (8), which can be reformulated as

Ereg = ‖�−1
(�p + ��p) ‖2, (17)

where � is a square diagonal matrix (�i,i = √
λi , and

λi is the i-th eigenvalue), and it is minimized with re-
spect to ��p. After obtaining the increment vector ��p,
the modified additive update formula modifies the shape
parameter �p as �p ← �p + ��p.

When we apply the Taylor series expansion to Eq. (17),
we can rewrite it as

Ereg =‖�−1 �p + �−1��p‖2 =‖Ereg,�p + SDreg��p‖2,

(18)

where

SDreg = �−1, Ereg,�p = �−1 �p. (19)

3.2.3. Steepest Descent Vector of Easm. Similarly,
we apply the additive Gauss-Newton gradient descent
method to the local profile error Easm, i.e., we want to
minimize

Easm =
v∑

j=1

∑
z

{
l∑

i=0

�g j
i (z)

(
β

j
i + �β

j
i

) − �g(W j (z; �p

+��p, �q + ��q))

}2

, (20)

with respect to ��β, ��p, and ��q. After obtaining the
increment vectors ��β, ��p and ��q, the parameters are
updated:

�β j ← �β j + ��β j ,

W j (z; �p, �q) ← W j (z; �p + ��p, �q + ��q). (21)

When we apply the Taylor series expansion to Eq. (20)
and ignore the second and higher order terms, we can
rewrite Eq. (20) as

Easm =
v∑

j=1

∑
z

⎧⎪⎨⎪⎩E j
asm(z) + SD j

asm(z)

⎡⎢⎣��β
��p
��q

⎤⎥⎦
⎫⎪⎬⎪⎭

2

, (22)
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where

E j
asm(z) =

l∑
i=0

�g j
i (z)β

j
i − �g(W j (z; �p, �q)) (23)

and

SD j
asm(z)=

[
�g j

1 (z), . . . , �g j
l (z),−∇�g(z)

(
∂W j

∂ �p ,
∂W j

∂ �q
)]

.

(24)

The differentiation of the W j with respect to the warp-
ing parameters �p and �q in (24) can be computed as

∂W j

∂ �p =
(

∂W j

∂z

)t
∂z

∂ �p ,
∂W j

∂ �q =
(

∂W j

∂z

)t
∂z

∂ �q , (25)

where the first term ∂W j

∂z can be computed from Eq. (7),

and the second term ∂z
∂ �p and ∂z

∂ �q are required to represent z
as a function of parameters �p and �q , respectively. When

the j-th model point �s j moves to �̂s j
along the normal

vector �n j , the z coordinate of the �̂s j
can be computed as

z = (�n j )t (�̂s j − �s j ) = (�n j )t

(
Q R

n∑
i=0

�s j
i pi + QT − �s j

)
.

(26)

3.3. Parameter Updates

Since the overall objective function is a summation of
multiple objective functions and each objective function
consists of a sum of squares, the Hessian matrix of the
overall objective function is the sum of the Hessian matrix
of each objective function (Xiao et al., 2004) as

Hoverall = (1 − ω)

{ ∑
�x

SDaam(�x)t SDaam(�x)

+ SDt
regSDreg

}
+ ω

v∑
j=1

∑
y

SD j
asm(y)t SD j

asm(y).

(27)

Similarly, the steepest descent update of the overall ob-
jective function is also the sum of the steepest descent
updates of the objective functions:

SDoverall = (1 − ω)

{ ∑
�x

SDaam(�x)t Eaam(�x)

+ SDt
reg Ereg,�p

}
+ ω

v∑
j=1

∑
z

SD j
asm(z)t E j

asm(z).

(28)

If we define the overall parameter vector as �θ = [��αt

�β t �pt �qt ]t , we can compute the overall increment vector
��θ = [��αt ��β t ��pt ��qt ]t as

��θ = −H−1
overallSDoverall. (29)

Once the overall increment vector ��θ is obtained, the
appearance parameter α, the gradient profile parameter
�β, and the warping parameters �p and �q are updated as

�α= �α + ��α, �β = �β + ��β, �p= �p + ��p, �q = �q + ��q.

(30)

In (29), the sizes of the three matrices are different
because the parameter set of the three individual objec-
tive functions Eaam , Ereg, and Easm are different. We can
deal with this by thinking that they are the functions of
all the entire parameter set and setting all elements in
both the Hessian and the steepest descent parameter up-
dates to zero that do not have corresponding entries in
the individual functions.

3.4. Adaptive Weight Control of Easm

First, we consider the effect of convergence on Easm. As
mentioned earlier, the local profile model for the ASM has
only learned the local profile variations that are near the
landmark points of the training data. Thus, the weight on
Easm term must be controlled appropriately for a proper
model fitting in the following manner. During early iter-
ation, the Easm term should have little influence because
the synthesized shape is typically far from the landmark
points. In the later iterations, as the synthesized shape
becomes closer to the landmark points, the effect of Easm

should become stronger.
To reflect this idea, we need a measure to indicate how

accurately the model shape is converged to the landmark
points, and the Eaam term meets this requirement well.
The degree of convergence is then represented by a bell-
shaped function (Jang et al., 1997) of the Eaam term:

Bell(a, b, c; Eaam) = 1

1 +
∣∣∣∣√

Eaam−c
a

∣∣∣∣2b , (31)

where a, b, and c parameters determine the width of the
bell, the steepness of downhill curve, and the center of
the bell, respectively. In this work, we set c = 0 to use the
right side of the bell-shape. Figure 6 illustrates a typical
bell-shape, where the values of a and b, 15 and 5, were
determined experimentally.

Second, we consider how well each model point has
converged to its landmark point. Although the synthe-
sized shape is converged to the landmark points on
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Figure 6. A bell-shaped weight function.

average, some points are close to their landmark points
but other points are still far from them. To accommo-
date this situation, we consider a Normal-like function

exp(− E j
asm

2σ j ), where E j
asm( j = 1, . . . , v) is the local pro-

file error at j-th model point, and σ j > 0 controls the
sensitivity of the normal function, i.e., σ j determines
how much weight will be imposed on the j-th shape
point using the current gradient profile error E j

asm. The
reason we use different sensitivity control parameter σ j

for each shape point is that the statistics of the gradient
profile error are different from point to point. Therefore,
we measured the mean value of the gradient profile er-
rors E j

asm at each landmark points from training data and
set the σ j values as the consistently scaled values of the
measured statistics.

Considering these two effects, the adaptive weight α j

in (6) is controlled as

α j = Bell(Eaam) · exp

(
− E j

asm

2σ j

)
. (32)

Figure 7. A set of examples face images.

4. Experiment Results and Discussions

We evaluate the performance of the proposed method in
terms of fitting error and facial expression recognition.

4.1. Database

We used our own face database that consists of 80 face
images, collected from 20 people with each person
having 4 different expressions (neutral, happy, surprised
and angry). All 80 images were manually landmarked.
The shape, appearance, and gradient profile basis vectors
were constructed from the images using the methods
explained in Section 2. Figure 7 shows some typical
images in the face database.

4.2. Fitting Performance

First, we determined the optimal number of the linear
gradient profile basis vectors. For this, we built a linear
gradient model using 40 images of 10 randomly selected
people, fitted the generated model to them, and measured
the average fitting error of 70 landmark points, where
the fitting error was defined by the distance between a
landmark point and its converged vertex.

Figure 8 shows the average fitting error, where ∗
denotes the mean value of average fitting error when
AAM was used, ◦ denotes the mean value of the av-
erage fitting error at each different number of linear gra-
dient profile basis vectors when gradient-based ASM
was used, and the bar denotes the standard deviation
of the average fitting error in both methods. This fig-
ure shows that (1) the average fitting error of gradient-
based ASM is smaller than that of AAM, (2) the opti-
mal number of the linear gradient profile basis vectors
is 7, and (3) the minimum average fitting error corre-
sponds to approximately 0.5 pixel. Thus, the number
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Figure 8. Mean and standard deviation of average fitting errors.

of linear gradient profile basis vectors was 7 in our
experiments.

Second, we investigated the effect of the Easm term on
the fitting performance. By setting the value of ω to 0,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and
1.0. The scale factor K was set to 10,000 to make the
magnitude of the Easm term similar to that of the Eaam

term (the order of Eaam was 10 and the order of Easm

was 10−3). For the 40 training images used in the first
experiment, the optimal similarity transform parameters
were computed from the landmark points, and then the
position of the initial shape was moved 3 pixels in a ran-
dom direction. The initial shape parameters are set to
zero.

Figure 9 shows the average fitting error at each ω,
where the case of ω = 0 corresponds to the AAM and
the case of ω = 1.0 corresponds to the gradient-based
ASM. This figure shows that (1) the average fitting error
of the AAM could be minimized further by choosing
an optimal value of the ω that incorporates the effect of
gradient-based ASM and (2) the smallest average fitting
error was achieved when ω was set to about 0.5.
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Figure 9. The effect of ω on the average fitting error.

The amount of the decrease in the average fitting er-
ror in this experiment is about 0.45 pixel per each model
point. Although the improvement seems to be very small,
note that the improvement of 0.45 pixel per model point
was difficult to achieve because the AAMs worked rea-
sonably under the same conditions in this experiment.
The average fitting error of the AAM was about 1.0,
which means that every point converged to the ground
truth landmark points reasonably. The improvement of
0.45 pixel per model point must be understood as fol-
lows: When comparing the average fitting error of the
AAM + ASM algorithm to that of the AAM algorithm,
the AAM + ASM algorithm reduced the average fitting
error to 55%.

In addition, the amount of 0.45 pixel is the average
value. Thus, some model points move a lot while other
points do not move when the fitting result is compared to
that of the AAM algorithm. Usually, the moving points
belong to facial features such as mouth, and eye brows. In
case of facial expression recognition, extracting the exact
location of such points are important because the facial
expression can be changed by their small movement. The
effect of the accurate fitting result is shown in the facial
expression recognition experiment.

Figure 10 illustrates a typical example of fitted results
when the AAM and the AAM + ASM (ω = 0.5) were

Figure 10. A typical example of fitted results.
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used. In this figure, the white and black dots correspond
to the fitted results of AAM and AAM + ASM, respec-
tively. The AAM + ASM converged more accurately to
the landmark points than the AAM, particularly near the
mouth and chin.

Third, we investigated the effect of the a parame-
ter of the Bell-shaped weight control function, where
it determines the width of the Bell-shape function. We
measured the average fitting error at different values of
a = 5, 10, 15 and 20. For each value, we performed 8
trials of this experiment using different initial positions,
where the displacement is 3 from 8 directions. Figure 11
shows the change of average fitting error with respect to
the iteration numbers, where each curve is the mean of
8 trials. This figure shows that (1) if the parameter a is
too small (i.e., a = 5), the Easm term is not always ef-
fective over the range of Eaam . This results in only the
AAM error term being used, (2) if the parameter a is too
large (i.e., a = 20), the Easm term is always effective
over the range of Eaam . This causes the fitting to stick an
incorrect local minima, (3) the minimum average fitting
error is obtained when a is 15.

Fourth, we compared the fitting performance of AAM
+ ASM to existing methods such as the traditional AAM
and TC-ASM, another approach combining AAM and
ASM. We set ω = 0 for AAM and ω = 0.5 for AAM +
ASM. We built three linear models (appearance, shape,
and profile) using the 40 training images that were used
in previous experiments and measured the fitting perfor-
mance using the remaining 40 test images. For one test
image, we tried 40 different initial positions, as shown in
Fig. 12, where they correspond to 5 different distances
(3, 5, 7, 9, and 11) and 8 different directions. The initial-
ization was done as follows: the shape and appearance
parameters were set to zero, and the scale and position
parameters were computed from the landmark points.
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Figure 11. Change of average fitting errors for different a values.

Figure 12. The configuration of 40 initial displacements.

Figure 13. A histogram of fitting errors.

Figure 13 shows a histogram of fitting error for 112,000
cases: 40 images × 40 initial positions × 70 vertices. It
shows that the AAM + ASM produced the smallest mean
and standard deviation of fitting error.

Table 1 shows the mean value of the fitting error of
three different methods, which shows that the AAM +
ASM method has the smallest mean value of fitting error.

Figure 14 shows the convergence rates with respect to
initial displacements of three different methods, where
each plot has the threshold value of 1.5, 2.0, and 2.5,
respectively. Here, we assume that the fitting result con-
verges when the average fitting error is less than the given
threshold value. In this work, the convergence rate is de-
fined by the rate of the number of converged cases over
the number of the all the trials. This figure shows that
(1) the convergence rate increases as the threshold value
increases for all methods, (2) the convergence rate de-
creases as the initial displacement increases in the AAM
+ ASM and the AAM methods, (3) the convergence rate
is almost constant as initial displacement increases in

Table 1. Mean value of the fitting error.

AAM + ASM AAM TC-ASM

Mean 0.5 0.8 1.7
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Table 2. Comparison of the number of iterations and computation time.

AAM AAM + ASM

Initial Avg. number Avg. computation Avg. number Avg. computation

displacement of iterations time (msec) of iterations time (msec)

3 8.4 879 18.8 4,787

5 9.9 1,033 20.4 4,964

7 11.2 1,162 21.7 5,084

9 12.1 1,250 22.7 5,224

*All algorithm was implemented with Matlab.
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Figure 14. Convergence rate of the three methods.

the TC-ASM method because this method employs a
search-based ASM, and (4) the convergence rate of the
AAM + ASM is the highest among three methods in
almost all cases.

Last, we compared the computation time of the two fit-
ting methods: the AAM and the AAM + ASM in terms
of the average number of iterations and the average com-
putation time. For this, we define the convergence of the
fitting as follows. When the change of the average Eu-
clidian distance of 70 shape points during two succes-
sive iterations is smaller than a certain threshold value of
0.02, it is assumed that the fitting is reached at the con-
vergence. According to a variety of experiments, we ob-
tained that the average computation time per iteration of
the AAM and the AAM + ASM method was 104 and 433
milliseconds, respectively. The AAM + ASM algorithm
was slower than the AAM method because it had more
parameters than the AAM method; both algorithms must
update the Hessian and steepest descent vectors whose
size was dependent on the number of model parameters,
which took the most time of the overall computation.

Table 2 shows the average number of iterations and the
average computation time of two fitting methods with
respect to the initial displacements. This table shows
that (1) the average number of iterations of the AAM
method increased as the initial displacement increased,

(2) the difference of the average number of iterations
between two fitting methods was about 10.5 iterations,
which corresponded to about 4 seconds of computation
time on Pentium 2.0 GHz CPU, and (3) the AAM +
ASM method required more computation time than the
AAM by about 4 times.

4.3. Facial Expression Recognition

In order to validate the usefulness of the AAM + ASM
method, we applied the fitted results to facial expression
recognition, where the four facial expressions were neu-
tral, happy, surprised, and angry.

This experiment was conducted as follows. First, we
built three linear models (shape, appearance, and gradient
profile) from 60 training face images. Second, we com-
puted the shape and appearance parameters of the training
images and used them as references for facial expression
recognition. Third, we fitted the remaining 20 test face
images and obtained the shape and appearance parame-
ters of the test face images. Finally, we determined the
facial expression of the test face images based on the dis-
tance between the shape and/or appearance parameters of
the test face images and the 60 referential shape and/or
appearance parameters.
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Table 3. Comparison of facial expression recognition rates.

Features

Data Algorithms Shape Appearance Shape + Appearance

Train AAM 74.6 ± 5.8 100.0 ± 0.0 100.0 ± 0.0

AAM + ASM 91.7 ± 2.6 100.0 ± 0.0 100.0 ± 0.0

Test AAM 66.3 ± 8.9 72.5 ± 9.0 82.5 ± 5.6

AAM + ASM 75.0 ± 6.1 67.5 ± 7.5 90.0 ± 3.5

In this work, we used the simple nearest neighbor ap-
proach for facial expression classification. In order to
avoid data tweak problem, we used the 4-fold cross vali-
dation technique. The recognition performance was eval-
uated by using shape, appearance, and shape + appear-
ance parameters by changing the number of parameters.

Table 3 shows the mean and standard deviation of facial
expression recognition rates for the training and test data.
This table shows that (1) the facial expression recognition
rate using the test data degrades little from that using the
test data, (2) the facial expression recognition rate using
the AAM + ASM usually outperforms that of using the
AAM, (3) the shape + appearance feature is the best one,
and (4) the AAM + ASM using the shape + appearance
feature is the best solution for facial expression recogni-
tion, producing around 90% recognition rate.

Specifically, the superior fitting performance of AAM
+ ASM is evident in the classification rates obtained
by using shape features, where the classification rate of
AAM + ASM is higher than that of AAM by about 17%
for training data and 9% for test data. For appearance
features, the performance of AAM + ASM is 5% lower
than that of AAM for test data. The lower classification
rate is somewhat expected because we sacrificed the ap-
pearance reconstruction ability to add the profile fitting
ability, so that the AAM + ASM tries to fit to an exact
shape rather than to reconstruct the appearance. For shape
+ appearance features, the classification rate of AAM +
ASM for test data increased up to about 90%, compara-
ble to that of the ground truth, whereas that of AAM is
about 83%.

5. Conclusion

In this paper, we have proposed a unified gradient based
framework that combines ASM into AAM and also pro-
posed an adaptive weight control strategy that improved
the stability of convergence. Originally, AAM used the
whole appearance model and a gradient based approach
for model fitting, while ASM used a local profile model
and a search based approach for model fitting. Since these
properties were not appropriate for combination, we in-
troduced the gradient based approach for ASM.

Basically, AAM + ASM method worked similarly to
AAM method and it had an additive property that guar-
anteed more precise convergence to the landmark points
by reducing the fitting error due to the incorporated
profile error term.

AAM + ASM was similar to TC-ASM from the
viewpoint of using both the whole appearance and lo-
cal profile. While the TC-ASM used the whole appear-
ance to estimate the texture-constrained shape, and its
next estimated shape was obtained by interpolating the
texture-constrained shape and the shape estimated by a
traditional ASM search, AAM + ASM used the whole
appearance and the profile information simultaneously
within a gradient-based optimization framework.

Extensive experimental results validated the useful-
ness of the AAM + ASM method because it reduced the
fitting error and improved the facial expression recogni-
tion significantly.

Currently, we have to manually determine a set of pa-
rameters such as ω and σ j to obtain the best performance,
and their optimal values may be different from one set of
data and another. In the future, we will try to develop more
generally applicable methods by designing parameter-
free weight control mechanisms. Furthermore, it may be
possible to implement the proposed algorithm more effi-
ciently by incorporating the gradient-based ASM search
in the inverse compositional AAM fitting method.

Acknowledgment

This work was partially supported by the Intelligent
Robotics Development Program, one of the 21st Cen-
tury Frontier R&D Programs funded by the Ministry of
Commerce, Industry and Energy of Korea. Also, it was
partially supported by the Korea Science and Engineering
Foundation (KOSEF) through the Biometrics Engineer-
ing Research Center (BERC) at Yonsei University.

Note

1. Hereafter, we call it the AAM + ASM method.
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