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Abstract. We formulate a deformable template model for objects with an efficient mechanism for computation and
parameter estimation. The data consists of binary oriented edge features, robust to photometric variation and small
local deformations. The template is defined in terms of probability arrays for each edge type. A primary contribution of
this paper is the definition of the instantiation of an object in terms of shifts of a moderate number local submodels—
parts—which are subsequently recombined using a patchwork operation, to define a coherent statistical model of the
data. Object classes are modeled as mixtures of patchwork of parts (POP) models that are discovered sequentially as
more class data is observed. We define the notion of the support associated to an instantiation, and use this to formulate
statistical models for multi-object configurations including possible occlusions. All decisions on the labeling of the
objects in the image are based on comparing likelihoods. The combination of a deformable model with an efficient
estimation procedure yields competitive results in a variety of applications with very small training sets, without need
to train decision boundaries—only data from the class being trained is used. Experiments are presented on the MNIST

database, reading zipcodes, and face detection.
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1. Introduction

Two directions of research—categorization and
detection—have dominated the field of shape and view
based object recognition. The first, categorization, refers
to the classification between several object classes based
on segmented data (see Vapnik, 1995; Amit and Geman,
1997; LeCun et al., 1998; Hastie and Simard, 1998;
Belongie et al., 2002), and the second, detection, to
finding instances of a particular object class in large
images (see Leung et al., 1995; Rowley et al., 1998;
Viola and Jones, 2004; Amit and Geman, 1999; Burl
et al., 1998; Torralba et al., 2004). The latter is often
considered as a problem of classification between object
and background. Both subjects are viewed as building
blocks towards more general algorithms for the analysis
of complex scenes containing multiple objects.

The challenge of computer vision is the analysis of
images with multiple interacting objects and clutter, re-
quiring some methodology for integrating the different

detectors and classifiers in one framework, as well as
sequentially learning additional object classes from new
examples, without access to earlier training sets.

Imagine running detectors for each object class at low
false negative rates. This will typically yield quite a large
number of false positives as well as multiple hits (for
different detectors) in the same region. It is then nec-
essary to classify among these and eliminate false pos-
itives. Furthermore, if several objects can be present in
the scene, one needs to choose among multiple candidate
interpretations, i.e. different assignments of labels, loca-
tions, and instantiations for a number of objects, possibly
occluding each other. This can not be performed based on
pre-trained classifiers among the virtually infinite num-
ber of possible configurations, and requires online pro-
cedures. The same issue would arise if bottom-up seg-
mentation, or saliency detection are used to determine
candidate regions or locations of the objects of inter-
est. Competing segmentations/classifications need to be
resolved.
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We propose to address these challenges in a coher-
ent statistical framework, based on a novel family of de-
formable object models, which can be composed to de-
fine models for multi-object configurations. The data at
each pixel, in our case binary oriented edges, is assumed
independent conditional on the instantiation, which con-
sists of a non-linear deformation of the model. The basic
idea is to describe the deformation in terms of shifts of
a moderate number of local submodels, parts, which are
subsequently recombined using a patchwork operation,
to define a coherent model of the data—hence the name
patchwork of parts (POP) model. The optimal deforma-
tion and associated likelihood of the data can be effi-
ciently computed through iterative optimization on the
shifts.

Training is a challenge in models with high di-
mensional instantiation parameters, because these are
typically unobserved. The specific form of the proposed
deformable object model motivates an approximate esti-
mation procedure, where each of the parts is estimated
separately and for each part the only unobserved vari-
able is a local shift. This procedure is only approximate,
however it is very fast and yields very good estimates.

Given an instantiated object model we introduce the
notion of the support, and the visible support—the non-
occluded subset of the support. This leads to another
contribution of this paper: a well defined mechanism for
composing instantiated objects, online, into a data model
for an interpretation, i.e. a configuration of objects with
occlusions (see Fig. 3.) All decisions are then based on
likelihood ratios between competing classes or compet-
ing interpretations. Most existing object detection or cate-
gorization approaches do not have this modular capability
(see Section 1.1).

An important advantage of using statistical models is
that training can be performed one class at a time. There is
no need to see all the classes ahead of time in order to com-
pute decision boundaries. Moreover due to the explicit
modeling of object deformations, state of the art perfor-
mance can be achieved with much smaller training sets.

1.1. Other Work

1.1.1. Deformable Models. In the object recognition
literature, most statistically formulated deformable mod-
els are ‘constellation’ type models such as Burl et al.
(1998), Crandall et al. (2005). This consists of a dis-
tribution on the geometric arrangement of ‘rigid’ parts,
and the assumption that conditional on the arrangement,
the distribution of the data at the different parts is in-
dependent. In Burl et al. (1998), the distribution of the
grey level data on the support of a part has the form of
a Gaussian and the data off these supports is assumed
i.i.d. Gaussian. In Crandall et al. (2005), the data model

is defined in terms of oriented edges, with the same type
of conditional independence assumption used here and
in Amit (2002). However, in both models, the statistical
distribution on the data is well defined only if the parts
do not overlap. This constraint is a drawback of both ap-
proaches in that large areas of the object are modeled as
background, leading to aloss in precision and discrimina-
tory power. Furthermore, the ‘gaps’ render unsupervised
training problematic. Indeed, in Crandall et al. (2005), the
centers of the parts are given by the user on the training
images.

In the constellation model in Fei-Fei et al. (2003), the
data are no longer modeled as a dense set of features,
rather the image data is transformed to a sparse point
process using local filters that fire with low probability
on generic background. The instantiation has the form of
a correspondence between the model points and a subset
of the point process. In Fei-Fei et al. (2003), a princi-
pled probabilistic model is proposed for the transformed
data together with a well formulated EM type estimation
procedure, which is needed to overcome the fact that the
correspondence is unobserved. Detection and classifica-
tion are performed by computing the maximum posterior
on constellations. In these models, the average number of
points detected in an image as well as the number of in-
terest points in the object models need to stay very small
to avoid a combinatorial explosion in the learning pro-
cess and in the detection and classification steps. This can
be problematic for discriminating between very similar
classes, as is the case in character recognition problems,
or to achieve very low false positive rates in detection
problems.

In this context the main contribution of the POP mod-
els is threefold: (i) the formulation of a dense data model
explaining all edge data on the object allowing for fine
discrimination between similar shapes, (ii) a simple and
efficient training procedure for the models, (iii) the defi-
nition of object supports and the ability to compose object
models to scene models.

1.1.2. Deformable Nearest Neighbor Approaches. The
work in Hastie and Simard (1998), Wiskott et al. (1997),
Belongie et al. (2002) involves explicit modeling of the
deformations of objects but classification is based on
nearest neighbors. These nearest neighbor approaches,
each of which has been highly successful, can be viewed
as assigning a template to each training example, thus
requiring intensive computation and extensive memory.
The distances are not explicitly formulated in a statisti-
cal framework and are somewhat ad-hoc. One conclusion
of this paper is that statistical modeling and estimation
procedures yield compact and efficient representations of
the shape ensembles (e.g. handwritten digits, faces, etc.)
where distances are defined in a principled manner in
terms of likelihoods.
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1.1.3. Dense Representations. As indicated, ours is a
dense deformable template model. Since classification or
detection require the estimation of the deformation, the
end result is not only a class label or a location of the
object in the scene but an explicit map of the model into
the image. A by product is the identification of an object
support, at the level of edges. On areas where the object is
‘flat’ edges are not detected and thus do not get included
in the support.

In Borenstein et al. (2004) object representations are
explicitly learned in order to accurately define a support
or a figure ground segmentation. Their representation
is also defined in terms of a collection of overlapping
parts, and in each part the region corresponding to object
or background is learned. The authors use a gray level
data representation so that the object support includes
all pixels on the object. In Leibe and Schiele (2003)
and Liebe and Schiele (2004), a probabilistic Hough
transform based on scale-invariant interest points is pro-
posed for object detection and object/background seg-
mentation. The use of predetected interest points puts
this algorithm in the sparse category described above.
However the authors also propose a method for deter-
mining a dense object support. The interest points on a
detected object use a learned ‘support probability map’
relative to the point location to cast votes for points as
object supports. These approaches do not offer a clearly
defined statistical model for the image data (object +
background) and it is therefore unclear how classifica-
tion among several classes is performed, nor how ob-
jectinstantiations can be composed to model multi-object
configurations.

1.1.4. Comprehensive Image Models. The idea of
composing similar types of object models into interpreta-
tion models was initially explored in Amit et al. (2004),
in the context of reading license plates. However there
the object variation was limited to a small range of linear
transformations, the objects had disjoint supports and no
training was needed since the object classes were prede-
fined in terms of a binary template.

The models described above mainly describe the data
around one or several known objects, assuming at best
a very simple model for data off the object. Others have
attempted to develop more comprehensive and complex
models for the ‘background’, see Tu et al. (2004), at a
significant computational cost both in estimation and in
recognition.

Our work is motivated in part by the philosophy pro-
posed in Geman et al. (2002) where the authors ar-
gue for a a hierarchy of compositions of increasingly
complex elements—reusable parts—Ileading to a like-
lihood based choice of the optimal interpretation. In
their proposal, an interpretation involves not only the
objects and their poses, but an assignment of part la-

bels to structures in the background that are not as-
sociated to any object. Here also, there remain how-
ever significant challenges in terms of training and
computation.

1.2.  Summary of Results

The proposed models allow for a simple and efficient
training procedure from small sample sizes and yield high
classification rates on isolated hand written digits. For ex-
ample with 30 examples per class on the MNIST dataset
we achieve 3% error on the test set compared to 6% error
with SVM’s on the same edge features. We reach 1.52%
error with 500 examples per class, where in effect only
80-100 examples were actually used to update the model
parameters through sequential learning. Using a different
clustering mechanism and with 1000 examples per class
we achieve .8 % error, reaching .68 % error with the full
training set.

The models trained for isolated digits are applied
to zipcode reading by defining interpretation models
through the composition of object instantiations. No addi-
tional training is performed and a dynamic programming
algorithm is used to compute the most likely interpreta-
tion. We achieve a recognition rate of 88.7%, with the
correct zipcode being in the top 10 interpretations for
94% of the zipcodes. These rates are higher than results
reported in the literature, and are of particular interest
since no presegmentation or preprocessing is performed.

To test the relevance of these models to other object
types, we train face models on 400 faces from the Ol-
livetti data base images. The likelihood ratio with respect
to an adaptive background model is used as a filter on de-
tections of the algorithm described in Amit (2002). The
reduction in false positives is by a factor of 30-40. The re-
sulting false positive rate at 12% false negatives is under
1 false positive per image on the CMU dataset including
rotated images, which is somewhat higher than the state
of the art (see e.g. Viola and Jones, 2004; Schneiderman
and Kanade, 2004) but given the simplicity of the test
and the lack of training on any background images, we
believe it is evidence of the generality and usefulness of
the proposed models.

2. The Patchworks of Parts (POP) Model

The data model we propose is based on coarse binary ori-
ented edge features (see Amit and Geman, 1999), com-
puted at each point in the image which is defined on a grid
L. Wewrite X ={X.,(x)|xe L,e=1,...,E}, where
E =8, corresponding to 8 orientations at increments of
45 degrees. This can also be viewed as 4 orientations with
2 polarities per orientation. These features are highly ro-
bust to intensity variations. Each detected edge is spread
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Figure 1. A sample digit image with edge maps for four of the eight orientations. The first two are horizontal with opposite polarities, and the last
two are vertical with opposite polarities. In black are the original edge locations in gray are the locations after spreading.

to its immediate 3 x 3 neighborhood. This spreading op-
eration is crucial in providing robustness to small local
deformations, and greatly improves performance of any
classifier implemented on the data. In Fig. 1, we show
edge maps for four orientations on a sample image from
MNIST. In black are the original edges and in gray are
the locations after spreading. It is important to note that
the features are not mutually exclusive, several edges can
be found at the same locations. These edge features have
proved useful in a large number of applications such as
character recognition, detection and recognition of 3d ob-
jects, medical imaging (see Amit, 2002) as well as reading
license plates from rear photos of cars (see Amit et al.,
2004).

2.1. A Rigid Model

To motivate and introduce notation, we start with a
rigid model for an object in which the object instan-
tiation 6 is defined only by its location. A probabil-
ity array (p.(y))yez is defined on the 2d lattice. Given
the object is at location r and the rest of the im-
age is empty, the edges observed in the image are as-
sumed independent with marginal probabilities given
by

P(X.(x) =1|0) = p.(x;0) = p.(x — 1), x € L.

The probability array is simply shifted to r. By the no-
tation p.(x;60) we mean the probability of edge type
e at x given the instantiation 6. Clearly, outside some
region around the origin, the probabilities p, are zero.
To model the possibility that edges are observed out-
side the object, we define the object support S(6) and
assume a background model outside S(6), where the
edges are still independent but with some non-zero ho-
mogeneous marginal probabilities p, pga. The support
S(0) is defined as the set of points where at least one
of the marginal probabilities is greater than some fixed
threshold p

SO) = {x € L :max pe(x;6) = p}. )]

The idea is that locations where all probabilities are low
do not represent areas with ‘edge activity’ on the object
and hence can not really be distinguished from back-
ground. Here the support at 6§ = r is simply the shift of
the support at 0, i.e. S(8) = S(0) 4+ r. The more com-
plex definition in (1) is needed in the more general setting
below.

2.2. A Deformable Model

The rigid model is too constrained and does not accom-
modate object variability. Indeed, without taking into
consideration this variability, the assumption of condi-
tional independence is grossly inadequate. As a sim-
ple extension, we assume n reference points (y;)i=1,... »
in the 2d lattice, and define an instantiation as a loca-
tion r together with a sequence of shifts: 6 = (r,v) =
(r,v1, ..., v,). Each reference point y; is mapped to
z; = r +y; +v;, and each vector r + v; represents a rigid
shift of the model as described above. However, unless
all the v; are equal, these shifts are not consistent. To rec-
oncile the different shifted models we recombine them as
follows. Pick a non-negative kernel K(x, y) = K(x —y),
which decays quickly to zero as [x — y| — 00, and per-
form an averaging operation at each point:

Y pelx —r —v)K(x — z)
2o K(x —z) '

(We assume p.(x;60) = 0if K(x — z;) = 0 for all i.)
In other words, the contribution of the i’th shift of the
probability map to the marginal probability at point x
depends on the quantity K (x — z;), it is most affected by
shifted models centered around points z; that are close by.
The influence on x decreases to zero as x moves further
away from z;.

Many choices are possible for the kernel K. For sim-
plicity, for computational efficiency and to motivate the
estimation procedure, we choose K (u) to be the indicator
for a square neighborhood W of the origin: K(x — y) =
1y (x — y). In this case define the part Q; associated to
the reference point y; as the subarray of p, around y;:

Pe(x;0) = )

Qi = (pe(yi +)sew, e=1,... ,E,
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LetZ(x) = {i : x € z;+ W} be the set of shifted windows
covering x. Equation (2) reduces to

p(x;0) = P(X, (X) =110)

> pelx

= |I(x)| iel(x)
0 ifZ =0.

—zi +y) if I(x) # ¥

3)

which can be thought of as a patchwork of parts (POP)
model.

Given the object is present in the image at instantiation
0, we assume again that the edges in the image are con-
ditionally independent with marginal probabilities given
by (2). As in the rigid case, we define the instantiated
object support as

S(0) = {x € L : max p,(x;0) > p}. “)

Here the support cannot be expressed in a simple form
in terms of 6 and the support S(0) corresponding to
r = 0, v = 0. A background model outside the support is
defined as above and the distribution of the data assuming
one object in the image at instantiation 8 and background
edges outside the object is given by

Px10)= [] []ipCe:o1*@rn — pex; )10~
xeS@) e
< T TP = pessal® ™ 9)
x¢S@O) e

Dividing the expression in (5) by the likelihood of the
data assuming the background model everywhere in the
image we obtain a product restricted to the support of the

object:
_ 1—[ H(P(X;9)>X”(”
xes®) e \ Pebgd

v (= Xe(6)
x<71 p(x’9)> . (6)

1- Pe,bgd

P(X|6)
P(X | bgd)

In other words, the conditional independence model
allows us to express the likelihood of all the data given
an instantiation, up to a constant factor, in terms of a
product limited to the data observed on the support.

These ideas are illustrated in Fig. 2. The probability
array for horizontal edges of one polarity is shown for
class ‘2’ is shown in (A), with two example subarrays—
parts—in (B). For example ‘2’-s we show the original
images in (C). In (D) we show the instantiations in terms
of the shifts v; pointing from the original reference point
y; to the new location z;. The overlaps of the shifted parts,
the function Z(x), are also shown in (D) where darker
regions are covered by more parts. The instantiated prob-
ability maps p.(x;0), x € L, for the two instantiations,

computed using the patchwork operation (3), are shown
in (E). Note how a combination of shifts of local mod-
els can accommodate a variety of deformations of the
original probability array .

2.3.  The Geometric Component, Mixture Models and
Classification

We assume the geometric component, namely the dis-
tribution on instantiations 8 = (r,v) has a density
f(@) which is the product of a joint Gaussian density
g(v) = g(vy, ..., v,) on the shifts with 0 means, and a
uniform distribution on the location r. The conditional
distribution on instantiations given the observations, also
called the posterior, is then proportional to P(X| 0) f(6).
One POP model may not be sufficient to describe the
population of a given class. For example there are qual-
itative differences in shape between different instances
of the digit 7 that can not be accommodated through lo-
cal deformations of the parts. We thus model each class
c=1,...,C as amixture of M. POP models:

PO =3 Pam) [ PnxiO)fenorao, @)

m=1

of POP models P, ,,(-10), m =1,..., M., each with a
different distribution f. , on instantiations.

For images of isolated objects that are properly cen-
tered, we assume r = 0 and classification reduces to
maximizing

V= argmax | ma)l(u max P, ,,(X |0 = (0, v))gc.m(V).
¢ <m<M, v
(3)

In other words, assuming a uniform prior on classes, clas-
sification is obtained by taking the class label from the
maximum a-posteriori on class model and instantiation.

2.4. Modeling Object Configurations

An object configuration consists of a list of object classes
and subclass clusters (c;, m;) and their instantiations ;.

I=(ci,mi, 60)i=1,. k

Let S; denote S, »,,(6;). The edge data of the entire im-
age conditional on such an interpretation is modeled by
composing the individual data models on the union of
the supports S = U;S;. On the complement S¢, the edges
are again assumed independent with background proba-
bilities. In the present setting, we assume the objects are
ordered according to occlusion, namely an object with
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(B)

™1

(&
(A)

(D) (E)

Figure 2. (A) The probability array for horizontal edges of one polarity for the class ‘2’ (dark corresponds to high probability). In red are the
reference points. (B) Two subwindows of the probability array centered at two of the reference points. (C) Two images of a ‘2°. (D) The instantiations:
the shifts of the reference points denoted by red arrows together with the support of the subwindows—darker pixels are covered by more subwindows.
(E) The probability array on horizontal edges determined by the patchwork operation and the shifts given in (D).

higher index can not occlude and object with lower in-
dex. Defining T; = Ui‘:l S, to be the support of the first
i objects, one expects to observe the data for object i only
on the visible support S; \ T; — . The ratio of the likelihood
of the data given the interpretation to the likelihood given
background is:

P(X |T) u Pie(x; 0\
mmmfnnlq< )

i=1 e xeS\T_ Pebgd

1= pio(x; 6\ %W
X<_£JLJ) O

1- Pe,bgd

where p; o = pc,.m;.(x). Again the likelihood of an inter-
pretation can be computed up to a constant on the union
of the supports of the constituent objects.

We assume that, conditional on the location com-
ponents r; of the instantiations, the displacements

vi, ...,V are independent; however, given k objects
in the image, there is some joint prior distribution
h(ry, ..., ry) on locations. The posterior on interpreta-

tions with k objects is then given by

P(X|D)
’”H&”()paw@)

i=1
(10)

PA|X) < h(r, ...,

The goal then is to find the interpretation of highest
posterior. It is straightforward to extend this model when
the number of objects is unknown.

As an illustration, we show in Fig. 3 two competing
interpretations of a configuration of two horses detected
in an image. Since these supports overlap we need to
compare the likelihood of two interpretations: one which
puts the left horse in front and the other which puts the
right horse in front. These two interpretations involve a
different ordering of the objects, and hence a different
data model in Eq. (9). In (B) the left horse is assumed in
front, with support in red, and the visible support of the
right horse is in blue. Putting the right horse in front (C)
yields a higher likelihood. The visible support of the left
horse is in red, much of the back part is removed. Note
that the supports are defined in terms of the edge data and
therefore do not cover the entire object, rather the areas
where edges may occur on or around objects.

3. Computation
3.1. Classification

For classification we assume r = 0. Computing the
global maximum in Eq. (8) is difficult due to the inner
maximization over v. This is approximated using one of
the following two procedures.

Iterative Maximization. Initialize v;p = 0,i =
1,...,n. Choose a small neighborhood N of the ori-
gin. At step ¢ loop through the reference points. For each
i, fix all other points at their current shift:

Vjitl, J <i, andvj,, j > i.
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(B)

©

Figure 3. (A) Original image. (B) Wrong interpretation left horse in front of right horse. In red the support of the left horse and in blue the visible
support of the right horse. (C) Correct interpretation. In blue the support of the left horse and in red the visible support of the right horse. separately.

For each v € v;; + N place the part Q; at y; + v
and recompute (6). This implies recomputing the patch-
work (3) only at points covered by (y; + v;; + W) U
(yi + v + W). Then multiply by the instantiation dis-
tribution ge (V11415 - -« » Vim1,0415 Us Vitlgs - -« » Uny) 1O
obtain the posterior on the proposed instantiation (mod-
ulo a constant). Set v; ;4 to be the shift at which the
largest posterior is found. After a full loop through all
points this procedure is repeated for a small number of
iterations.
Independent Maximization. A coarser approximation
consists of choosing v; ;41 by maximizing the likelihood
ratio of the model Q; to background over points in v; ; +
N, ignoring all the other parts and the patchwork opera-
tion, and iterating several times. The full patchwork and
gc.m(V), are computed only at the end. This is much faster
to compute, and proves to be a very good approximation,
if there is not much clutter in the neighborhood of the ob-
ject. We return to this issue in the experimental section.
Recall that an outside loop over classesc =1,...,C
and cluster labels m = 1, ... , M, is needed to complete
the classification.

3.2. Detection

To detect instantiations of a particular class ¢, we loop
over locations r € L and compute

J(r)= max max P.,,(X |1, V)gem(V),
l<m<M. v

using one of the above two methods for the maximiza-
tion over v. Denote the values at which the maximum
is attained as m(r), v(r). We declare a detection at r if
J(r) > t, for some predetermined threshold. Each such
detection comes with an associated cluster label m(r) and
the instantiation 6(r) = (r, v(r)).

3.3.  Multi-Object Configurations

Here we perform the preceding computation for each of
the possible object classes ¢ = 1, ..., C, with conser-
vative thresholds 7.. This yields a set of candidate class
detections D, each with a class label ¢, a cluster label
m and an instantiation 6. Assuming we know that there
are k objects in the image, our task is to extract an or-
dered sequence of k elements from D which maximize
Eq. (10). In most cases, due to the combinatorial explo-
sion of possible configurations, it is essentially impossi-
ble to find the true maximum. Various greedy iterations
can be designed to find a local maximum, however in the
specific setting of zipcodes, due to the linear nature of the
configuration it is possible under certain assumptions to
find the global maximum using dynamic programming.
This is described in detail in Section 5.2.

3.4.  Pruning the Computation

In all three settings described above, one has to loop
through quite a number of maximizations of POP models.
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A massive reduction in the number of such maximizations
can be obtained using a variety of coarse approximations
that perform very fast tests to determine if the candi-
date POP model has any chance to have posterior above
threshold. Then, for only a small subset of all candidate
locations, classes and class clusters, is the iterative max-
imization actually performed. Here we describe a very
simple pruning mechanism, which is used extensively in
the face and zipcode experiments.

For a given class cluster pair ¢, m let p. », . be onerigid
probability model (see 2.1), with no hidden shift vari-
ables, estimated on the entire reference grid. The training
images are simply stacked up on the reference grid and the
frequency of each edge type at each location provides the
estimated marginal probability. Because no hidden defor-
mation variables were used in training the marginal prob-
abilities account for the geometric variability as well, and
the conditional independence assumption is much less
plausible. Now, choose a sample B, , of edge/location
pairs (z, e) € S¢,,(0) from the model support, in such a
way that two elements in B are separated in location by
d pixels. Since the features are now separated by some
distance, it is more reasonable to assume that conditional
on the presence of an image from this class cluster at
location r, the variables X.(z + r) for (z, e) € B.,, are
independent with probabilities p. (). Let

Tc,m(r) = Z Xe(Z + V).
(€,2)EBc.m

Assuming independence we can write the mean and
standard deviation of T, ,,(r) as

n = Z Dem.es o’ =

(e,2)€Bcm

Z i)c,m,e(l - i)c,mﬁe)~

(€,2)€Bc.m

Since T, is approximately Gaussian on the cluster
population set a conservative threshold ¢, ,, = u — 30,
and reject any location r for which 7, ,,(r) < f. . Com-
puting the statistic 7¢ ,,(r) is just a summation of several
tens of binary variables and is very fast. Typically this
pruning eliminates over 95% of the locations for each
class cluster.

4. Training a POP Model

It is difficult to simultaneously estimate the full probabil-
ity array p. and the geometric distribution g(v), in large
part due to the unobserved instantiation parameters. One
example can be found in Allassonniere et al. (2006) for
a related type of deformable model, using the EM algo-
rithm, but the computation is very intensive, and typically
one can not carry out the full integration needed in the
expectation step. Here we describe an approximate esti-
mation procedure which is motivated by the structure of
the model, is very efficient and yields excellent results.

We assume all the training data is located at the origin
(i.e. r = 0). The idea is to estimate each part separately
assuming a rigid model for the data with instantiations,
i.e. shifts, limited to a square region V around the ori-
gin. Pick a point x and assume a priori that the support
S(0) of this rigid model is given by S(0) = x + W. The
instantiation of each training point is unobserved so that
estimation of the probability array QO = (p.(2));ex+w»
and the distribution 77 (v) on shifts v € V, is performed
using an EM procedure as detailed below. The mean of &
then yields a reference point y € x + V. These estimates
are only affected by data in the neighborhood of x, so that
at different points x different probability arrays are ob-
tained. For this constrained estimation problem, the EM
algorithm can be performed in full, since the state space
of the unobserved variable—the set of possible shifts—is
not very large.

The procedure is carried out at each point of a regular
grid x;,i = 1,...,n yielding probability arrays Q;—
the parts—and reference points y; € x; + V. Using the
patchwork operation in Eq. (3), where each part is placed
at the reference point, we obtain an estimate of the full
probability array, also denoted the mean global model.
Estimation time of a POP model for several 10’s of train-
ing data is on the order of several seconds.

4.1.  Training one Part

Since we are dealing with one part around one point ¥
we remove subscripts and to further simplify notation we
assume only one binary feature type X(x) at each pixel.
The data observed in each training image is modeled in
terms of a probability array Q = (p(s))secw on a window
W, placed at an unobserved random location z = ¥ + v,
where v is distributed according to an unknown distribu-
tion 7w defined on the set V. A background probability
Dbed, Which we assume known, is assigned everywhere
else. Thus only data around X affects the estimates. Given
the instantiation # = v, using the same ratio trick as in
Eq. (6), we get

plx — % — )\ "™
PXv,0)=C- [] (—/————
xex+v+w Phogd
(1 —px —% — v))l_x(x)
X _—
1_pbgd

_c. 1_[ (@)X(fc-&-v-&ﬂ‘)
seW Pbgd

1— 1-X(Z+v+s)
- Phbgd

where C does not depend on the unknown parameters.
Note that since we are only translating the models, one
can either translate the probability map or translate the
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Figure 4. (A) Training subwindows at start point. (B) Subwindows centered at most likely shift for each image. (C) For two training images, the
location of the start point in blue, and the subwindow around the shifted point.

observations. This becomes more difficult for more com-
plex instantiations.

The log-likelihood of a set of m training images X/)
with observed instantiations v/) has a unique maximizer
at

The corresponding reference point is set as y = X +
5 ey VR (). |

Since we do not observe v\, the likelihood of the
observed data X has the form

P(X|Q,m)=) m()P(X|v, Q).

veV

We are now in the classical setting of estimating the pa-
rameters of a mixture distribution. A unique feature of
the present setting is that the distributions of the com-
ponents of the mixture are ‘shifts’ of each other, thus
more data can be pooled to estimate the parameters. The
standard method for finding a local maximum of the like-
lihood is the EM algorithm, see Dempster et al. (1977),
which involves generating iterative estimates Q°, ¢ as
follows:

1. Initialize
1 .
0oy = — XD (% ceWw
PO(s) m; F+s), seW,

Q) =1/|V|, veV.

2. For each training point j and v € V, compute

W) [y, 0O ®

P(u| XD, 0O, 1) = P(X’(_| v, 0 )Z (;)) ’
/ !

>0 PXD v, Q) ®w)

using (11) in the numerator and denominator.
3. Compute new estimates

1 .
@Dy — 2 Z @\ OO O
T (v) 4 P(le , 0% )

J
1 .
+1) —_ 0 @
P =—3 Y PEIx?, 09, x)

veV j
X X(-i)()? +v+s), seW

¢ — ¢+ 1, goto 2.

After a small number of iterations the probabilities
p©(s), s € W stabilize and are recorded. The reference
pointis setasy = ¥ + Y, ., 07 (v). If the estimated
array is too close to a homogeneous map (p; are all very
similar), we eliminate the associated part. That is why in
the various figures one finds reference points only near
the object support although the start points are regularly
spaced on the entire grid.

These ideas are illustrated in Fig. 4. On the left we show
for a sample of face images, the subimages of size 9 x 9
around a certain point ¥ which is in the neighborhood of
the left eye. On the right we show the 9 x 9 windows
around X + vij ) for each image, where vij ) is the mode of
the conditional distribution P(v| XY, Q©, 7©), which
after convergence is typically peaked at one particular
shift. Note how the eyes are now located in the same place
in the subwindow. Furthermore for two training images
the location of the start point is shown in blue and the sub-
window around the most likely location is shown in green.
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Figure 5. Probability arrays for horizontal edge type of one polarity. High probability areas are darker. Reference points in red. (A) Mean global
model for a horse model. (B) Mean global model without iterations. (C),(D) Same the ‘0’ digit in MNIST. (E)(F) Same for face model.

4.2. Estimating the Distribution on Instantiations

We estimate the joint distribution g(v) on shifts as fol-
lows. Re-loop through the training data with the estimated
POP model. For each example compute the optimal in-
stantiation Qij) = (0, Vf,f)), as detailed in Section 3.1
above. Use this sample to estimate the full covariance
matrix for the joint Gaussian centered at zero. We use
a Bayesian estimate with an inverse-Wishart conjugate
prior. Specifically let C(x, x') = bg(|x — x’|/s) define
a positive definite symmetric kernel, for some function
q.Let C; j» = C(yj, yj) be the positive definite matrix
obtained by evaluating the kernel at all pairs of reference
points of the model. We assume an inverse-Wishart prior
with matrix parameter M and scale parameter a on the
joint covariance matrix of the shifts. If & denotes the em-
pirical covariance matrix computed from the m samples,
the Bayesian estimate is simply a weighted average of 3
and C:

m3 +aC
m-+a ’

¥ =

We take g to be ¢ . The parameter s reflects our prior
assumptions on the degree of dependence between the
shifts at the different reference points, we use s = 1
(in pixel units). The smaller it is the larger the depen-
dence. The parameter b is a scale parameter reflecting
prior assumptions on the range of variance of the shifts,
we use b = 2. Finally a is the weight assigned to the
prior, and should be proportional to the dimensionality
of the problem, i.e. the number of reference points (see
Allassonniere et al., 2006 for details). As will be seen in
the experimental results, the distribution on shifts has a
small positive effect on the error rates for isolated dig-
its, but plays an important role in improving recognition
rates for zipcodes and detection rates for faces.

4.3. Mean Global Model (MGM) and Inter-Part
Consistency

The final estimate of the probability map is the mean
global model, obtained by applying the patchwork oper-
ation with the estimated parts Q; at the reference points

vi. The mean global model for horses, the zero character
and faces are shown in Fig. 5. On the left for one type
of edge (horizontal) is the result with the EM iterations.
On the right is the result with no iterations. Each part
is obtained by taking the initial p®(s) obtained with no
shifting of the windows, namely the frequencies of the
edges at pixel s.

The alignment generated by the training procedure pro-
duces more concentrated models where local variability
has been factored out. As shown in the results section, this
leads to significant improvements in performance since
the likelihood contrasts become sharper.

Note that even though the local models are trained
separately, placing the parts Q; at the estimated refer-
ence points y; yields a consistent model in the sense
that the distributions induced on the overlap regions
by several overlapping parts are very similar. Had this
not been the case, the model would appear blurred and
diffuse.

4.4. Learning Mixture Models

Our goal is to enable any model we develop to evolve as
more data gets processed. The idea is to envisage each
class as a mixture of POP models, and have the number
of mixture components and the parameters of the mixture
components evolve as additional data is introduced. We
describe a simple approach that has performed remark-
ably well.

Given data from one class, we train initially on a small
training set 7, of size M, and produce one POP model
Py from this dataset. For this model, we compute the
mean and standard deviation wg, o of the log-likelihoods
£o(X), X € Ty. Any ‘problematic’ data point in 7, with
log-likelihood one standard deviation below the mean—
£o(X) < uo — op—is added to a new list 7;. Now as
additional data points X arrive (not from the original set
Ty), we evaluate £y3(X) and add to 77 only those for which
£o(X) < o — 0p. Once the size of this list |7;| = M.
estimate a POP model P; from this data set and estimate
i1, o1. All points in 77 are already below threshold for the
model Py. Those that also fall below threshold for P; are
used to start a new list 7;. New data points that fall below
threshold on all existing models (in this case Py, P;), are
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Figure 6. Probability arrays for horizontal edges for two seven clusters and three horse clusters. Dots show the reference points.

added to 75, and so on. In this manner additional models
are added once a sufficient number of points has accu-
mulated whose likelihood is below threshold for each of
the current models.

Clearly as the number of models grow the rate at which
the ‘bad’ set grows is slower and slower. Effectively we
are training with only a very small subset of the data
points, since already after the first set most points are
above threshold.

In Fig. 6 we show two of the models estimated for
the class 7, and three of the models estimated for horses
using the database in Borenstein (20006). It is encouraging
to see that the second seven cluster has picked up sevens
that are qualitatively different from those represented by
the first, i.e. European sevens with a cross bar. Among
the horses the clustering process has picked up discretely
different poses.

5. Experimental Results

In this section we illustrate the usefulness of the pro-
posed data models and associated training procedure in a
number of applications. Due to space limitations not all
details of the implementation can be provided.

5.1.  Classifying Segmented Digits

We present detailed experiments on the MNIST data set
to explore the dependence of the algorithm on several of
the model parameters. The default parameters are defined
in Table 1. In this setting we use the independent maxi-
mization procedure explained in Section 3.1. We note that
the error rates are estimated on a test set of size 10,000

Table 1. Default setting of algorithm parameters.

Edge spreading window — 3 x 3

Part size (W)-9 x 9

Points x; for part estimation every 4 pixels.

Neighborhood of shifts in training (V) — 11 x 11

Number of iterations in iterative maximization — 5.

Number of iterations in EM — 10

Number of data points at which additional model is
estimated — Mpy,x = 10

and the corresponding standard error for rates under 3%,
is .17%.

5.1.1. Computing the Affine Component—Normaliza-
tion. There is quite a wide range of variability in the
MNIST dataset in terms of the affine pose, in particular
object slant. This is not easy to incorporate in the POP
setting since large slants create significant changes in ori-
entation which are not accommodated by simple shifts
of the parts. In the context of isolated digits this is easily
addressed by a simple slant correction and scaling proce-
dure. This preprocessing step depends heavily on having
cleanly segmented data, it is sensitive to noise and clutter,
and is viewed as a computational shortcut. When dealing
with more complex images with several adjacent objects,
such as zipcodes, reliable presegmentation is not a stable
option.

Instead define a discrete set of affine maps covering
the desired range. After training the mixture model with
the normalized data, take the training images assigned to
a cluster, apply one of the affine maps, and estimate a
new POP model. This is done for each model and each
of the affine maps. If N4 affine maps are used and there
are M, clusters for class ¢ on the normalized data, we
end up with N4 - M, clusters in the mixture model for
each class. The price for lack of cleanly segmented ob-
jects, is a larger number of components in the mixture
model for each class. For zipcodes we used 5 scales at
0.75,1., 1.2, 1.5, 1.8 relative to the scale of the training
set images, and 3 slants: x = y +sx,s = —.4,0, 4.

5.1.2. Error Rates as Function of Training Set Size.
The first question of interest is the evolution of the error
rates with the training set size. This is summarized in
Table 2. The classification results are for a test set of
10,000 where the margin of error is about .17%. The
error rate starts at 6% with 100 training data, i.e. 10 per
class with 1 cluster per class, to 1.5% with 5000 training
data, i.e. 500 per class with on average 8 models per class.
Note that this means that the models were estimated with
about 80 samples per class of the 500 available. Ignoring
the joint distribution on shifts the rate is 1.85%. In this
experiment the estimated joint distribution f on shifts
seems to have a small effect.



278 Yali Amit and Alain Trouvé

Table 2. Right: Classification rates as function of number of training
data per class. Middle column indicates number of clusters found in
each class with the sequential clustering algorithm. We report error
rates with the prior on 6 and without, as well as the best rates achieved
with SVM’s on the same edge features (Using a quadratic kernel).

Training data ~ Avg. clusters  Errorrate  Errorrate  SVM
per class per class with f without f  error rate
10 1 6.5 6.05 12.61
30 2.6 3 3 6.17
50 34 2.46 2.58 4.18
100 4.1 1.96 2.14 3.02
500 8 1.52 1.85 1.47

5.1.3. Stability With Respect to the Training Set. The
models reported in Table 2 were trained with the first
(100,300,1000,5000) training examples of the MNIST
training set. Of interest is the stability of the results with
respect to variations in the training set. For sample size
300 - 30 per class—we trained 25 classifiers on disjoint
subsets of the training set. The mean error rate was 3.1%
with standard deviation .3%. This is an encouraging find-
ing. Despite the very small training set size, the variance
of the final classification rate is very small.

5.1.4. Comparison to Non-Parametric Classifiers. For
the smaller size datasets 10—100 per class, the results are
far better than anything we were able to achieve with
non-parametric classification methods such as SVM’s or
boosted randomized decision trees on the same edge fea-
tures, see last column of Table 2. The 3% error rate re-
ported for 30 examples per class, and the 2% error rate
reported for 100 examples per class are competitive with
many algorithms listed in LeCun (2004) that have been
trained on 6000 per class. The results become indistin-
guishable as the sample sizes increase.

5.1.5. Non-Sequential Clustering. The clustering al-
gorithm described in Section 4.4 is appealing because of
its sequential nature and the ability to update the model
as more data is observed. However for optimal results
it may be preferable to estimate the clusters simultane-
ously from all the available data. This is difficult to do
in our context because of the fact that the instantiation
parameter 0 is unobserved. However using a coarse ap-
proximation to the POP model in terms of a fixed library
of local parts as proposed in Bernstein and Amit (2005)
we can implement an EM type algorithm to estimate a
predefined number of clusters. Then using the data as-
signed to each such cluster we estimate a POP model.
This improves the results for the larger training set sizes
as summarized in Table 3.

With only 1000 training points per class, using like-
lihood ratio based classification with no discrimination
boundaries, we achieve a state of the art error rate of 0.8%
going up to 0.68% with the full training set.

Table 3. Classification results with non-sequential
clustering using all available data.

Training data No. of Clusters POP Error rate
500 20 1.11

1000 30 8

6000 80 .68

5.1.6. Computation Time. With pruning of the form de-
scribed in Section 3.4 the computation time is about .001
seconds per image per cluster on a Pentium IV 3 Ghz,
for example 100 images per second with five clusters per
class. Thus as the number of clusters grows classifica-
tion slows down. One remedy is to use simpler models to
detect the top 2,3 classes. For example with the models
made from 30 examples per class, with 2-3 clusters per
class the top 3 classes are correctly identified for 99.6%
of the data. Using the simpler models in an initial run
with some confidence threshold, the more intense com-
putations using more complex models can be performed
just on ‘uncertain’ examples. Ultimately this classifica-
tion method should be incorporated in a comprehensive
coarse-to-fine computation.

5.1.7. Varying Parameter Settings. At 100 examples
per class, we experimented with some of the parameter
settings. We summarize the results in Table 4 where the
modified parameter value is indicated all others being at
default value.

First we show the importance of performing the maxi-
mization on the shifts v;. if the likelihoods are computed
directly at v; = 0, i.e. placing each part Q; at the origi-
nal reference point y; the error rate increases to 10.1%.
The classification is highly dependent on estimating the
deformation variable.

Itis also possible to estimate the model with no shifting
in training This reduces to a straightforward estimation
of marginal probabilities of the edges at each location.
For classification we still maximize over the shifts. This
yields cruder models, (see Fig. 5) with higher error
rates—3% (instead of 2%). This is significantly lower
than the rate obtained with the original model (the std.
on error is .17%).

We also tried increasing the value of M,,x which deter-
mines the number of points needed to estimate a new POP
model, the number of models per class dropped from 4.1
to 2.6. This led to a very slight decrease in performance.
It is interesting that, in this setting, there was a somewhat
larger drop in classification rate when the distribution on
deformations is ignored. With more clusters, part of the
geometric variation is covered by the different models,
and the constraints on the deformation captured by the
distribution f are redundant.
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Table 4. Comparing error rate with default parameters to individual parameter changes.

NoEM  Mpyax =40

Varied Parameter ~ Default Noopt. iters. w/wo f W=6 W=12
Error rates 1.96 10.1 3% 2.04/2.35 2.79 2.44
5.2.  Reading Zipcodes
The goal here is to perform a likelihood based label-
ing of the zipcode avoiding any preprocessing or pre-
segmentation. Here we are not interested in a highly ded- Figure 8. Interpretations with supports. Left: optimal interpretation—

icated algorithm for reading zipcodes, rather this setting
is viewed as a simple context where the generic ideas
on multiple-object configurations can be explored. The
digit models are trained from the isolated and segmented
MNIST dataset. Since the zipcode digits appear at widely
different scales (at least 2:1)—even in the same zipcode,
instead of estimating one POP model for each class clus-
ter, we estimate a number of models where all the data
in the cluster is simultaneously scaled or slanted, using
5 scales and 3 slants as described in Section 5.1. We ex-
periment with varying size training sets: 100, 500, and
1500 per class. The number of clusters in each case is 5,
15 and 60.

Aninitial scan results in a set D of candidate detections
for all 10 digits, using very conservative thresholds, see
Section 3.3. Typically D contains 2-3 hundred instanti-
ated detections with extensive overlaps of their supports.
At this stage the instantiations are computed using the
more efficient independent maximization method. For
some example detections and their support on a sample
zipcode see Fig. 7. Note that due to the many different
scales and slants at which the digits appear there can be
many detections on a particular part of the zipcode that
‘make sense’ unless the full context of the interpretation
is taken into account.

Since the objects have to be arranged in a linear fashion,
a simple prior is defined in terms of hard constraints on
the locations of consecutive pairs of detections:

4

7r5):1_[C(rivri+l)v

i=l1

h(ry, ... (12)

where c¢(r, r') constrains r;, > r, and |r; —ry| < 6.
The goal is to maximize (10) over all candidate se-
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Figure 7. The support of several detections on a zipcode.

90007. Right: Second best—96007.

quences of length 5 from D. Assume that in a correct
interpretation where the objects are ordered from left to
right only supports of consecutive objects can intersect:
S;NS;1o =0,i = 1,2, 3. Then the log of the expression
in (9) becomes a sum on functions of consecutive pairs

of the form
i,e(X30;
Vi-1iX)=Y" Y X.nlog (M)
e xeSi\Si— De,bgd
1 — pio(x;6;
(1 = X,(x))log <#> ,
1 — peved

where we set Sy (. The log-posterior on a zipcode
interpretation ordered from left to right has the form

5
LA|X) =Y Wi —1,i, X) +logc(ri—1. r7),

i=1

which can easily be optimized with dynamic program-
ming. Furthermore it is possible with little additional
computational cost to obtain the top K interpretations,
see Fig. 8.

5.2.1. Reprocessing Instantiations. Recall that the in-
stantiations are computed with the coarser independent
maximization method which can lead to inaccuracies in
the presence of clutter. At little additional cost it is possi-
ble to recompute the instantiations of selected objects in
the top K interpretations. Recall that each interpretation
is an ordered sequence of 5 instantiations. We find the
index in the sequence where the label of the top interpre-
tation differs from the second best. In all but a handful
of cases, there is only one such index, as is the case for
example in Fig. 8. For all interpretations among the top
K which differ from the top interpretation in the prob-
lematic index, we recompute the instantiation of the ob-
ject class at that index using the iterative maximization
method described in Section 3.1. After this is done, the
total log-posterior of the interpretations is recomputed
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Table 5. Zipcode recognition rates and computation times, as func-
tion of size of training data with and without the reprocessing step.

No. ex. No. of

perclass  clusters ~ W.o reprocessing With reprocessing
100 75 74.5% (4s. per zip) 77.3% (5.7 s. per zip)
500 300 84.4% (5.8 per zip) 87.2% (7.7 s. per zip)

1500 900 85.3 % (8.8 per zip)  88.7% (11s. per zip)

Table 6. Comparison of zipcode reading rates.

Correctat % %
Author n 0 rej. Correct  Rej
Haet al. (1998) 436 85% 97% 34%
Palumbo and Srihari (1996) 1566 96.5% 32%
Wang (1998) 1000 72% 95.4% 43%
POP models 1000  88.7% 96.5% 30%

and the highest one is chosen. As shown in Table 5 the
classification result improves by about 3% in all cases.

We tested the results on a set of 1000 zipcodes from
the CEDAR data base. No segmentation or preprocess-
ing of any kind is performed. We obtain a correct zip-
code recognition rate of 88.7% using the models trained
on 1500 examples per class, and the instantiation repro-
cessing procedure. For 94% of the zipcodes the correct
labeling was among the top 10. Furthermore using a sim-
ple rejection criterion comparing the likelihoods of the
top two interpretations, we get 96.5% correct with 30%
rejection. Computation time on a Pentium IV 3Ghz is 11
seconds per zipcode. In Table 5 we summarize the results
for different training set sizes and different computational
regimes, including the computation time per zipcode.

There is not much literature on reading zipcodes in
recent years. However, comparing to the literature from
the mid to late 90’s, this initial result is within the range
of results obtained by very dedicated algorithms. Some
results are presented in Table 6. Note that the training and
testing datasets are not the same so it is hard to provide
an accurate comparison.

5.3. Faces

To verify whether this model is applicable to gray level
objects that are not line-drawings we performed a face
detection experiment. Using the first 400 images of the
Olivetti data set we trained 8 face POP models at .3 of the
original scale—on average 10 pixels between the eyes.
As in the zipcode problem, to accommodate different
scales and rotations we simultaneously scaled the images
in each cluster at.27, .3 and .33, and —10, 0, 10 degrees to
create scaled versions of each model. Thus in total there
are 8 x 3 x 3 POP models for faces. In Fig. 5 we have
shown the mean global model for one edge type for one
of the face models at scale .3.
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Figure 9. ROC curve for face detection. X axis—number of false
positives among 130 images. Y axis, fraction of detected faces. Solid red
line: full posterior. Dashed blue line: coarse approximation to optimal
instantiation. Dashed cyan line: ignoring distribution on instantiation.

Using an efficient but crude face detector (see Amit,
2002) we obtain candidate windows for testing the POP
models. We used very conservative thresholds and no
clustering of detections yielding on average several hun-
dred detections per image. These detectors are based on
the same edges and can be viewed as very coarse ap-
proximations of the POP models. At each candidate win-
dow we compute an adaptive estimate of the background
edge probabilities p, peq. Using a likelihood ratio test of
the POP models at v = 0 (no shifting) to background
for each of the 72 models we pick the best. This does
not involve the intensive computation of optimizing the
shift of each part in the POP model. Only at the chosen
model do we compute the optimal instantiation 6 using
the iterative maximization procedure (see 3.1).

Finally the ratio of the posterior of the fitted POP
model to the likelihood under the locally adapted back-
ground model is compared with a threshold to decide
if the candidate detection is a face or not. Varying this
threshold yields a ROC curve (red solid line) presented
in Fig. 9. In this figure, we also show the the ROC curve
obtained when ignoring the distribution on instantiations
(cyan dashed line), which is significantly worse. Itis clear
that, in the presence of clutter, it is important to properly
weight the deformation of the model. Finally we show the
ROC curve obtained by maximizing the posterior on in-
stantiations using the independent maximization method.
(dashed blue line). Again, due to clutter, the results de-
grade although computation time is reduced.

We tested on the combined CMU MIT test sets of
faces (testA, testB, testC, rotated), excluding a couple
of upside-down faces, two profiles and several ‘carica-
ture’ or line drawing faces leaving 537 ‘faces’ in 160
images. At a false negative rate of 12.3% we have under
1 false positive per image The best we could achieve with
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Figure 10. (A) The subimage around a face. (B) The shifts of the reference points relative to the hypothesized center of the detected face. (C) The
resulting global POP probability array for horizontal edges. Bottom. Supports of global POP models for all faces in the image.

the original crude face detector at this false negative rate
was around 40 false positives per image. Our results are
slightly worse than those reported for example in Viola
and Jones (2004) or Schneiderman and Kanade (2004).
However, all other models have used explicit training
with large numbers of faces and massive numbers of
background images. The interest here is that the face
models are trained with only 400 faces, no background,
and yet a simple likelihood ratio test to an adaptive back-
ground model has so much power.

In addition to location, scale and rotation, we obtain
a full instantiation of the face. As an example in Fig. 10
(A), we show the subimage of a detected face together
with the shifts of the reference points (B), and the global
POP model for the horizontal edges (C). Note how the
deformed probability model is adjusting to the fact that
the face is partially rotated. In (D) we show the support
computed for each of the faces.

6. Discussion

We have introduced a new class of statistical object mod-
els with rather general applicability in a variety of data
sets. These models describe the dense oriented edge maps
obtained from the gray level data, and assume indepen-
dence conditional on the instantiation. The advantages
of statistical modeling and likelihood based classifica-
tion have been demonstrated at several levels: (i) robust
and efficient estimation of deformable models from small
datasets, (ii) easy sequential training of new classes or
new class clusters (iii) composability of object models to
interpretation models for object configurations.

One inherent drawback of the current models is sensi-
tivity to rotations beyond say +/ — 15 degrees. We allow
only shifts of the parts so that when an articulated com-
ponent of the object undergoes a significant rotation or
skew, the probabilities of the edges at each location can
no longer be represented as a shift of the original model.
Currently this can be accommodated through an addi-
tional cluster in the class. This raises an important ques-
tion regarding the complex tradeoff in terms of memory
and computation between the number of clusters and the
range of the deformations. This question becomes all the
more complex when thinking of extending these ideas to
modeling 3d objects from all viewpoints. Extending the
range of deformations would involve a method for ‘ro-
tating’ the models by estimating transition probabilities
between edge types as a function of the rotation.

Other questions of interest are the possibility to have
parts of different sizes depending on the degree of local
variability, as well as data models for original gray level
data that take photometric variability into account.

The use of interpretation models has been applied to a
limited situation where the objects are arranged linearly.
In more complex settings one can only hope to find sub-
optimal configurations using some iterative methods. It
is important to see how far these ideas can be extended
because they offer a systematic mechanism for sorting
out the arrangement of objects in the image.
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