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Abstract. Detection and tracking of humans in video streams is important for many applications. We present an
approach to automatically detect and track multiple, possibly partially occluded humans in a walking or standing pose
from a single camera, which may be stationary or moving. A human body is represented as an assembly of body parts.
Part detectors are learned by boosting a number of weak classifiers which are based on edgelet features. Responses
of part detectors are combined to form a joint likelihood model that includes an analysis of possible occlusions. The
combined detection responses and the part detection responses provide the observations used for tracking. Trajectory
initialization and termination are both automatic and rely on the confidences computed from the detection responses.
An object is tracked by data association and meanshift methods. Our system can track humans with both inter-object
and scene occlusions with static or non-static backgrounds. Evaluation results on a number of images and videos and
comparisons with some previous methods are given.
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1. Introduction

Detection and tracking of humans is important for
many applications, such as visual surveillance, human
computer interaction, and driving assistance systems.
For this task, we need to detect the objects of interest first
(i.e., find the image regions corresponding to the objects)
and then track them across different frames while main-
taining the correct identities. The two principle sources
of difficulty in performing this task are: (a) change in ap-
pearance of the objects with viewpoint, illumination and
clothing and (b) partial occlusion of objects of interest
by other objects (occlusion relations also change in a dy-
namic scene). There are additional difficulties in tracking
humans after initial detection. The image appearance of
humans changes not only with the changing viewpoint
but even more strongly with the visible parts of the body
and clothing. Also, it is hard to maintain the identities of
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objects during tracking when humans are close to each
other.

Most of the previous efforts in human detection in
videos have relied on detection by changes caused in sub-
sequent image frames due to human motion. A model of
the background is learned and pixels departing from this
model are considered to be due to object motion; nearby
pixels are then grouped into motion blobs. This approach
is quite effective for detecting isolated moving objects
when the camera is stationary, illumination is constant
or varies slowly, and humans are the only moving ob-
jects; an early example is given in Wren et al. (1997).
For a moving camera, there is apparent background mo-
tion which can be compensated for, in some cases, but
errors in registration are likely in presence of parallax.
In any case, for more complex situations where multiple
humans and other objects move in a scene, possibly oc-
cluding each other to some extent, the motion blobs do not
necessarily correspond to single humans; multiple mov-
ing objects may merge into a single blob with only some
parts visible for the occluded objects, and a single human
may appear split into multiple blobs. Figure 1 shows two
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Figure 1. Sample frames: (a) is from the CAVIAR set (http:// home-

pages.inf.ed.ac.uk/rbf/CAVIAR/), and (b) is from data we have col-

lected.

examples where such difficulties can be expected to be
present.

A number of systems have been developed in re-
cent years, e.g. (Isard and MacCormick, 2001; Zhao and
Nevatia, 2004a; Smith et al., 2005), to segment mul-
tiple humans from motion blobs. While these systems
demonstrate impressive results, they typically assume
that all of a motion region belongs to one or more person
but real motion blobs may contain multiple categories
of objects, shadows, reflection regions and blobs cre-
ated because of illumination changes or camera motion
parallax.

We describe a method to automatically track multi-
ple, possibly partially occluded humans in a walking or
standing pose. Our system does not rely on motion for
detection, instead it detects humans based on their shape
properties alone. We use a part based representation. We
learn detectors for each part and combine the part de-
tection results for more robust human detection. For oc-
cluded humans, we can not expect to find all the parts; our
system explicitly reasons about occlusion of parts by con-
sidering joint detection of all objects. The part detectors
are view-based, hence our system has some limitations
on the viewpoint. The viewpoint is assumed to be such
that the camera has a tilt angle not exceeding 45◦; the
humans may be seen in any orientation but in a relatively
upright pose. Also, shape analysis requires adequate res-
olution; we require that the human width in image is
24 pixels or more.

Tracking in our system is based on detection of humans
and their parts, as a holistic body representation can not
adapt to the changing inter-human occlusion relations.
Figure 2 gives an example which shows the necessity
of part based tracking. We use a multi-level approach.
Humans are tracked based on complete detection where
possible. In presence of occlusion, only some parts can

Figure 2. Example of changing occlusion relations.

be seen; in such cases, our system tracks the visible
parts and combines the results of part associations for
human tracking. When no reliable detection is available,
a meanshift tracker is applied. For complete occlusion,
by other humans or scene objects, the tracks are inferred
by observations before and after such occlusion. Our
method does not require manual initialization (as does a
meanshift tracker for example); instead, trajectories are
initiated and terminated automatically based on detection
outputs.

Our method has been applied to a number of complex
static images and video sequences. Considerable and per-
sistent occlusion is present and the scene background can
be highly cluttered. We show results on stationary and
moving camera examples. Environment can be indoors
or outdoors with possibly changing illumination. Quan-
titative evaluation results on both standard data sets and
data set we have collected are reported. The results show
that our approach outperforms the previous methods for
both detection and tracking.

The main contributions of this work include: (1) a
Boosting based method to learn body part detectors based
on a novel type of shape features, edgelet features; (2)
a Baysian method to combine body part detection re-
sponses to detect multiple partially occluded humans;
and (3) a fullly automatic hypotheses tracking frame-
work to track multiple humans through occlusions. Parts
of our system have been previously described in Wu and
Nevatia (2006a,b); this paper presents several enhance-
ments, and provides a unified and detailed presentation
and additional results.

The rest of this paper is organized as follows:
Section 2 introduces some related works; Section 3 gives
an outline of our approach; Section 4 describes our body
part detection system; Section 5 gives the algorithm that
combines the body part detectors; Section 6 presents
the part detection based human tracking algorithm;
Section 7 provides the experimental results; and conclu-
sions and discussions are in the last section.

2. Related Work

The literature on human detection in static images and
on human tracking in videos is abundant. Many methods
for static human detection represent a human as an in-
tegral whole, e.g. Papageorgiou et al.’s SVMs detectors
(Papageorgiou et al., 1998) (the positive sample set in
Papageorgiou et al. (1998) is known as the MIT
pedestrian sample set which is available online1), Felzen-
szwalb’s shape models (Felzenszwalb, 2001), Wu et al.’s
Markov Random Field based representation (Wu et al.,
2005), and Gavrila et al.’s edge templates (Gavrila and
Philomin, 1999; Gavrila, 2000). The object detection
framework proposed by Viola and Jones (2001) has
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proved very efficient for the face detection problem. The
basic idea of this method is to select weak classifiers
which are based on simple features, e.g. Haar wavelets,
by AdaBoost (Freund and Schapire, 1996) to build a
cascade structured detector. Viola et al. (2003) report that
applied to human detection, this approach does not work
very well using the static Haar features. They augment
their system by using local motion features to achieve
much better performance. Overall, holistic representation
based methods do not work well with large spatial occlu-
sion, as they need evidence for most parts of the whole
body.

Some methods for representation as an assembly
of body parts have also been developed. Mohan et al.
(2001) divide human body into four parts: head-shoulder,
legs, left arm, and right arm. They learn SVM detectors
using Haar wavelet features. The results reported in
Mohan et al. (2001) show that the part based hu-
man model is much better than the holistic model in
Papageorgiou et al. (1998) for detection task. Shashua
et al. (2004) divide human body into nine regions, for
each of which a classifier is learned based on features of
orientation histograms. Mikolajczyk et al. (2004) divide
human body into seven parts, face/head for frontal view,
face/head for profile view, head-shoulder for frontal
and rear view, head-shoulder for profile view, and legs.
For each part, a detector is learned by following the
Viola-Jones approach applied to SIFT (Lowe, 1999)
like orientation features. The methods of Shashua et al.
(2004) and Mikolajczyk et al. (2004) both achieved
better results than that of Mohan et al. (2001), but there is
no direct comparison between (Shashua et al., 2004) and
(Mikolajczyk et al., 2004). However these part-based
systems do not use the parts for tracking nor consider
occlusions. In Zhao and Nevatia (2004a), a part-based
representation is used for segmenting motion blobs by
considering various articulations and their appearances
but parts are not tracked explicitly.

Several types of features have been applied to capture
the pattern of humans. Some methods use spatially global
features as in Gavrila (2000), Felzenszwalb (2001) and
Leibe et al. (2005); others use spatially local features
as in Papageorgiou et al. (1998), Mohan et al. (2001),
Viola et al. (2003), Mikolajczyk et al. (2004), Wu et al.
(2005), Leibe et al. (2005), and Dalal and Triggs (2005).
The local feature based methods are less sensitive to
occlusions as only some of the features are affected by
occlusions. Dalal and Triggs (2005) compared several
local features, including SIFT, wavelets, and Histogram
of Oriented Gradient (HOG) descriptors for pedestrian
detection. Their experiments show that the HOG descrip-
tors outperform the other types of features on this task.
However, of these only Leibe et al. (2005) incorporates
explicit inter-object occlusion reasoning. The method of

Leibe et al. (2005) has two main steps: the first generates
hypotheses by evidence from local features, while the
second verifies the hypotheses by constraints from the
global features. These two steps are applied iteratively
to compute a local maximum of the image likelihood.
The global verification step greatly improves the perfor-
mance, but it does not deal with partial occlusion well.
They achieved reasonable accuracy, an equal error rate
of 71.3%, on their own test set of side view pedestrians.

For tracking of human, some early methods, e.g. (Zhao
and Nevatia, 2004b) track motion blobs and assume that
each individual blob corresponds to one human. These
early methods usually do not consider multiple objects
jointly and tend to fail when blobs merge or split. Some of
the recent methods (Isard and MacCormick, 2001; Zhao
and Nevatia, 2004a; Smith et al., 2005; Peter et al., 2005)
try to fit multiple object hypotheses to explain the fore-
ground or motion blobs. These methods deal with occlu-
sions by computing joint image likelihood of multiple
objects. Because the joint hypotheses space is usually
of high dimension, an efficient optimization algorithm,
such as a particle filter (Isard and MacCormick, 2001),
MCMC (Zhao and Nevatia, 2004a; Smith et al., 2005) or
EM (Peter et al., 2005) is used. All of these methods have
shown experiments with a stationary camera only, where
the background subtraction provides relatively robust ob-
ject motion blobs. The foreground blob based methods
are not discriminative. They assume all moving pixels are
from humans. Although this is true in some environments,
it is not in more general situations. Some discriminative
methods, e.g. (Davis et al., 2000) build deformable sil-
houette models for pedestrians and track the models from
edge features. The silhouette matching is done frame by
frame. These methods are less dependent on the camera
motion. However they have no explicit occlusion rea-
soning. None of the above tracking methods deal with
occlusion by scene objects explicitly.

Part tracking has been used to track the pose of
humans (Sigal et al., 2004; Ramanan et al., 2005; Lee
and Nevatia, 2006). However the objectives of pose
tracking methods and multiple human tracking methods
are different. The methodologies of the two problems
are also different. The existing pose tracking methods
do not consider multiple humans jointly. Although they
can work with temporary or slight partial occlusions,
because of the use of part representation and temporal
consistency, they do not work well with persistent and
significant occlusions as they do not model occlusions
explicitly and the part models used are not very discrim-
inative. The automatic initialization and termination
strategies in the existing pose tracking methods are not
general. In Ramanan et al. (2005) a human track is
started only when a side view walking pose human is
detected, and no termination strategy is mentioned.
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Figure 3. Examples of tracking results.

3. Outline of Our Approach

Our approach uses a part-based representation. The ad-
vantages of this approach are: (1) it can deal with partial
occlusions, e.g. when the legs are occluded, the human
can still be detected and tracked from the upper-body;
(2) final decision is based on multiple evidence which
reduces false alarms; and (3) it is more tolerant to view
point changes and pose variations of articulated objects.
Figure 3 shows some tracking examples.

Figure 4 gives a schematic diagram of the system.
Human detection is done frame by frame. The detection
module consists of two stages: detection of parts and then
their combination. The tracking module has three stages:
trajectory initialization, growth, and termination.

In the first stage of detection, we use detectors learned
from a novel set of silhouette oriented features that we
call edgelet features. These features are suitable for hu-
man detection as they are relatively invariant to clothing
differences, unlike gray level or color features used com-
monly for face detection. We learn tree structured multi-
view part detectors by a boosting approach proposed by
Huang et al. (2004, 2005) which is an enhanced version
of Viola and Jones’ framework (Viola and Jones, 2001).

In the second stage of detection, we combine the
results of various part detectors. We define a joint image
likelihood function for multiple, possibly inter-occluded
humans. We formulate the multiple human detection

Figure 4. A schematic diagram of our human detection and tracking system.

problem as a MAP estimation problem and search the
solution space to find the best interpretation of the image
observation. Performance of the combined detector
is better than that of any individual part detector in
terms of the false alarm rate. However the combined
detector does explicit reasoning only for inter-object
occlusion, while the part detectors can work in the
presence of both inter-object and scene occlusions. The
previous such approaches, e.g. (Mohan et al., 2001;
Mikolajczyk et al., 2004; Shashua et al., 2004), consider
humans independently from each other and do not model
inter-object occlusion.

Our tracking method is based on tracking parts of
the human body. The detection responses from the part
detectors and the combined detector are taken as inputs
for the tracker. We track humans by data association,
i.e., matching the object hypotheses with the detection
responses, whenever corresponding detection responses
can be found. We match the hypotheses with the com-
bined detection responses first, as they are more reliable
than the responses of the individual parts. If for a hypoth-
esis no combined response with similar appearance and
close to the predicted position is found, then we try to as-
sociate it with part detection responses. If this fails again,
a meanshift tracker (Comaniciu et al., 2001) is used to
follow the object. Most of the time objects are tracked
successfully by data association; the meanshift tracker
gets utilized only occasionally and then for short periods.
Since our method is based on part detection, it can work
under both scene and inter-object occlusion conditions.
Also, as the cues for tracking are strong, we do not
utilize statistical sampling techniques as in some of the
previous work, e.g. (Isard and MacCormick, 2001; Zhao
and Nevatia, 2004a; Smith et al., 2005). A trajectory is
initialized when evidence from new observations can not
be explained by the current hypotheses, as also in many
previous methods (Davis et al., 2000; Isard and Mac-
Cormick, 2001; Zhao and Nevatia, 2004a; Smith et al.,
2005; Peter et al., 2005). Similarly, a trajectory is termi-
nated when it is lost by the detectors for a certain period.
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Figure 5. Edgelet features.

4. Detection of Human Body Parts

We detect humans by combining responses from a set
of body part detectors that are learned from local shape
features.

4.1. Edgelet Features

Based on the observation that silhouettes are one of the
most salient patterns of humans, we developed a new
class of local shape features that we call edgelet features.
An edgelet is a short segment of a line or a curve. De-
note the positions and normal vectors of the points in an
edgelet, E , by {ui }k

i=1 and {nE
i }k

i=1, where k is the length
of the edgelet, see Fig. 5 for an illustration. Given an input
image I , denote by M I (p) and nI (p) the edge intensity
and normal at position p of I . The affinity between the
edgelet E and the image I at position w is calculated by

f (E ; I, w) = 1

k

k∑
i=1

M I (ui + w)
∣∣〈nI (ui + w) , nE

i

〉∣∣
(1)

Note, ui in the above equation is in the coordinate frame
of the sub-window, and w is the offset of the sub-window
in the image frame. The edgelet affinity function cap-
tures both intensity and shape information of the edge; it
could be considered a variation of the standard Chamfer
matching (Barrow et al., 1977).

In our experiments, the edge intensity M I (p) and nor-
mal vector nI (p) are calculated by 3 × 3 Sobel kernel
convolutions applied to gray level images. We do not
use color information for detection. Since we use the
edgelet features only as weak features in a boosting al-
gorithm, we simplify them for computational efficiency.
First, we quantize the orientation of the normal vector
into six discrete values, see Fig. 5. The range [0◦, 180◦)
is divided into six bins evenly, which correspond to the
integers from 0 to 5 respectively. An angle θ within range
[180◦, 360◦) has the same quantized value as 360◦ − θ .
Second, the dot product between two normal vectors is

approximated by the following function:

l[x] =

⎧⎪⎪⎨⎪⎪⎩
1 x = 0
4/5 x = ±1, ±5
1/2 x = ±2, ±4
0 x = ±3

(2)

where the input x is the difference between two quantized
orientations. Denote by {V E

i }k
i=1 and V I (p) the quantized

edge orientations of the edgelet and the input image I
respectively. The simplified affinity function is

f̃ (E ; I, w)= 1

k

k∑
i=1

M I (ui + w) · l
[
V I (ui + w) − V E

i

]
(3)

Thus the computation of edgelet features only includes
short integer operations.

In our experiments, the possible length of one single
edgelet is from 4 pixels to 12 pixels. The edgelet features
we use consist of single edgelets, including lines, 1

8
cir-

cles, 1
4

circles, and 1
2

circles, and their symmetric pairs.
A symmetric pair is the union of a single edgelet and its
mirror. Figure 5 illustrates the definition of our edgelet
features. For a sample size of 24×58, the overall number
of possible edgelet features is 857,604.

4.2. Boosting Edgelet based Weak Classifiers

Human body parts used in this work are head-shoulder,
torso, and legs. Besides the three part detectors, a full-
body detector is also learned. Figure 6 shows the spatial
relations of the body parts. We use an enhanced version
(Huang et al., 2004) of the original boosting method of
Viola and Jones (2001) to learn the part detectors. Sup-
pose the feature value calculated by Eq. (3) has been
normalized to [0, 1]. Divide the range into n sub-ranges:

bin j =
[

j − 1

n
,

j

n

)
, j = 1 . . . n (4)

In our experiments, n = 16. This even partition of the fea-
ture space corresponds to a partition of the image space.
For object detection, a sample is represented as a tuple
{x, y}, where x is the normalized image patch and y is

Figure 6. Spatial relations of body parts.
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the class label whose value can be +1 (object) or −1
(non-object). According to the real-valued version of Ad-
aBoost algorithm (Schapire and Singer, 1999), the weak
classifier h(w) based on an edgelet feature E is defined
as

if f̃ (E ; x, O) ∈ bin j then h(w)(x) = 1

2
ln

(
W̄ j

+1 + ε

W̄ j
−1 + ε

)
(5)

where O is the origin of the patch x, ε is a smoothing
factor (Schapire and Singer, 1999), and

W̄ j
c = P

(
f̃ (E ; x, O) ∈ bin j , y = c

)
,

c = ±1, j = 1 . . . n (6)

Given the characteristic function

B j
n (u) =

{
1, u ∈ [ j−1

n ,
j
n

)
0, otherwise

, j = 1 . . . n (7)

the weak classifier based on the edgelet feature E can be
formulated as:

h(w)(x) = 1

2

n∑
j=1

ln

(
W̄ j

+1 + ε

W̄ j
−1 + ε

)
B j

n

(
f̃ (E ; x, O)

)
(8)

For each edgelet feature, one weak classifier is built.
Then the real AdaBoost algorithm (Schapire and Singer,
1999) is used to learn strong classifiers, called layers,
from the weak classifier pool. The strong classifier h(s)

is a linear combination of a series of weak classifiers
selected:

h(s)(x) =
∑T

i=1
h(w)

i (x) − b (9)

where T is the number of weak classifiers in h(s), and b is a
threshold. The learning procedure of one layer is referred
to as a boosting stage. At the end of each boosting stage,
the threshold b is set so that h(s) has a high detection rate
(99.8% in our experiments) and reject as many negative
samples as possible. The accepted positive samples are
used as the positive set for the training of the next boosting
stage; the false alarms obtained by scanning the negative
images with the current detector are used as the negative
set for the next boosting stage. Finally, nested structured
detectors (Huang et al., 2004) are constructed from these
layers. Training is stopped when the false alarm rate on
the training set reaches 10−6. A nested structure differs
from a cascade structure (Viola and Jones, 2001); in a
nested structure, each layer is used as the first weak clas-
sifier of its succeeding layer so that the information of
classification is inherited efficiently. Figure 7 illustrates a

Figure 7. Nested structure.

nested structure. The main advantage of the nested struc-
ture is that the number of features needed to achieve a
level of performance is reduced greatly, compared to that
needed for a cascade detector.

4.3. Multi-View Part Detectors

To cover all left-right out-of-plane rotation angles, we
divide the human samples into three categories, left pro-
file, frontal/rear, and right profile, according to their view
points. For each part, a tree structured detector is trained.
Figure 8 illustrates the structure of the multi-view de-
tector. The root node of the tree is learned by the vector
boosting algorithm proposed in Huang et al. (2005). The
main advantage of this algorithm is that the features se-
lected are shared among different view point categories
of the same object type. This is much more efficient than
learning detectors for individual view points separately.
We make one detector cover a range of camera tilt angle,
about [0◦, 45◦] which is common for most surveillance
systems, by including samples captured with different
tilt angles in our training set. If we want to cover a larger
range of tilt angle, some view point categorization along
the tilt angle would be necessary.

Figure 8. Tree structured multi-view part detector.
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Figure 9. Part detection responses (yellow for full-body; red for head-

shoulder; purple for torso; blue for legs).

During detection, an image patch is first sent to the
root node whose output is a three-channel vector corre-
sponding to the three view categories. If all the channels
are negative then the patch is classified as non-human
directly; otherwise, the patch is sent to the leaf nodes
corresponding to the positive channels for further pro-
cessing. If any of the three leaf nodes gives a positive
output, the patch is classified as a human; otherwise it is
discarded. There could be more than one positive chan-
nel for one input patch. In order to detect body parts at
different scales the input image is re-sampled to build a
scale pyramid with a scale factor of 1.2, then the image
at each scale is scanned by the detector with a step of 2
pixels. The outputs of the part detectors are called part
responses. Figure 9 shows an example of part detection
result.

We collect a large set of human samples, from which
nested structured detectors for frontal/rear view humans
and tree structured detectors for multi-view humans are
learned. Figure 10 shows the first two learned features for
head-shoulder, torso, and legs of frontal/rear view point.
They are quite meaningful. Table 1 lists the complexities,
i.e., the number of features used, of our part and full-
body detectors of frontal/rear view and multi-view. The
head-shoulder detector needs more features than the other
detectors, and the full-body detector needs many fewer
features than any individual part detector. More details
of the experimental setup and the detection performance
are given later in Section 7.1.

Figure 10. The first two edgelet features learned for each part.

Table 1. Numbers of features used in the detectors. (The nested

structured detectors are for frontal/rear view; the tree structured de-

tectors are for multi-view; FB, HS, T, and L stand for full-body,

headshoulder, torso, and legs respectively.)

FB HS T L

Nested detector 227 1,157 767 753

Tree detector 1,059 3,047 2,546 2,256

5. Bayesian Combination of Part Detectors

To combine the results of the part detectors, we com-
pute the likelihood of the presence of multiple humans
at the hypothesized locations. If inter-object occlusion
is present, the assumption of conditional independence
between individual human appearances given the state,
as in Mikolajczyk et al. (2004), is not valid and a more
complex formulation is necessary.

We begin by formulating the state and the observation
variables. To model inter-object occlusion, besides the as-
sumption that humans are on a plane, we also assume that
the camera looks down to the plane, see Fig. 11. This as-
sumption is valid for common surveillance systems. This
configuration brings two observations: (1) if a human in
the image is visible then at least his/her head is visible and
(2) the farther the human is from the camera, the smaller
is the y-coordinate of his/her feet’s image position. With
the second observation, we can find the relative depth of
humans by comparing their y-coordinates and build an
occupancy map, which defines which pixel comes from
which human, see Fig. 12(b). The overall image shape
of an individual human is modeled as an ellipse which is
tighter than the box obtained by part detectors. From the
occupancy map, the ratio of the visible area to the overall
area of the part is calculated as a visibility score v. If v is
larger than a threshold, θv (set to 0.7 in our experiments),
then the part is classified as visible, otherwise occluded.

A part hypothesis is represented as a 4-tuple sp =
{l, p, s, v}, where l is a label indicating the part type, p
is the image position, s is the size, and v is the visibility
score. A human hypothesis in one image frame, H ( f ),
consists of four parts, H ( f ) = {spi |li = FB, HS, T, L},
where FB, HS, T , and L stand for full-body, head-
shoulder, torso, and legs respectively. The set of all human

Figure 11. 3D assumption.
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Figure 12. Search for the best interpretation of the image: (a) initial

state; (b) occupancy map of the initial state; (c) an intermediate state;

and (d) final state.

hypotheses in one frame is S = {H ( f )
i }m

i=1, where m is
the number of humans, which is unknown. We represent
the set of all visible part hypotheses as

S̃ = {spi ∈ S|vi > θv} (10)

S̃ is a subset of S by removing all occluded part hypothe-
ses. We assume that the likelihoods of the visible part
hypotheses in S̃ are conditional independent. Let

RP = {rpi }n
i=1 (11)

be the set of all part detection responses, where n is the
overall number of the responses, and rpi is a single re-
sponse, which is in the same space as spi . With RP as the
observation and S̃ as the state, we define the following
likelihood to interpret the outcome of the part detectors
for an image I :

P(I |S) = P(RP|S̃) =
∏
p∈PT

P
(
R P (p)|S̃(p)

)
(12)

where PT = {FB, HS, T, L}, RP(p) = {rpi ∈ RP|li =
p}, and S̃(p) = {spi ∈ S̃|li = p}.

To match the responses and hypotheses, a “Hungarian”
algorithm (Kuhn, 1955) could be used for an optimal so-
lution, but it is complex. As the response-hypothesis am-
biguity is limited in our examples, we chose to implement
a greedy algorithm instead. First the distance matrix B of
all possible response-part pairs is calculated, i.e. B(i, j) is
the Euclidean distance between the i-th response and the
j-th part hypothesis. Then in each step, the pair, denoted
by (i�, j�), with the smallest distance is taken and the i�-th
row and the j�-th column of B are deleted. This selection
is done iteratively until no more valid pair is available.

For a match, the responses in RP and the hypotheses
in S̃ are classified into three categories: successful detec-
tions (SD, responses that have matched hypotheses), false
alarms (FA, responses that do not have matched hypothe-
ses), and false negative (FN, hypotheses that do not have
matched responses), i.e. missing detections, denoted by
TSD, TFA, and TFN respectively. The likelihood for one
part type is calculated by

P
(
R P (p)|S̃(p)

) ∝
∏

rpi ∈T (p)
SD

P (p)
SD P(rpi |s̄pi )·

∏
rpi ∈T (p)

FA

P (p)
FA ·

∏
rpi ∈T (p)

FN

P (p)
FN

(13)

where s̄pi is the corresponding hypothesis of the response
rpi , PSD is the reward of a successful detection, PFA and
PFN are the penalties of a false alarm and a false negative
respectively, and P(rpi |s̄pi ) = P(prp|ps̄p)P(srp|ss̄p) is
the conditional probability of a detection response given
its matched part hypothesis. P(prp|ps̄p) and P(srp|ss̄p)
are Gaussian distribution. Denote by NFA, NSD and NG

the number of false alarms, the number of successful
detections, and the number of ground-truth objects re-
spectively, PFA, PSD are calculated by

PFA = 1

α
e−β NFA

NFA + NSD
, PSD = 1

α
eβ NSD

NFA + NSD
,

(14)

where α is a normalization factor so that PFA + PSD = 1
and β is a factor to control the relative importance of
detection rate vs. false alarms (set to 0.5 in our experi-
ments). PFN is calculated by

PFN = NG − NSD

NG
(15)

NFA, NSD, NG , P(prp|ps̄p) and P(srp|ss̄p) are all learned
from a verification set. For different detectors, PSD, PFA,
PFN and P (rp|s̄p) may be different.

Finally we need a method to propose the hypotheses to
form the candidate state S and search the solution space
to maximize the posterior probability P(S|I ). According
to Bayes’ rule

P(S|I ) ∝ P(I |S)P(S) = P(RP|S̃)P(S) (16)

Assuming a uniform distribution of the prior P(S), the
above MAP estimation is equal to maximizing the joint
likelihood P(RP|S̃). In our method, the initial set of hy-
potheses S is proposed from the responses of the head-
shoulder and full-body detectors. Each full-body or head-
shoulder response generates one human hypothesis. Then
the hypotheses are verified with the above likelihood
model in their depth order. The steps of this procedure
are listed in Fig. 13. Figure 12 gives an example of the
results of the combination algorithm. At the initial state,
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Figure 13. Searching algorithm for combining part detection re-

sponses.

there are two false alarms which do not get enough evi-
dence and are discarded later. The legs of the human in
the middle are occluded by another human and missed by
the legs detector, but this missing part can be explained
by inter-object occlusion, so no penalty is put on it. In
our combination algorithm, the detectors of torso and
legs are not used to propose human hypotheses. This is
because the detectors used for initialization have to scan
the whole image while the detectors for verification only
need to scan the neighborhood of the proposed hypothe-
ses. So if we use all the four part detectors, the system will
be at least two times slower. Also we found that the union
of the full-body and head-shoulder detection responses
already gives very high detection rate and that most of the
time, the part that is occluded is the lower body. We call
the above Bayesian combination algorithm a combined
detector, whose outputs are combined responses.

The outputs of the detection system have three levels.
The first level is a set of the original responses of the
detectors. In this set, one object may have multiple cor-
responding responses, see Fig. 14(a). The second level
is that of the merged responses, which are results of ap-
plying a clustering algorithm to the original responses.
The clustering algorithm randomly select one original
response as a seed and merges the responses having large
overlap with it; this procedure is applied iteratively until
all original responses are processed. In the set of merged

Figure 14. Detection responses. (a) and (b) are from the full-body

detector; (c) is from the combined detector (green for combined; yellow

for full-body; red for head-shoulder; purple for torso; blue for legs).

responses, one object has at most one corresponding re-
sponse, see Fig. 14(b). The third level is that of the
combined responses. One combined response has several
matched part responses, see Fig. 14(c) for an example.
The detection response may not be highly accurate spa-
tially, because the training samples include some parts of
the background regions in order to cover some position
and size variations.

6. Human Tracking based on Part Detection

The human tracking algorithm takes the part detection
and the combined detection responses as the observations
of human hypotheses.

6.1. Affinity for Detection Responses

Both the original and the merged detection responses
are part responses. For tracking we add two more ele-
ments to the representation of the part responses, rp =
{l, p, s, v, f, c}, where the new element f is a real-valued
detection confidence, and c is an appearance model. The
first five elements, l, p, s, v and f , are obtained from the
detection process directly. The appearance model, c, is
implemented as a color histogram; computation and up-
date of c is described later, in detail, in Section 6.3. Repre-
sentation of a combined response is the union of the rep-
resentations of its parts, rc = {rpi |li = FB, HS, T, L}.

Humans are detected frame by frame. In order to decide
whether two responses, rp1 and rp2, of the same part type
from different frames belong to one object, an affinity
measure is defined

A(rp1, rp2) = Apos(p1, p2)Asize(s1, s2)Aappr (c1, c2)
(17)

where Apos , Asize, and Aappr are affinities based on posi-
tion, size, and appearance respectively. Their definitions
are

Apos(p1, p2)=γpos exp

[
−(x1−x2)2

σ 2
x

]
exp

[
−(y1−y2)2

σ 2
y

]

Asize(s1, s2)=γsi ze exp

[
− (s1 − s2)2

σ 2
s

]
Aappr (c1, c2)= B(c1, c2)

(18)

where B(c1, c2) is the Bhattachayya distance between
two histograms and γpos and γpos are normalizing factors.
The affinity between two combined responses, rc1 and
rc2, is the average of the affinity between their common
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visible parts

A(rc1, rc2)

=
∑

li ∈PT A(Pti (rc1), Pti (rc2))I (vi1, vi2 > θv)∑
li ∈PT I (vi1, vi2 > θv)

(19)

where Pti (rc) returns the response of the part i of
the combined response rc, vi j is the visibility score of
Pti (rc j ), j = 1, 2, and I is an indicator function. The
above affinity functions encode the position, size, and
appearance information.

Given the affinity, we match the detection responses
with the human hypotheses in a similar way to that of
matching part responses to human hypotheses described
in Section 5. Suppose at time t of an input video, we have
n human hypotheses H (v)

1 , . . . , H (v)
n , whose predictions

at time t +1 are r̂ct+1,1, . . . , r̂ct+1,n , and at time t +1 we
have m responses rct+1,1, . . . , rct+1,m . First we compute
the m × n affinity matrix A of all (r̂ct+1,i , rct+1, j ) pairs,
i.e. A(i, j) = A(r̂ct+1,i , rct+1, j ). Then in each step, the
pair, denoted by (i�, j�), with the largest affinity is taken
as a match and the i�-th row and the j�-th column of
A are deleted. This procedure is repeated until no more
valid pairs are available.

6.2. Trajectory Initialization

The basic idea of the initialization strategy is to start a
trajectory when enough evidence is collected from the de-
tection responses. Define the precision, pr , of a detector
as the ratio between the number of successful detections
and the number of all responses. If pr is constant between
frames, and the detection in one frame is independent of
the neighboring frames, then during consecutive T time
steps, the probability that the detector outputs T consec-
utive false alarms is PFA = (1 − pr )T . However, this
inference is not accurate for real videos, where the inter-
frame dependence is large. If the detector outputs a false
alarm at a certain position in the first frame, the prob-
ability is high that a false alarm will appear around the
same position in the next frame. We call this the persis-
tent false alarm problem. Even here, the real PFA should
be an exponentially decreasing function of T , we model

it as e−λini t

√
T .

Suppose we have found T (>1) consecutive responses,
{rc1, . . . , rcT } corresponding to one human hypothesis
H (v) by data association. The confidence of initializing a
trajectory for H (v) is then defined by

InitConf
(
H (v); rc1..T

)
= 1

T − 1

T −1∑
t=1

A(r̂ct+1, rct+1)︸ ︷︷ ︸
(1)

· (1 − e−λini t

√
T
)︸ ︷︷ ︸

(2)

(20)

The first term in the left side of Eq. (20) is the aver-
age affinity of the T responses, and the second term is
based on the detector’s accuracy. The more accurate the
detector is, the larger should the parameter λini t be. Our
trajectory initialization strategy is: if InitConf (H (v)) is
larger than a threshold, θini t , a trajectory is started from
H (v), and H (v) is considered to be a confident trajec-
tory; otherwise H (v) is considered to be a potential tra-
jectory. In our experiments, λini t = 1.2, θini t = 0.83.
A trajectory hypothesis H (v) is represented as a triple,
{{rct }t=1,...,T , D, {Ci }i=F B,H S,T S,L}, where {rct } is a se-
ries of responses, {Ci } is the appearance model of the
parts, and D is a dynamic model. In practice, Ci is the av-
erage of the appearance models of all detection responses,
and D is modeled by a Kalman filter for constant speed
motion.

6.3. Trajectory Growth

After a trajectory is initialized, an object is tracked by two
strategies: data association and meanshift tracking. For a
new frame, for all existing hypotheses, we first look for
their corresponding detection responses in this frame. If
there is a new detection response matched with a hypoth-
esis H (v), then H (v) grows based on data association, oth-
erwise a meanshift tracker is applied. The data associa-
tion itself has two steps. First, all hypotheses are matched
with the combined responses by the method described in
Section 6.1. Second, all hypotheses which are not
matched in the first step are associated with the remain-
ing part responses which do not belong to any combined
response. Matching part responses with hypotheses is a
simplified version of the method for matching combined
responses with hypotheses. At least one part must be de-
tected for an object to be tracked by data association.
We do not associate the part responses with the tracks di-
rectly, because occlusion reasoning, which is done before
association, from the detection responses in the current
frame is more robust than from the predicted hypotheses,
which are not very reliable.

Whenever data association fails (the detectors can not
find the object or the affinity is low), a meanshift tracker
(Comaniciu et al., 2001) is applied to track the parts in-
dividually. The results are combined to form the final es-
timation. The basic idea of meanshift is to track a proba-
bility distribution. Although the typical way to use mean-
shift tracking is to track a color distribution, there is no
constraint on the distribution to be used. In our method we
combine the appearance model, C, the dynamic model,
D, and the detection confidence, f , to build a likelihood
map which is then fed into the meanshift tracker. A dy-
namic probability map, Pdyn(u), where u represents the
image coordinates, is calculated from the dynamic model
D, see Fig. 15(d). Denote the original responses of one
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Figure 15. Probability map for meanshift: (a) original frame; (b) fi-

nal probability map; (c), (d) and (e) probability maps for appearance,

dynamic and detection respectively. (The object concerned is marked

by a red ellipse.)

part detector at the frame j by {rp j }, the detection prob-
ability map Pdet (u) is defined by

Pdet (u) =
∑

j :u∈Reg(rp j )

f j + ms (21)

where Reg(rp j ) is the image region, a rectangle, corre-
sponding to rp j , f j is a real-valued detection confidence
of rp j , and ms is a constant corresponding to the miss-
ing rate (the ratio between the number of missed objects
and the total number of objects). ms is calculated after
the detectors are learned. If one pixel belongs to multiple
positive detection responses, then we set the detection
score of this pixel as the sum of the confidences of all
these responses. Otherwise we set the detection score
as the average missing rate, which is a positive number.
This detection score reflects the object salience based on
shape cues. Note, the original responses are used here
to avoid effects of errors in the clustering algorithm (see
Fig. 15(e)).

Let Pappr (u) be the appearance probability map. As
C is a color histogram (the dimension is 32 × 32 × 32
for r,g,b channels), Pappr (u) is the bit value of C (see
Fig. 15(c)). To estimate C, we need the object to be seg-
mented so that we know which pixels belong to the object;
the detection response rectangle is not accurate enough
for this purpose. Also, as a human is a highly articu-
lated object, it is difficult to build a constant segmen-
tation mask. Zhao and Davis (2005) proposed an itera-
tive method for upper body segmentation to verify the
detected human hypotheses. Here, we propose a simple
PCA based approach. At the training stage, examples are
collected and the object regions are labeled by hand, see
Fig. 16(a). Then a PCA model is learned from this data,
see Fig. 16(b). Suppose we have an initial appearance
model C0, Given a new sample (Fig. 16(c)), first we cal-
culate its color probability map from C0 (Fig. 16(d)),

Figure 16. PCA based body part segmentation: (a) training samples;

(b) eigenvectors. The left top one is the mean vector; (c) original hu-

man samples; (d) color probability map; (e) PCA reconstruction; (f)

thresholded segmentation map.

then use the PCA model as a global shape constraint
by reconstructing the probability map (Fig. 16(e)). The
thresholded reconstruction map (Fig. 16(f)) is taken as
the final object segmentation, which is used to update
C0. The mean vector, the first one of Fig. 16(b), is used
to compute C0 the first time. For each part, we learn a
PCA model. This segmentation method is far from per-
fect, but very fast and adequate to update the appearance
model.

Combining Pappr (u), Pdyn(u), and Pdet (u), we define
the image likelihood for a part at pixel u by

L(u) = Pappr (u)Pdyn(u)Pdet (u) (22)

Figure 15 shows an example of probability map compu-
tation. Before the meanshift tracker is activated, inter-
object occlusion reasoning is applied. Only the visible
parts which were detected in the last successful data as-
sociation, are tracked. Finally only the models of the parts
which are detected and not occluded are updated. Mean-
shift tracking is not always performed and fused with as-
sociation results, because the shape based detectors are
much more reliable than the color based meanshift.

6.4. Trajectory Termination

The strategy of terminating a trajectory is similar to that
of initializing it. If no detection responses are found for
an object H (v) for consecutive T time steps, we compute
a termination confidence of H (v) by

EndConf
(
H (v); rc1..T

)
=

(
1 − 1

T − 1

T −1∑
t=1

A(r̂ct+1, rct+1)

) (
1 − e−λend

√
T
)

(23)

Note that the combined responses rct are obtained from
the meanshift tracker, not from the combined detector. If
EndConf (H (v)) is larger than a threshold, θend , hypothesis
H (v) is terminated; we call it a dead trajectory, otherwise
we call it an alive trajectory. In our experiments, λend =
0.5, θend = 0.8.
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Figure 17. Forward human tracking algorithm.

6.5. The Combined Tracker

Now we put the above three modules, trajectory initializa-
tion, tracking, and termination, together. Figure 17 shows
the full forward tracking algorithm (it only looks ahead).
Trajectory initialization has a delay; to compensate we
also apply a backward tracking procedure which is the
exact reverse of forward tracking. After a trajectory is ini-
tialized, it may grow in both forward and backward direc-
tions. Note that this is not the same as forward-backward
filtering, as each detection is processed only once, ei-
ther in the forward or in the backward direction. In the
case where no image observations are available, and the
dynamic model itself is not strong enough to track the
object, we keep the hypothesis at the last seen position
until either the hypothesis is terminated or some part of
it is found again. When full occlusion is of short dura-
tion, the person could be reacquired by data association.
However, if full occlusion persists, the track may termi-
nate prematurely; such broken tracks could be combined
at a higher level of analysis; we have not implemented
this feature.

A simplified version of the combined tracking method
is to track only a single part, e.g. the full-body. In the re-
sults in Section 7.2.3, we show that the combined tracking
outperforms single part tracking. The combined tracking
method is robust because:

1. The combined tracker uses combined detection re-
sponses, which have high precision, to start trajecto-
ries. This results in a very low false alarm rate at the
trajectory initialization stage.

2. The combined tracker tries to find the corresponding
part responses of an object hypothesis. The probability
that at least one part detector matches is relatively
high.

3. The combined tracker tries to follow the objects by
tracking their parts, either by data association or by
meanshift. This enables the tracker to work with both
scene and inter-object occlusions.

4. The combined tracker takes the average of the part
tracking results as the final human position. Hence
even if the tracking of one part drifts, the position of
the human can still be tracked accurately.

7. Experimental Results

We now present some experimental results. We note that
our focus is on detection and tracking of humans where
occlusions may be present and the camera may not neces-
sarily be stationary. There are not many public data sets
with these characteristics on which many results have
been reported. Thus, we collected our own data set. We
also include results on some data sets from earlier work,
even though they consist largely of un-occluded humans
in the center of the image, to facilitate comparision with
earlier work. We separate the evaluation of detection and
tracking modules. There are more reported systems for
detection so we can provide more comparisons for detec-
tion than for tracking.

7.1. Detection Evaluation

We train our detectors by a large set of labeled sam-
ples and evaluate them on a number of test sets. First, in
Section 7.1.2, we evaluate our body part detectors. Sec-
ond, in Section 7.1.3, we evaluate our method with two
public data sets, on which many previous papers report
quantitative results (Mohan et al., 2001; Mikolajczyk
et al., 2004; Dalal and Triggs, 2005); the samples in these
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Figure 18. Examples of positive training samples.
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Figure 19. ROC curves of evaluation as detector on our test set

(205 images with 313 humans).

two experiments are un-occluded ones. Third, in Section
7.1.4, we evaluate our method on images with occluded
humans, where none of the above methods work. Before
giving the evaluation results, we first describe our training
set.

Figure 20. Examples of part detection results on images from our Internet test set. (Green: successful detection; Red: false alarm).

7.1.1. Training Set. Our training set contains 1,742 hu-
mans of frontal/rear view and 1,120 side view. Among
these samples, 924 frontal/rear view ones are from the
MIT pedestrian set (Papageorgiou et al., 1998) and the
rest are from the Internet. The samples are aligned ac-
cording to the positions of head and feet. The size of
full-body samples is 24 × 58 pixels. Figure 18 shows
some examples from our training set. The negative im-
age set contains 7,000 negative images without humans.
During learning of the part and full-body detectors, 6,000
negative samples are used for each boosting stage. (The
negative samples are patches cut from the negative im-
ages.) Note that this training set is used for all experiments
in this work, except for that in Section 7.1.3.a, which is
designed to compare with previous methods only on the
MIT set.

7.1.2. Comparison of Part Detectors. We evaluate our
edgelet based part detectors and compare with those
based on Haar features (Kruppa et al., 2003). As there
is no satisfactory benchmark data set for pedestrian de-
tection task, we created one of our own. We collected a
test set from the Internet containing 205 real-life pho-
tos and 313 different humans of frontal/rear view.2 This
set does not have heavy inter-object occlusion and is in-
dependent of the training set. We evaluated our edgelet
detectors and the Haar feature based human detectors
provided by OpenCV4.0b (Kruppa et al., 2003) on this
test set. As the OpenCV detectors are only for frontal/rear
view, we use the nested detector for frontal/rear view here
for comparison. When the intersection between a detec-
tion response and a ground-truth box is larger than 50%
of their union, we consider it to be a successful detection.
Figure 19 shows the ROC curves of the part, full-body and
combined detectors. Figure 20 shows some examples of
successful detections and interesting false alarms, where
locally the images look like the target parts. Figure 21
shows some image results of the combined detector. The
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Figure 21. Examples of combined detection results on the Internet test set. (Green: combined response; yellow: full-body; red: head-shoulder;

purple: torso; blue: legs).

sizes of the humans considered vary from 24 × 58 to
128 × 309.

It can be seen that, in examples without occlusion,
the detection rate of the combined detector is not much
higher than that obtained by the full body detector, but
this rate is achieved with fewer false alarms. Even though
the individual part detectors may have false alarms, they
do not coincide with the geometric structure of human
body and are removed by the combined detector.

Some observations on the part detectors are: (1) the
edgelet features are more powerful for human detection
than Haar features; (2) full-body detector is more discrim-
inative than other part detectors; and (3) head-shoulder
part detector is the least discriminative. The last obser-
vation is consistent with that reported in Mohan et al.
(2001), but inconsistent with that in Mikolajczyk et al.
(2004). Mohan et al. (2001) gave an explanation for the
superiority of legs detector: the background of legs is
usually road or grassland, which is relatively clutter-free
compared to the background for head-shoulder. However,
the legs detector of Mikolajczyk et al. (2004) is slightly
inferior to their head-shoulder detector. This may be due
to the fact that their legs detector covers all frontal, rear,
and profile views.

7.1.3. Comparison of Classification Models. It is dif-
ficult to compare our method with previous ones due to
variability in data sets and lack of access to the earlier
methods’ code. We show a comparison with other meth-
ods that report results on two public data sets, the MIT
set and the INRIA set.3 Note that these data sets contain
un-occluded examples only. Also, these methods report
classification (given a bounding box, predict the label
of the sample) results rather than detection results; for a
proper comparison, we also use classification results in
this section.

7.1.3.a Comparison on the MIT Set. In Mikolajczyk
et al. (2004), Dalal and Triggs (2005) and Mohan et al.
(2001), the MIT pedestrian set is used to evaluate the
methods. Mohan et al. (2001) used 856/866 positive
and 9,315/9,260 negative samples to train their head-
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Figure 22. ROC curves of evaluation as classifier on MIT set. The

results of Mikolajczyk et al. (2004), Dalal and Triggs (2005), and Mohan

et al. (2001) are copied from the original papers.)

shoulder/legs detectors. The detection and false alarm
rates were evaluated on a test set with 123 positive sam-
ples and 50 negative images. Mikolajczyk et al. (2004)
trained their head-shoulder/legs detector with 250/300
positive and 4,000 negative samples for each boosting
stage, and evaluation was done with 400 positive sam-
ples and 200 negative images. Dalal and Triggs (2005)
trained a full-body detector with 509 positive samples
and test with 200 images.

As mentioned before a direct comparison is difficult,
so we compare in a less direct way. We trained our part
detectors with 6/7 of the MIT set, and evaluated with
the remaining 1/7 of the MIT set and 200 negative im-
ages. As all the samples in this set are for frontal/rear
view point, we learn the nested structured detector here.
Our experimental setup is comparable to that of Mohan
et al. (2001), and Dalal and Triggs (2005). When training
with only 300 positive samples, like in Mikolajczyk et al.
(2004), our method suffered from over-fitting. Figure 22
shows the ROC curves. It can be seen that the full-body
detector of Dalal and Triggs (2005) achieved the highest
accuracy, almost perfect, on this set, and our full-body
detector is the second best one.
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7.1.3.b Comparison on the INRIA Set. As near-ideal re-
sults were achieved on the MIT data set, Dalal and Triggs
(2005) concluded that the MIT set is too easy and they col-
lected their own data set, called the INRIA data set. The
INRIA set contains a training set, which has 614 positive
samples and 1,218 negative images, and a test set, which
has 564 positive samples and 453 negative images. The
positive samples are spatially aligned and cover frontal,
rear, and side views. Dalal and Triggs (2005) trained their
classifiers on the INRIA training set and evaluated them
on the INRIA test set. They report that with a false alarm
rate of 10−4, the HOG based classifier got a detection rate
of about 90%.

We evaluate our tree structured multi-view full-body
detector on it. Note that the tree detector is learned from
our own training set described in Section 7.1.1. We do
not use any training data from the INRIA set in this ex-
periment. On the INRIA test set, our detector has a de-
tection rate of about 93% with a false alarm rate of 10−4.
Again this is not a direct comparison, as the training sets
are different. However it can be seen that our method is
comparable to that in Dalal and Triggs (2005) in terms of
classification accuracy, while the boosted cascade classi-
fier is much more efficient computationally than the SVM
classifier used in Dalal and Triggs (2005).

Note that (Mohan et al., 2001; Mikolajczyk et al., 2004;
Dalal and Triggs, 2005) did experiments on 64 pixel wide
samples, while our method requires samples to be 24
pixel wide only and still have comparable performance.
This allows our method to be applicable for humans ob-
served at farther distances.

7.1.4. Evaluation on Occluded Examples. To eval-
uate our combined detector with occlusion, we use
54 frames with 271 humans from the CAVIAR se-
quences (http://homepages.inf.ed.ac.uk/rbf/CAVIAR/).
In this set, 75 humans are partially occluded by oth-
ers, and 18 humans are partially out of the scene. The
CAVIAR data is not included in our training set. We do
not evaluate our method on all frames of the CAVIAR
set, because the frames in video sequences have large
correlation. Figure 23 shows the ROC curves of our part,
full-body and the combined detectors on this set. The
curve labeled “Combine*” in Fig. 23 shows the overall
detection rate on the 75 occluded humans and Table 2
lists the detection rates on different degrees of occlusion.
Figure 24 shows some image results on the CAVIAR test
set.

It can be seen that for the crowded scene: (1) the perfor-
mance of full-body and legs detectors decreases greatly,
as lower-body is more likely to be occluded; (2) the com-
bined detector outperforms the individual detectors; (3)
the detection rate on partially occluded humans is only
slightly lower than the overall detection rate and declines

Table 2. Detection rates on different degrees of occlusion

(with 19 false alarms).

Occlusion degree (%) 25–50 50–75 >70

Human no. 34 31 10

Detection reate (%) 91.2 90.3 80
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Figure 23. ROC curves of evaluation on our CAVIAR test set

(54 images with 271 humans). Combine* is the detection rate on the

75 partially occluded humans.

slowly with the degree of occlusion. In the first example
of Fig. 24, the occluded person is detected just from the
head-shoulder detector output. Note that even though the
head-shoulder detector by itself may create several false
alarms, this results in a false alarm for the combined re-
sult only if the head-shoulder is found in the right relation
to another human.

7.2. Tracking Evaluation

We evaluated our human tracker on three video sets. The
first set is a selection from the CAVIAR video corpus
(http://homepages.inf.ed.ac.uk/rbf/CAVIAR/), which is
captured with a stationary camera, mounted a few me-
ters above the ground and looking down towards a corri-
dor. The frame size is 384 × 288 and the sampling rate
is 25 FPS. The second set, called the “skate board set”,
is captured from a camera held by a person standing on
a moving skate board. The third set, called the “build-
ing top set”, is captured from a camera held by a person
standing on top of a 4-story building looking down to-
wards the ground. The camera motions in the skate board
set include both translation and panning, while those of
the building top set are mainly panning and zooming.
The frame size of these two sets is 720 × 480 and the
sampling rate is 30 FPS. As the humans in the test videos
include both frontal/rear and profile views, we use the
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Figure 24. Examples of combined detection results on the CAVIAR test set. (Green: combined response; yellow: full-body; red: head-shoulder;

purple: torso; blue: legs).

tree structured detectors for multi-view object detection
in the tracking experiments. We compare our results on
the CAVIAR set with a previous system from our group
(Zhao and Nevatia, 2004a). We are unable to compare
with others as we are unaware of published, quantitative
results for tracking on this set by other researchers.

7.2.1. Tracking Performance Evaluation Criteria. To
evaluate the performance of our system quantitatively,
we define five criteria for tracking:

1. number of “mostly tracked” trajectories (more than
80% of the trajectory is tracked),

2. number of “mostly lost” trajectories (more than 80%
of the trajectory is lost),

3. number of “fragments” of trajectories (a result trajec-
tory which is less than 80% of a ground-truth trajec-
tory),

4. number of false trajectories (a result trajectory corre-
sponding to no real object), and

5. the frequency of identity switches (identity exchanges
between a pair of result trajectories).

Figure 25 illustrates these definitions. These five cate-
gories are by no means a complete classification, how-
ever they cover most of the typical errors observed in our
experiments.

7.2.2. Results on CAVIAR Set. The only previous
tracker for which we have an implementation in hand
is that of Zhao and Nevatia (2004a). In this experiment,
we compared our method with that in Zhao and Nevatia
(2004a). This method is based on background subtrac-
tion, and requires a calibrated stationary camera.

Figure 25. Tracking evaluation criteria.

Table 3. Tracking level comparison with (Zhao and Nevatia, 2004a)

on CAVIAR set, 26 sequences.

GT MT ML Fgmt FAT IDS

Zhao-Nevatia 189 121 8 73 27 20

This Method 140 8 40 4 19

GT: ground-truth; MT: mostly tracked; ML: mostly lost; Fgmt: tra-

jectory fragment; FAT: false alarm trajectory; IDS: ID switch.

For comparison, we build the first test set from the
CAVIAR video corpus (http://homepages.inf.ed.ac.uk/
rbf/CAVIAR/). Our test set consists of the 26 sequences
for the “shopping center corridor view”, overall 36,292
frames. The scene is relatively uncluttered, however the
inter-object occlusion is intensive. Frequent interactions
between humans, such as talking, and shaking hands,
make this set very difficult for tracking. Our detectors
require the width of humans to be larger than 24 pixels. In
the CAVIAR set there are 40 humans, which are smaller
than 24 pixels most of the time, and 6 humans, which are
mostly out of the scene. We mark these small humans and
out-of-sight humans in the ground-truth as “do not care”.
Table 3 gives the comparative results at tracking level.4 It
can be seen that our method outperforms the method of
Zhao and Nevatia (2004a) when the resolution is good.
This comes from the low false alarm rate of the combined
detector. Some sample frames and results are shown in
Fig. 26. However, on the small humans, our shape based
method does not work (the combined tracker only gets
only 1 out of the 40 small humans tracked) while the mo-
tion based tracker gets 21 small humans mostly tracked.
This great superiority of the motion based tracker at low
resolution is because the motion based method does not
rely on a discriminative model of humans.

The comparison with the method in Zhao and Nevatia
(2004a) is done on cases where both methods work.
However, each has different limitations. The method of
Zhao and Nevatia (2004a), which is based on 3D model
and motion segmentation, is less view dependent and
can work on lower resolution videos, while our method,
which is based on 2D shape, requires higher resolution
and does not work with large camera tilt angles. On the
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Figure 26. Sample tracking results. The 1st and the 2nd rows are from the CAVIAR set; the 3rd and the 4th rows are from the skate board set; the

5th and the 6th rows are from the building top set.

other hand, our method, which is based on frame by frame
detection, can work with moving and/or zooming cam-
eras, while the method of Zhao and Nevatia (2004a) can
not.

The tracking method also greatly improves the de-
tection performance (without considering the identity
consistency). Table 4 gives the detection scores before
and after tracking. We set the detection parameters to get
a low false alarm rate.

7.2.3. Results on Skate Board Set. The main difficul-
ties of the skate board set are small abrupt motions due
to the uneven ground, and some occlusions. This set

Table 4. Detection performance before and after tracking.

DR (%) FAR (# PF)

Before tracking Full-body detector 70.32 0.28

Combined detector 57.91 0.05

After tracking 94.11 0.02

DR: detection rate; FAR: false alarm rate; PF: per frame.

contains 29 sequences, overall 9,537 frames. Only 13
out of them have no occlusion at all. Some sample frames
and results are shown in Fig. 26. The combined tracking
method is applied. Table 5 gives the tracking performance
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Table 5. Performance on skate board set, 29 sequences.

GT MT ML Fgmt FAT IDS

50 39 1 16 2 3

See Table 3 for abbreviations.

Table 6. Comparison between part tracker and combined tracker

on skate board set, 13 sequences.

GT MT ML Fgmt FAT IDS

Part tracking 21 14 2 7 13 3

Combined tracking 19 1 5 2 2

See Table 3 for the abbreviations.

of the system. It can be seen that our method works rea-
sonably well on this set.

For comparison, a single part (full-body) tracker,
which is a simplified version of the combined tracker, is
applied on the 13 videos that have no occlusions. Because
the part detection does not deal with occlusion explicitly,
it is not expected to work on the other 16 sequences.
Table 6 shows the comparison results. It can be seen that
the combined tracker gives many fewer false alarms than
the single part tracker. This is because the full-body detec-
tor has more persistent false alarms than the combined de-
tector. Also the combined tracker has more fully tracked
objects, because it makes use of cues from all parts.

7.2.4. Results on Building Top Set. The building top set
contains 14 sequences, overall 6,038 frames. The main
difficulty of this set is due to frequency of occlusions,
both scene and object, see Table 8. No single part tracker
works well on this set. The combined tracker is applied
to this data set. Table 7 gives the tracking performance.
It can be seen that the combined tracker obtains very few
false alarms and a reasonable success rate. Some sample
frames and results are shown in Fig. 26.

Table 7. Performance on building top set, 14 sequences.

GT MT ML Fgmt FAT IDS

40 34 3 3 2 2

See Table 3 for the abbreviations.

Table 8. Frequencies of and performance on occlusion events. n/m:

n successful tracked among m occlusion events.

Video set SS LS SO LO Overall

CAVIAR Zhao-Nevatia 0/0 0/0 40/81 6/15 46/96

This method 0/0 0/0 47/81 10/15 57/96

Skate board 6/7 2/2 11/16 0/0 19/25

Building top 4/7 11/13 15/18 4/4 34/42

SS: short scene; LS: long scene; SO: short object; LO: long object.

7.2.5. Tracking Performance with Occlusions. We
characterize the occlusion events in these three sets with
two criteria: if the occlusion is by a target object, i.e. a
human, we call it an object occlusion, otherwise a scene
occlusion. If the period of the occlusion is longer than
50 frames, it’s considered to be a long term occlusion;
otherwise a short term one. So we have four categories:
short term scene, long term scene, short term object, and
long term object occlusions. Table 8 gives the tracking
performance on occlusion events. Tracking success of an
occlusion event means that no object is lost, no trajectory
is broken, and no ID switches occur during the occlusion.
It can be seen that our method can work reasonably well
in the presence of scene or object partial occlusion, even
long term ones. The performance on the CAVIAR set is
not as good as those on the other two sets. This is because
19 out of 96 occlusion events in the CAVIAR set are fully
occluded ones (more than 90% of the object is occluded)
while the occlusions in the other two sets are all partial
ones.

For tracking, on average, about 50% of the success-
ful tracking is due to the data association with combined
responses, i.e. the object is “seen” by the combined de-
tector; about 35% is due to the data association with
part responses; the remaining 15% is from the meanshift
tracker. Although the detection rate of any individual part
detector is not high, the tracking level performance of the
combined tracker is much better. The speed of the entire
system is about 1 FPS. The machine used is a 2.8 GHz
32-bit Pentium PC. The program is coded in C++ us-
ing OpenCV functions. Most of the computation cost is
in the static detection component. We do not tune the
system parameters for different sequences. Basically, we
have three sets of parameters for the three video sets.
The main different parameters are the searching range
of the 2D human size, as the image size of humans in
the CAVIAR set is much smaller than those in the other
two sets, and the parameters for the Kalman filter, as the
image motion of humans with moving/zooming camera
is much more noisy than that with stationary camera.

8. Conclusion and Discussion

We have described a human detection and tracking
method based on body part detection. Body part detec-
tors are learned by boosting edgelet feature based weak
classifiers. We defined a joint likelihood for multiple hu-
mans based on the responses of part detectors and explicit
modeling of inter-object occlusion.

The responses of the combined human detector and
the body part detectors are taken as the observations of
the human hypotheses and fed into the tracker. Both the
trajectory initialization and termination are based on the
evidence collected from the detection responses. To track
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the objects, most of the time data association works, while
a meanshift tracker fills in the gaps between data associa-
tion. From the experimental results, it can be seen that the
proposed system has low false alarm rate and achieves
a high tracking accuracy. It can work under both par-
tial scene and inter-object occlusion conditions reason-
ably well. We have also applied this framework to other
applications, e.g. speaker tracking in seminar videos
(Wu et al., 2006) and conferee tracking in meeting videos
(Wu and Nevatia, 2006c), and have achieved good scores
in the VACE (http://www.ic-arda.org/InfoExploit/vace/)
and CHIL (http://chil.server.de/servlet/is/101/) evalua-
tions.

We learn our detectors with a sample size of 24 ×
58 pixels, as this is common for real applications, such
as visual surveillance. However at such a small scale,
some body parts are not very distinguishable, e.g. head-
shoulder. Learning part detectors with different scales
could be a better choice.

Currently our system does not make use of any cues
from motion segmentation. When motion information
is available, it should help improve the tracking per-
formance. For example, recently Brostow and Cipolla
(2006) proposed a method to detect independent motions
in crowds. The outputs are tracklets of independently
moving entities, which may facilitate object level track-
ing. Conversely, shape-based tracking can help improve
motion segmentation.

We have not explored the interaction between detection
and tracking. The current system works in a sequential
way: tracking takes the results of detection as input. How-
ever, tracking can be used to facilitate detection. One of
the most straightforward ways is to speedup detection by
restrainting the searching in the neighborhood of predic-
tion by tracking. We plan to study such interactions in
future work.

In our current system, four general human part detec-
tors, which are learned off-line, are used. However during
tracking, if these general detectors are somehow adapted
to a specific environment, we could achieve both higher
accuracy and better efficiency. There is some existing
work on online learning of classifiers for object detection
and tracking, (e.g., Avidan, 2005; Grabner and Bischof,
2006). We plan to investigate improving our detectors by
online learning in future work.
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Notes

1. http://cbcl.mit.edu/software−datasets/PedestrianData.html.

2. http://iris.usc.edu/ bowu/DatasetWebpage/dataset.html.

3. http://pascal.inrialpes.fr/data/human/.

4. In our previous paper (Wu and Nevatia, 2006a), we show results on

a subset, 23 sequences, only, as ground-truth for three sequences

was not available at that time.
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