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Abstract. Shape-From-Silhouette (SFS) is a shape reconstruction method which constructs a 3D shape estimate
of an object using silhouette images of the object. The output of a SFS algorithm is known as the Visual Hull (VH).
Traditionally SFS is either performed on static objects, or separately at each time instant in the case of videos of
moving objects. In this paper we develop a theory of performing SFS across time: estimating the shape of a dynamic
object (with unknown motion) by combining all of the silhouette images of the object over time. We first introduce
a one dimensional element called a Bounding Edge to represent the Visual Hull. We then show that aligning two
Visual Hulls using just their silhouettes is in general ambiguous and derive the geometric constraints (in terms of
Bounding Edges) that govern the alignment. To break the alignment ambiguity, we combine stereo information with
silhouette information and derive a Temporal SFS algorithm which consists of two steps: (1) estimate the motion
of the objects over time (Visual Hull Alignment) and (2) combine the silhouette information using the estimated
motion (Visual Hull Refinement). The algorithm is first developed for rigid objects and then extended to articulated
objects. In the Part II of this paper we apply our temporal SFS algorithm to two human-related applications: (1) the

acquisition of detailed human kinematic models and (2) marker-less motion tracking.

Keywords: 3D reconstruction, Shape-From-Silhouette, Visual Hull, across time, stereo, temporal alignment,

alignment ambiguity, visibility

1. Introduction

As its name implies Shape-From-Silhouette (SFS) is a
method of estimating the shape of an object from its
silhouette images. The idea of using silhouettes for 3D
shape reconstruction was first introduced by Baumgart
in 1974. In his PhD thesis (Baumgart, 1974), Baum-
gart estimated the 3D shapes of a baby doll and a toy
horse from four silhouette images. Since then, differ-
ent variations of the Shape-From-Silhouette paradigm
have been proposed. For example, Aggarwal et al.
(Martin and Aggarwal, 1983; Kim and Aggarwal,
1986) used volumetric descriptions to represent the
reconstructed shape. Potmesil (1987), Noborio et al.

(1988) and Ahuja and Veenstra (1989) all suggested us-
ing an octree data structure to speed up SFS. Shanmukh
and Pujari derived the optimal positions and directions
to take silhouette images for 3D shape reconstruction
in Shanmukh and Pujari (1991). Szeliski built a non-
invasive 3D digitizer using a turntable and a single cam-
era with Shape-From-Silhouette as the reconstruction
method (Szeliski, 1993). In summary, SFS has become
a popular 3D reconstruction method for static objects.

The term Visual Hull (VH) has been used in a
general sense by researchers for over a decade to
denote the shape estimated using the Shape-From-
Silhouette principle: the intersection of the visual cones
formed by the silhouettes and camera centers. The term
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was first coined in 1991 by Laurentini (1991) who
also published a series of subsequent papers studying
the theoretical aspects of Visual Hulls of 3D poly-
hedral (Laurentini, 1994, 1995) and curved objects
(Laurentini, 1999).

Estimating shape using SFS has many advantages.
First of all, silhouettes are readily and easily obtain-
able, especially in indoor environment where the cam-
eras are static and there are few moving shadows.
The implementation of most SFS methods is also rel-
atively straightforward, especially when compared to
other shape estimation methods such as multi-baseline
stereo (Okutomi and Kanade, 1993) or space carving
(Kutulakos and Seitz, 2000). Moreover, the inherently
conservative property (see Section 2.3) of the shape
estimated using SFS is particularly useful in applica-
tions such as obstacle avoidance in robot manipula-
tion and visibility analysis in navigation. These advan-
tages have prompted a large number of researchers to
apply SFS to solve other computer vision and graph-
ics problems. Examples include human related appli-
cations such as virtual human digitization (Moezzi
et al., 1997), body shape estimation (Kakadiaris and
Metaxas, 1998), motion tracking/capture (Delamarre
and Faugeras, 1999; Bottino and Laurentini, 2000) and
image-based rendering (Buehler et al., 1999).

On the other hand, SFS suffers from the limitation
that the shape estimated by SFS (the VH) can be a
very coarse approximation when there are only a few
silhouette images, especially for complex objects such
as the dinosaur/bananas example shown in Fig. 1(a).
Figures 1(b)—(d) show respectively the (colored) voxel
models of the dinosaur/bananas built using 6, 36 and 66
silhouette images. As can be seen, the shape model built
using only 6 silhouette images is very coarse, while
much better shape estimates are obtained using 36 or
66 silhouettes.

Better shape estimates can only be obtained using
SES if the number of distinct silhouette images is in-
creased. The most common way to do so is the “across
space” approach. By across space, we mean increasing
the number of physical cameras used. This approach,
though simple, may not be feasible in many practical
situations due to financial or physical limitations. In
this paper we introduce and develop another approach:
the “across time” approach. The across time approach
increases the number of effective silhouette images by
capturing a number of silhouettes from each camera
over time (while the object is moving) and then com-
bining all the silhouettes (after compensating for the
motion of the object) to reconstruct a refined Visual
Hull of the object.

The remainder of this paper is organized as follows.
In Section 2 a brief review of SES and the traditional
ways of representing and constructing Visual Hulls are
presented. In Section 3 we introduce a new Visual Hull
representation called the Bounding Edge representa-
tion and derive an important property of the Bounding
Edges called the Second Fundamental Property of Vi-
sual Hulls (2nd FPVH). In Section 4 we show that align-
ing two Visual Hulls using only the silhouettes is inher-
ently ambiguous and derive the geometric constraints
which govern the alignment. We show how photometric
information (in the form of color images) can be used
to break the alignment and develop a temporal SFS al-
gorithm for a rigid object as follows. We first combine
the 2nd FPVH with multi-camera stereo to extract 3D
points called Colored Surface Points (CSPs) on the sur-
face of the object. Using an idea similar to the 2D image
alignment problem as in Szeliski (1994), we then align
the 3D CSPs with the 2D silhouette and color images to
estimate the 6 DOF motion between two Visual Hulls.
The visibility issue is also discussed in Section 4. In
Section 5 we extend our temporal SFS algorithm to

(c) (d)

Figure I. (a) Animage of a toy dinosaur and a bunch of bananas. (b) A 3D colored voxel model reconstructed using 6 silhouette.
Some details such as the legs and the horns of the dinosaur are missing. (c) A model reconstructed using 36 silhouette images.
A much better shape estimate is obtained. (d) A model reconstructed using 66 silhouette images. An even better shape estimate

is obtained.



articulated  objects using the  Expectation-
Maximization (EM) formulation (Dempster et al.,
1977) and imposing spatial coherency and temporal
consistency. Both synthetic and real experimental
results are shown at the end of Sections 4 and 5.
We conclude in Section 6 with a brief discussion. In
the Part II of this paper we apply our temporal SFS
algorithm to two human-related applications: (1) the
acquisition of detailed human kinematic models and
(2) marker-less motion tracking.

2. Background

In this section we give a brief review of Shape-From-
Silhouette (SFS). We first define the SFS problem sce-
nario and present two equivalent definitions of the Vi-
sual Hull (VH). We proceed to describe two common
ways of representing and constructing VHs.

2.1. Problem Scenario and Notation

Suppose there are K cameras positioned around a 3D
object O. Let {Sf;k = 1;..., K} be the set of sil-
houette images of the object O obtained from the K
cameras at time 7;. An example scenario is depicted in
Fig. 2 with a head-shaped object surrounded by four
cameras at time #;. It is assumed that the cameras are
calibrated with IT%() : IR®> — IR? and C* being the
perspective projection function and the center of cam-
era k respectively. In other words p = TT¥(P) are the
2D image coordinates of a 3D point P in the kth im-
age. As an extension of this notation, IT¥(A) represents

Object O forms
silhouette image S, on
camera k at time t,

Figure 2. The Shape-From-Silhouette problem scenario: a head-
shaped object O is surrounded by four cameras at time #;. The sil-
houette images and camera centers are represented by S’; and C*
respectively. "
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the projection of a volume A onto the image plane of
camera k. Assume we have a set of K silhouette images
{8} and projection functions {TT*}. A volume A is said
to exactly explain {S j‘ } if and only if its projection onto
the kth image plane coincides exactly with the silhou-
ette image Sl]? forallk € {1,..., K}, ie. IT*(A) = Sf.
If there exists at least one non-empty volume which
explains the silhouette images exactly, we say the set
of silhouette images is consistent, otherwise we call it
inconsistent.

2.2.  Definitions of the Visual Hull

Here we present two different ways to define the Visual
Hull (Cheung, 2003). Although these two definitions
are seemingly different, they are in fact equivalent to
each other. See Cheung (2003) for a proof.

Visual Hull Definition I (Intersecting Visual Cones).
The Visual Hull H; with respect to a set of consistent
silhouette images {ij} is defined to be the intersec-
tion of the K visual cones, each formed by projecting
the silhouette image ij into the 3D space through the
camera center C*.

This first definition, which is the most commonly
used one in the SFS literature, defines the Visual Hull
as the intersection of the visual cones formed by the
camera centers and the silhouettes. Though this defini-
tion provides a direct way of computing the Visual Hull
from the silhouettes (see Section 2.4.1), it lacks infor-
mation and intuition about the object (which forms the
silhouettes). We therefore also use a second definition
(Laurentini, 1991):

Visual Hull Definition II (Maximally Exactly Ex-
plains). The Visual Hull H; with respect to a set of
consistent silhouette images {Sf} is defined to be the

largest possible volume which exactly explains {Sf } for
allk=1,..., K.

Generally for a consistent set of silhouette images
{Sj? }, there are an infinite number of volumes (including
the object O itself) that exactly explain the silhouettes.
Definition II defines the Visual Hull H; as the largest
one among these volumes. Though abstract, this def-
inition implicitly expresses a property of Visual Hull:
the Visual Hull provides an upper bound on the object
which forms the silhouettes. To emphasize the impor-
tance of this property, we state it as the first fundamental
property of Visual Hulls.
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2.3.  First Fundamental Property of Visual Hulls

First Fundamental Property of Visual Hulls (1st
FPVH). The object O that formed the silhouette set
S’; lies completely inside the Visual Hull H; con-
structed from S']?.

The 1st FPVH is important as it gives us useful infor-
mation on the object O in applications such as robotic
navigation or obstacle avoidance. The upper bound
given by the Visual Hull gets tighter if we increase
the number of distinct silhouette images. Asymptoti-
cally if we have an infinite number of every possible
silhouette images of a convex object, the Visual Hull is
exactly equal to the object. If the object is not convex,
the Visual Hull may or may not be equal to the object.

2.4. Representation and Construction

2.4.1. 2D Surface Based Representation. For a con-
sistent set of silhouette images, the Visual Hull can be
(according to Definition I) constructed by intersecting
the visual cones directly. By doing so, the Visual Hull
is represented by 2D surface patches obtained from in-
tersecting the surfaces of the visual cones. Although
simple and obvious in 2D, this direct intersection rep-
resentation is difficult to use for general 3D objects.
Recently Buehler et al. (1999, 2001) and Matusik et al.
(2000) proposed an approximate way to compute the
Visual Hull directly using the visual cone intersection
method by approximating the object as having polyhe-
dral shape. Since polyhedral objects produce polygonal
silhouette images, their Visual Hulls consist of planar
surface patches. However, for a general 3D object, its
Visual Hull consists of curved and irregular surface
patches which are difficult to represent using simple
geometric primitives and are computational expensive
and numerically unstable to compute.

2.4.2. 3D Volume Based Representation. Since it is
difficult to intersect the surfaces of the visual cones
of general 3D objects, other more effective ways have
been proposed to construct Visual Hulls. The approach
which is used by most researchers (Potmesil, 1987,
Noborio et al., 1988; Ahuja and Veenstra, 1989;
Szeliski, 1993) is volume based construction. Voxel-
based SFS uses the same principle of visual cone in-
tersection. However, the Visual Hull is represented by
3D volume elements (“voxels”) rather than 2D surface
patches. The space of interest is divided into discrete

voxels which are then classified into two categories:
inside and outside. The union of all the inside voxels
is an approximation of the Visual Hull. For a voxel
to be classified as inside, its projection on each and
every one of the K image planes has to be inside or
partially overlap the corresponding silhouette image.
If the projection of the voxel is totally outside any of
the silhouette images, it is classified as outside. One of
the disadvantages of using discrete voxels to represent
Visual Hulls is that the voxel-based VH can be signifi-
cantly larger than the actual VH (see Cheung, 2003 for
details).

3. A 1D VH Representation: Bounding Edge

In Section 2 we described two common ways to rep-
resent Visual Hulls: two-dimensional surface patches
and three-dimensional discrete voxels. In this section,
we propose a new representation for Visual Hulls us-
ing a one-dimensional element called a Bounding Edge
(BE).

3.1. Definition of Bounding Edge

Consider a set of K silhouette images {Sf} at a given
time instant 7;. Let u'; be a point on the boundary of
the silhouette image S'. By projecting u’; into 3D space
through the camera center C¥, we getaray rj. .ABound-
ing Edge Ej is d@ﬁned to be the part of r; such that the
projection of E’ onto the /th image plane lies com-
pletely inside the silhouette S; foralll € {1,...,K}.
Mathematically the condition can be expressed as

i i I i I
E;Cr; and T'(E})CS; Vie{l,...,K}.
M

Figure 3(a) illustrates the definition of a Bounding Edge
at ¢;. A Bounding Edge can be computed by first pro-
jecting the ray rj. onto the K — 1 silhouette images
S;,l = 1,...,K;l # k, and then re-projecting the
segments which overlap with Sﬂ. back into 3D space.
The Bounding Edge is the intersection of the repro-
jected segments. Note that the Bounding Edge E ’] isnot
necessarily a continuous line. It may consist of several
segments if any of the silhouette images are not convex.
Hereafter, a Bounding Edge E; is denoted by a set of
ordered 3D vertex pairs as follows:

ES={(SVi(m), FVi(m)): m=1,....M}}, (2)
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Figure 3. (a) The Bounding Edge E! is obtained by first projecting the ray i onto S?, S, S} and then re-projecting the segments
overlapping with the silhouettes back into 3D space. E! is the intersection of the reprojected segments. (b) Two different views
of the Bounding Edge representation of the Visual Hull of the dinosaur/bananas object shown in Fig. 1.

where S Vj? (m) and F Vj (m) represent the start vertex
and finish vertex of the mth segment of the Bound-
ing Edge respectively and M ; is the number of seg-
ments that £ ; is comprised of. By sampling points on
the boundaries of all the silhouette images {Sf k=
I,..., K}, we can construct a list of L; Bounding
Edges that represents the Visual Hull H;. Figure 3(b)
illustrates the Bounding Edge representation of the VH
of the dinosaur/bananas object shown in Fig. 1(a).

3.2.  Second Fundamental Property of Visual Hulls

The most important property of the Bounding Edge
representation is that its definition captures one aspect
of Shape-From-Silhouette very naturally. To be precise,
we state this property as

Second Fundamental Properties of Visual Hulls (2nd
FPVH). Each Bounding Edge of the Visual Hull
touches the object (that formed the silhouette images)
at at least one point.

The 2nd FPVH allows us to use Bounding Edges to
represent one important aspect of the shape informa-
tion of the object that can be extracted from a set of
silhouette images. Although being an important prop-
erty, the 2nd FPVH is often overlooked by researchers
who usually focus on the 1st FPVH. In the next chapter,

we will show how the 2nd FPVH can be combined with
stereo to locate points on the surface of the object. A
comparison of the advantages and disadvantages of the
three VH representations (surfaces, voxels and Bound-
ing Edges) can be found in Cheung (2003).

3.3.  Related Work

In their image-based Visual Hull rendering work
(Buehler et al., 1999; Matusik et al., 2000; Matusik,
2001), Matusik et al. proposed a ray-casting algorithm
to render objects using silhouette images. Their way
of intersecting the casting rays with the silhouette im-
ages is similar to the way our Bounding Edges are
constructed. However, there are two fundamental dif-
ferences between their approach and the definition of
Bounding Edge. First, our Bounding Edges are orig-
inated only from points on the boundary of the sil-
houette image while their casting rays can originate
from anywhere, including any point inside the silhou-
ette. Second, their casting rays do not embed the im-
portant 2nd FPVH as Bounding Edges do. In a sepa-
rate paper (Buehler et al., 2001), Matusik et al. also
proposed a fast way to build polyhedral Visual Hulls.
They based their idea on visual cone intersection but
simplified the representation and computation by ap-
proximating the actual silhouette as polygons (i.e. any
curved part of the silhouette is approximated by straight
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lines) which is equivalent to approximating the 3D ob-
ject as polyhedral shape. Due to this approximation,
their results are not the exact surface-based represen-
tation discussed in Section 2.4.1 except for true poly-
hedral objects. Nevertheless their idea of calculating
silhouette edge bins can be applied to speed up the
construction of Bounding Edges. Lazebnik et al. (2001)
independently proposed a new way of representing Vi-
sual Hulls. The edge of the “Visual Hull mesh” in their
work is theoretically equivalent to the definition of a
Bounding Edge. However, they compute their edges
after locating frontier and triple points whereas we
compute Bounding Edges directly from the silhouette
images.

4. SFS Across Time: Rigid Objects

In this section we propose an algorithm for Shape-
From-Silhouette across time for rigid objects. A num-
ber of silhouettes from each camera are captured as the
object moves across time and then used to construct a
refined VH. For example, for a system with K cameras
and J frames, the effective number of cameras would
be increased to J K. This is equivalent to adding an
additional (J — 1)K physical cameras to the system.

There are two tasks to constructing Visual Hulls
across time: (1) estimating the motion of the object
between successive time instants and (2) combining
the silhouette images at different time instants to get
a refined shape of the object. In this section, we as-
sume the object of interest is rigid, but the motion of
the object between frames is totally arbitrary and un-
known. In Section 5 we will extend the algorithm to
articulated objects. We refer to the task of computing
the rigid transformation as Visual Hull Alignment and
the task of combining the silhouette images across time
as Visual Hull Refinement.

4.1.  Visual Hull Alignment: Theory

To combine silhouette images across time, the motion
of the object between frames is required. For static ob-
jects, the problem may be simplified by putting the
object on a precisely calibrated turn-table so that the
motion is known in advance (Szeliski, 1993). However
for dynamic objects whose movement we do not have
control or knowledge of, we have to estimate the un-
known motion before we can combine the silhouette

images across time. To be more precise, we state the
Visual Hull Alignment Problem as:

Visual Hull Alignment from Silhouette Images

Suppose we are given two sets of consistent silhouette
images {Sf;k =1;...,K;j = 1,2} of arigid object
O from K cameras at two different time instants #; and
t,. Denote the Visual Hulls for these silhouette sets by
H;, j = 1,2. Without loss of generality, assume the
first set of images {S{‘ } are taken when the object is
at position and orientation of (I, 0) while the second
image set {Sé‘} is taken when the object is at (R, ¢). The
problem of Visual Hull alignment is to find (R, ¢) such
that there exists an object O which exactly explains
the silhouettes at both times #; and the relative position
and orientation of O is related by (R, t) from #; to t,.
Moreover, we say that the two Visual Hulls H; and H,
are aligned consistently with transformation (R, t) if
and only if we can find an object O such that Hj is the
Visual Hull of O at orientation and position (I, Q) and
H, is the Visual Hull of O at orientation and position
(R, 1).

4.1.1. Visual Hull Alignment Ambiguity. Since it is
assumed that the two sets of silhouette images are con-
sistent and come from the same object, there always
exists at least one set of object O and motion (R, t)
(the true solution) that exactly explains both sets of sil-
houette images. We now show that aligning two Visual
Hulls using only the silhouette information is inher-
ently ambiguous. This means that in general the solu-
tion is not unique and there exists more than one set
of (R, t) which satisfies the alignment criterion. A 2D
example is shown in Fig. 4. In the figure, both (a) and
(b) have the same silhouette image sets (and hence the
same Visual Hulls) at times #; and #,. However, in (a),
the silhouettes are formed by a curved object with a pure
translation between #; and f,, while in (b), the silhou-
ettes are created by a polygonal object with both a rota-
tion (200 degrees) and a translation between #; and #,.

4.1.2. Geometric Constraints for Aligning 2D Visual
Hulls. The motion ambiguity in Visual Hull align-
ment is a direct result of the indeterminacy in the
shape of the object. Although the alignment solution
is not unique, there are constraints on the motion and
the shape of the object for a consistent alignment. In
this section we discuss the geometrical constraints for
aligning two 2D Visual Hulls and in the next section
extend them to 3D.
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Figure 4. A 2D example showing the ambiguity of aligning Visual Hulls. Both cases (a) and (b) have the same silhouettes at
times #; and #, but they are formed from two different objects with different motions.

To state the constraints for aligning two 2D polygo-
nal Visual Hulls H;, j = 1,2 of a 2D object O, let E,
be the edges of H;, Tig ) (A) be the entity after apply-
ing transformation of (R, ¢) to A and T(}’]t)() denotes
the inverse transformation. Now using the 2D version
of the 2nd FPVH (see Cheung, 2003 for details), the
geometric constraints are expressed in the following
Lemma':

Lemma 1. Given two 2D Visual Hulls H, and H;,
the necessary and sufficient condition for them to be
aligned consistently with transformation (R, t) is given
as follows: No edge of T g r)(H\) lies completely outside
H, andno edge of H, lies completely outside T(g ¢)(H\).

Figure 5(a) and (b) shows examples of two 2D Vi-
sual Hulls of the same object. In (c), the alignment is
consistent and all edges from both Visual Hulls satisfy
Lemma 1. In (d), the alignment is inconsistent and the
edges E!, Ef, Ef, (Rt ,)(E ), T )(Ez) )(E7)

(R/

(R’

consistently aligned

all violate Lemma 1. Lemma 1 provides a good way to
test if the alignment of two 2D VHs is consistent or not.

To illustrate how these constraints can be used in
practice, two synthetic 2D Visual Hulls (polygons) each
with four edges (Fig. 6) were generated and Lemma 1
was used to search for the space of all consistent align-
ments. In 2D there are only three degrees of freedom
(two in translation and one in rotation). The space of
consistent alignments is shown in Fig. 6. There are two
unconnected subsets of the solution space, clustered
around two different rotation angles.

In order to extend Lemma 1 to 3D, consider the fol-
lowing variant of Lemma 1 for 2D objects:

Lemma2. (R,t)is a consistent alignment of two 2D
Visual Hulls H, and H,, constructed from silhouette
sets {Sj? }; j =1, 2ifand only ifthe following condition
is satisfied: for each edge E ‘1 of T(r)(H1), there exists
at least one point P on E\ such that the projection of
P onto the kth image lies inside or on the boundary of
the silhouette S§ forallk=1,...,K

-1 7
Ty By,

Refined
Visual Hull :
Inconsistently aligned

© (d)

Figure 5. (a) and (b) Two Visual Hulls of the same object at different positions and orientations. (c) All edges satisfy Lemma 1

when the alignment (R, t) is consistent, (d) Edges E!, Ef, Els,

the Visual Hulls are not aligned consistently.

<R’t)

(E ), T (R’ p )(EZ) T(;ei t,)(EZ) all violate Lemma 1 and so
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between VH1 and VH2 between VH1 and VH2
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Solution Space

; R
y

Figure 6.  Two synthetic 2D Visual Hulls (each with four edges) and the space of consistent alignments.

Lemma 2 expresses the constraints in terms of the
silhouette images rather than the Visual Hull. For 2D
objects, there is no significant difference between using
Lemma 1 or Lemma 2 to specify the alignment con-
straints because all 2D Visual Hulls can be represented
by a polygon with a finite number of edges. For 3D ob-
jects, however, the 3D version of Lemma 1 is not very
practical because it is difficult to represent a 3D Visual
Hull exactly and completely (see Cheung, 2003). By
expressing the geometrical constraints in terms of the
silhouette images (Lemma 2) instead of the Visual Hull
itself (Lemma 1), the need for an exact and complete
Visual Hull representation can be avoided. In the next
section, we extend Lemma 2 to 3D convex objects.

4.1.3. Geometric Constraints for Aligning 3D Visual
Hulls. The geometric constraints for aligning two
convex 3D VHs are expressed in the following lemma:

Lemma 3. For two convex 3D Visual Hulls H, and
H, constructed from silhouette sets {Sj? hj=1,2, the
necessary and sufficient condition for a transformation
(R, t) to be a consistent alignment between Hy and H,
is as follows: for any Bounding Edge E ’1 constructed
from the silhouette image set {S’l‘}, there exists at least
one point P on E\ such that the projection of the point
T(r.t)(P) onto the kth image lies inside or on the sil-
houette Sé‘ forall k = 1,..., K. Similarly, for any
Bounding Edge E’2 constructed from {Sé}, there exists
at least one point P on E} such that the projection of
the point T(}}I)(P) on the kth image lies inside or on
the silhouette S’l‘.

The condition in Lemma 3 is still necessary, but not
sufficient, if either one or both of the two Visual Hulls
are non-convex. A counter example can be found in

Cheung (2003). For general 3D objects, Lemma 3 is
useful to reject inconsistent alignments between two
Visual Hulls but cannot be used to prove if an align-
ment is consistent. Theoretically we can prove if an
alignment is consistent as follows. First transform the
Visual Hulls using the alignment transformation and
compute the intersection of the two Visual Hulls. The
resultant Visual Hull is then rendered with respect to
all the cameras at both times and compared with the
two original sets of silhouette images. If the new Visual
Hull exactly explains all the original silhouette images,
then the alignment is consistent. In practice, however,
this idea is computationally very expensive and is inap-
propriate as an algorithm to compute the correct align-
ment between two 3D Visual Hulls. In Section 4.2.3,
we will show how the hard geometric constraints stated
in Lemma 3 can be approximated by soft constraints
and combined with photometric consistency to align
3D Visual Hulls.

4.2.  Resolving the Alignment Ambiguity

Since aligning Visual Hulls using silhouette images
alone is ambiguous (see Section 4.1.1), additional in-
formation is required in order to find the correct align-
ment. In this section we show how to resolve the align-
ment ambiguity using color information (Cheung et al.,
2003). First we combine the 2nd FPVH (introduced in
Section 3) with stereo to extract a set of 3D points
(which we call Colored Surface Points) on the surface
of the object at each time instant. The two sets of 3D
Colored Surface Points are then used to align the Vi-
sual Hulls through the 2D color images. We assume
that besides the set of silhouette images {Sj?}, the set
of original color images (which the silhouette images



were derived from) are also given and represented by
{15},

4.2.1. Colored Surface Points (CSPs). Although the
Second Fundamental Property of Visual Hull tells us
that each Bounding Edge touches the object at at least
one point, it does not provide a way to find this point.
Here we propose a simple (one-dimensional) search
based on the stereo principle to locate this touching
point. If we assume the object is Lambertian and all the
cameras are color balanced, then any point on the sur-
face of the object should have the same projected color
in all of the color images. In other words, for any point
on the surface of the object, its projected color vari-
ance across the visible cameras should be zero. Hence
on a Bounding Edge, the point which touches the object
should have zero projected color variance. This prop-
erty provides a good criterion for locating the touching
points. Hereafter we call these touching points as the
Colored Surface Points (CSP).

To express the idea mathematically, consider a
Bounding Edge E j from the jth Visual Hull. Since
we denoted the Bounding Edge E; by a set of ordered
3D vertex pairs {(SV; (m), FV; (m))} .(Eq. (2)), we can
parameterize a point W;(m, w) on E’; by two parame-
ters m and w, where m € {1,...,M}}and0§ w<1
with

Wim, w) = SVi(m) +w * (FVi(m) — SVi(m)).
©)

i
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Let c/]‘. (P) be the projected color of a 3D point P on the
kth color image at time #;. The projected color mean
,ug(m, w) and variance o} (m, w) of the point Wj’: (m, w)
are given as

i 1 i .
i w) = ijc’;(wjun, w));

. 1 , )
o, w) = = 3 [ (Wim, ) = om, w)]
J ok
@)

The projected color c];(Wj’:(m, w)) from camera k is
used in calculating the mean and variance only if
W; (m, w) is visible in that camera and n’J 'denotes the
number of the visible cameras for point W}. The ques-
tion of how to conservatively determine the visibility of
a 3D point with respect to a camera using only the sil-
houette images will be addressed shortly in Section 4.3.
Figure 7(a) illustrates the idea of locating the touching
point by searching along the Bounding Edge.

In practice, due to noise and inaccuracies in color
balancing, instead of searching for the point which
has zero projected color variance, we locate the point
with the minimum variance. In other words, we set
the Colored Surface Point of the object on E; to be
W;(rh, w) where m and W minimizes a;(m, w) for
0 <w<1me{l, ...,M;}. This can be done
by sampling discretely and uniformly over the 1D pa-
rameter space of w along each segment of the Bound-
ing Edge and search for the point with the minimum
variance. Note that by choosing the point with the

Color image
of camera 4

(b) I

Figure 7. (a) Locating the touching point (Colored Surface Point) by searching along the Bounding Edge for the point with the minimum
projected color variance. (b) Two sets of CSPs for the dinosaur/bananas example (see Fig. 1) obtained at two time instants with different positions
and orientations. Note that the CSPs are sparsely sampled and there is no point-to-point correspondence between the two sets of CSPs.
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minimum variance, the problem of tweaking param-
eters or thresholds of any kind is avoided. The need
to adjust parameters or thresholds is always a problem
in other shape reconstruction methods such as space
carving (Kutulakos and Seitz, 2000) or multi-baseline
stereo (Okutomi and Kanade, 1993). Space carving re-
lies heavily on a color variance threshold to remove
non-object voxels and stereo matching results are sen-
sitive to the search window size. In our case, knowing
that each Bounding Edge touches the object at at least
one point (2nd FPVH) is the key piece of information
that allows us to avoid any thresholds. In fact locat-
ing CSPs is a special case of the problem of matching
points on pairs of epipolar lines as discussed in Szeliski
and Golland (1998) and Irani et al. (2002). In Szeliski
and Golland (1998) and Irani et al. (2002), points are
matched on “general” epipolar lines on which there
may or may not be a matching point so a threshold and
an independent decision is needed for each point. To
locate CSPs, points are matched on “special” epipolar
lines which guarantee to have at least one matching
point so no threshold is required.

Since we use local texture information to extract
CSPs, for texture-less surface there is ambiguity in de-
termining the correct positions of the CSPs. Unfortu-
nately it is a common problem to a lot of 3D recon-
struction methods which depend on texture and there
is no easy solution to it. However, since CSPs are re-
stricted to lie on the Bounding Edge, in practice if the
positions of the CSPs are incorrectly estimated in the
texture-less region, the deviations are usually small and
have insignificant effects on our alignment algorithm
to be discussed below. See Section 4.5 for experimental
validation and further discussion.

Hereafter, for simplicity we drop the notation depen-
dence of m, W, and denote (with a slight abuse of nota-
tion) }he CSPs WJ’: (m, W) by W; and its color M;- (m, )
by 5.

4.2.2. Alignment by Color Consistency. Suppose we
have located two sets of Colored Surface Points at two
different time instants #; and #,. For example, Fig. 7(b)
shows two sets of CSPs for the dinosaur/bananas (see
Fig. 1) obtained at two time instants at two different po-
sitions and orientations. Since the sets of CSPs lie on
their corresponding (rigid) Visual Hulls H; and H,, the
problem of aligning H; and H, is equivalent to aligning
the two sets of CSPs. The question now is how can we
align the two sets of CSPs. Before answering this ques-
tion, we have to point out two very important facts about

CSPs. First, the CSPs at each time instant are points on
the occluding contours. This means that CSPs are only
sparsely sampled points on the surface of the object (as
opposed to the 3D data points acquired from laser range
devices which produce densely sampled surface points
on the object). The point sparsity prohibits us from us-
ing well established 3D point alignment methods such
as the Iterative Closet Point (ICP) method (Besl and
McKay, 1992; Zhang, 1994; Rusinkiewicz and Levoy,
2001). Secondly the only property common of the two
sets of CSPs is that they all lie on the surface of the
object. There is no point-to-point correspondence be-
tween any two sets of CSPs obtained at different time
instants. Because of this, alignment methods which are
used in the structure-from-motion literature (Tomasi
and Kanade, 1992; Poelman and Kanade, 1992; Quan
and Kanade, 1996) cannot be used to align the CSPs.

To solve the CSP alignment problem, we use an idea
similar to that used to solve the 2D image registra-
tion problem in Szeliski (1994) (related idea has been
proposed to register 3D laser range data with cam-
era images in Wheeler (1996) and Kurazume et al.
(2002)). In our case, instead of registering a 2D image
with another 2D image, we align 2D images ({Ié‘ D at
time #, with a “3D image” (the Colored Surface Points
{Wli }) at time ¢, through the projection functions {IT%).
The error measure used is the sum of squares of the
color differences between the Colored Surface Points
at time #; and their projected colors from the color
images at time f, and vice versa. Mathematically, let
{5, S, Wiopisio = 1, Lisk = 1,...,K; j =
1, 2} be the two sets of data. To find the most color
consistent alignment (R, ¢), consider the color error
functione = Y 12 €} , + Y /! €5 where

o= eih =Y [el(R (W) —1) - ]
3 3

. . , , )
e, = Zelzkl = Z [cé(RW{ +t) - /L’l]z.
% 3

Here eé’ﬁ represents the difference between the mean
color ;L’i of the Colored Surface Point Wli at time #; and
its projected color cé(R Wli + ) in camera k at time #,.
Note that at time #,, the new position of Wf due to
the motion of the object is RW/ + ¢. Likewise, e’i’g is
the difference between the mean color Mé of Wzi and
its projected color ¢X(R" (Wi — t) in camera k at time
t1. From now on, we refer to the error of aligning 3D
points with the 2D images forward in time (e.g. 3D
points at ¢; and 2D images at t,) as the forward error.
Similarly the error of aligning 3D points with the 2D



images backward in time (e.g. 3D points at 7, and 2D
images at #;) is referred to as the backward error. In
the current example, eé,l is the forward error while ei1,2
is the backward error. Just as when locating the CSPs
on the Bounding Edge in Eq. (4), the summations in
Eq. (5) include the projected color of camera k only
if the point of interest is visible in that camera. The
process of Visual Hull alignment by color consistency
is illustrated in Fig. 8.

If we parameterize R and ¢t as & = [d, Oy,
D5, Oy, P, Dg]7, where P, ,, $5 are the Euler’s
angles of R and &4, @5, Og are the x, y, z components
of ¢, the minimization of Eq. (5) can be solved by a
variant of the Levenberg-Marquardt (LM) algorithm
(Dennis and Schnabel, 1983; Press et al., 1993):

1. With an initial estimate <i>, calculate the Hessian
matrix H = {h,,,} and the difference vector d =
{dy} withm,n=1,...,6as

ik ik
dey, del’,

Ly
i = ZZ 3[®], o[®],

8612](1 36
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Z; 2w, am, @

L, i,k
ik 8612
123
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k
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Time t,
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2. Update the parameter & by an amount §® =
(H+M\I)"'d, where ) is a time-varying stabilization
parameter.

3. Go back to 1. until the estimate of &
converges.

Note that in calculating the Hessian matrix H and the
difference vector d in Egs. (6) and (7), the derivatives
of the function ck (which maps a 3D point to its pro-
jected color in the image [ k) with respect to ® are
needed. Here we use a cham rule approach similar to
that used for 2D image registration in Szeliski (1994).
The derivatives are approximated by multiplying the
image gradient (computed locally) with the camera
projection matrix and the Jacobian of the transformed
3D point with respect to the transformation parameters
P.

For objects with large motion between frames, we
initialize the algorithm by approximating the two sets
of CSPs at #; and t, each by an ellipsoidal shell. The
initial estimate of the translation vector ¢ is then set as
the relative positions of the centers of the two ellip-
soids. Similarly the initial guess for the rotation matrix
R is set as the relative orientation of the two ellipsoids.
This simple initialization method works well for most
objects when the rotation of the object is less than 90
degrees. For objects with small motion between frames,
it is suffice to initialize the algorithm with zero trans-
lation and rotation.

Initial motion estimate (R, t)

Colored Surface
Touching Points
(3D Images™)

Error between the
projected colors on

% 1
2D images att; and W ,

:Error between the
iprojected colors on
12D images at t, and p |
i 2

Figure 8. Visual Hull Alignment using color consistency. The error between the colors of the 3D surface points and their projected image

colors is minimized.
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4.2.3. Alignment by Color Consistency and Geomet-
rical Constraints. Since the above formulation for
aligning two sets of CSPs is inspired by the 2D image
registration problem (Szeliski, 1994), the error measure
in Eq. (5)) is based solely on color consistency (stereo).
Though simple, this formulation does not take into ac-
count an important fact: the CSPs lie on the surface of
Visual Hulls whose alignment is governed by the ge-
ometric constraints stated in Lemma 3. Here we show
how the hard constraints of Lemma 3 can be converted
into soft constraints and combined with color consis-
tency to align the CSPs.

Recall that Lemma 3 states that if (R, ¢) is a consis-
tent alignment, then for any Bounding Edge E!, there
exists at least one point P on E ’1 such that the projec-
tion of the transformed point RP + ¢ lies inside or on
the boundary of all the silhouette images {S5} at time
t, and vice versa. In fact P is the point where the object
touches the Bounding Edge, which we have extracted
as a CSP. Hence the constraint is equivalent to saying
that all of the transformed CSPs at time #; must lie in-
side or on the boundary of the silhouette images {Sf}
and vice versa. In practice, due to noises and calibration
errors, instead of applying this hard constraint directly
to the optimization procedures, we incorporate it as
a soft constraint by minimizing the distance between
the projected CSP and the silhouettes as explained
below.

Assume we have the same sets of data {I¥, S;?,
Wiwsi=1,..., Lk =1,...,K;j = 1,2} as
before. Let (R, t) be an estimate of the rigid transfor-
mation. Consider first the calculation of the forward
error. For a CSP Wf (with color Mli) at time 1y, its 3D
position at time 7, would be RW! + ¢. Consider two
different cases of the projection of RW| + ¢ into the
kth camera:

1. The projection lies inside the silhouette Sé‘. In this
case, we use [cé(RWf +t)— /ﬂl]2 (the color differ-
ence) as the error measure, where as defined be-
fore, cé(P) is the projected color of a 3D point
P into the color image 12" . Otherwise, we set the
color error to zero if the projection of P lies out-
side Sé‘. We call this error the forward photometric
error.

2. The projection lies outside S%. In this case, we use
the distance of the projection from S’z‘, represented
by d§ (R Wli + t) as an error measure. The distance
is zero if the projection lies inside S’z‘. We call this
error the forward geometric error.

Note that an approximation of the function d'l? can be
obtained by applying the distance transform to the sil-
houette image Sf (Jain, 1989). Summing over all cam-
eras in which Wli is visible, the forward error measure
of Wf with respect to (R, t) is given by

chy= Y [rrdi(RW] +1) + [ch(RW] +1) — it ]},
k
)

where 7 is a weighing constant. Equation (8) combines
the color consistency constraint (stereo) with the ge-
ometric constraint (Shape-From-Silhouette) using the
weighing constant 7. Similarly, the backward error
measure of a CSP Wi at time 1, is written as the sum
of the backward photometric and geometric errors:

e’i.z = Z {r *d{‘(RT(Wé —t))

+[h(RT (W) — 1)) =]’} ©

The problem of estimating (R, ¢) is now turned into
the problem of minimizing the sum of the forward and
backward error

Ly L
min e = min E e, + E €1 (10)
Rt Rt i3 f

which can be solved using the same Iterative LM algo-
rithm described in Section 4.2.2. Hereafter, we refer to
this Visual Hull across time algorithm as the temporal
SFS algorithm (for rigid objects) and summarize the
steps as follows:

Temporal SFS Algorithm for Rigid Objects

1. Construct the Bounding Edges {Ej.} from the sil-
houette images {Sf} att; where j =1, 2.

2. Extract a set of Colored Surface Points {W}, 11"}
at ¢; from the list of Bounding Edges {E ;} and the
color images {/}.

3. Initialize the translation and rotation parameters by
ellipsoid fitting.

4. Apply the Iterative LM algorithm (Section 4.2.2)
to minimize the sum of the forward and backward
errors in Eq. (10) with respect to the (6D) motion
parameters until convergence is attained or for a
fixed maximum number of iterations.

Note that in calculating the photometric error, set-
ting the color error to zero if the projection of P lies



outside S§ may introduce instability in the optimization
process due to the discontinuity of the photometric er-
ror at the boundary of the silhouettes. Although this
instability problem did not happen in our experiments
in Section 4.5, it can be avoided by setting the photo-
metric error to transition smoothly to zero outside the
silhouette boundary.

Ideally the weighing constant t in Egs. (8) and (9)
should be set based on the relative accuracy between
camera calibration and color balancing. However since
such accuracy information is difficult to obtain, we in-
stead determine t experimentally. Using a synthetic
data set (see Section 4.5.1) with ground-truth motion,
we apply the above temporal SFS algorithm with dif-
ferent values of v and choose the one which gives
the best estimation results as compared to the ground-
truth motion. Once the optimal t is found, it is fixed
and used for all the experiments discussed in Sec-
tion 4.5 (and Part II of this paper). Although this ex-
perimental approach of determining T may not be op-
timal, in practice it works well for a wide varieties of
sequences.

4.3. Visibility

4.3.1. Determining Visibility for Locating CSPs. To
locate the Colored Surface Points using Eq. (4), the
visibility of the 3D point W; (m, w) with respect to
all K cameras is required. Here, we present a way to
determine the visibilities conservatively using only the
silhouette images. Suppose we are given a 3D point P
and a set of silhouette images {S k} with camera centers
{C*} and projection functions {Hk()} The following
lemma then holds:

Lemmad4. Let IT'(P) and TT'(C¥) be the projections
of the point P and the kth camera center C* on the

p=TI(P,)=TI'(P,) s¢'
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(infinite) image plane of camera l. If the 2D line seg-
ment joining TI'(P) and TT'(C*) does not intersect the
silhouette image Si», then P is visible with respect to
camera k at time t;.

Figure 9(a) gives examples where the points P;, P,
and Ps are visible with respect to camera 2. The con-
verse of Lemma 4 is not necessarily true: the visibility
cannot be determined if the segment joining TT/(P)
and IT/(C*) intersects the silhouette S;. One counter
example is shown in Fig. 9(a). Both points P; and P,
project to the same 2D point p on the image plane of
camera 1 and the segment joining p and IT!(C*) inter-
sects with S|. However, P; and P, have different vis-
ibilities with respect to camera 4 (P, is visible while
P, is not). Note that special attention must be given
to situations in which camera center C* lies behind
camera center C'. In such cases, the correct line seg-
ment to be used in Lemma 4 is the outer line segment
(passing through infinity) joining IT'(P) and IT/(C*)
rather than the direct segment. An example is given in
Fig. 9(b).

Though conservative, there are two advantages of us-
ing Lemma 4 to determine visibility for locating CSPs.
First, Lemma 4 uses information directly from the sil-
houette images, avoiding the need to estimate the shape
of the object for the visibility test. Secondly, recall that
to construct a Bounding Edge E ;, we start with the
boundary point u’j of the kth silhouette. Hence all the
points on E ; project to the same 2D point u’j on cam-
era k which implies all points on the Bounding Edge
E ; have the same set of conservative visible images.
This property ensures that the color consistencies of
points on the same Bounding Edge are calculated from
the same set of images. Accuracy in searching for the
touching point W} is increased because the compar-
isons are made using the same images for all of the
points on the same Bounding Edge.

e

(a)

Con rect segment
(b)

Figure 9. (a) Visibility of points with respect to cameras using Lemma 4. (b) An example where C? is behind C!. The correct line to be used
in Lemma 4 is the outer segment which passes through infinity instead of the direct segment.
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4.3.2. Determining Visibility During Alignment. To
perform the alignment using Eq. (10), we have to deter-
mine the visibility of the transformed 3D point RW; + ¢
with respect to the cameras at time #, (and vice versa
the visibility for the transformed point R T(Wé —t)with
respect to the cameras at time f;). Naively, we can just
apply Lemma 4 to the transformed point RW! + ¢
directly. In practice, however, this “direct approach”
does not work for the following reason. Since the CSP
W/ lies on the surface of the object, the projection of
the transformed point RW/ + ¢ should lie inside the
silhouettes at time #,, unless it happens to be on the
occluding contour of the object again at #, such that
its projection lies on the boundary of some of the sil-
houette images. Either way, this means that no matter
where the camera centers are, the line joining the pro-
jection of RW/{ + ¢ and the camera centers almost al-
ways intersects the silhouettes. Hence, the visibility of
the point Wf at 1, will almost always be treated as in-
determinable by Lemma 4 due to its over-conservative
nature.

Here we suggest a “reverse approach” to deal with
this problem. Instead of applying the transformation
(R, t) to the point Wi, we apply the inverse trans-
form (R”, —R”t) to the camera centers and project
the transformed camera centers into the one silhouette
image (captured at #;) where W is originated from as
shown in Fig. 10. Lemma 4 is then applied to the bound-
ary point u (which generates the Bounding Edge E!
that Wf lies on) and the projections of the transformed
camera centers to determine the visibility. Since the
object is rigid, the reverse approach generates the cor-
rect visibility of RW/{ + ¢ with respect to the cameras
at 1, as the direct approach when (R, t) is the correct
alignment.

time t, 'time t, I
I

(RT,-R" t

R'(C™ t)

Figure 10. The “Reverse approach” of applying Lemma 4 to deter-
mine visibility of RWf 4+t with respect to {S§}. The camera centers
are inversely transformed by (RT, —R”t) and then projected onto
{S]f}. The visibility can then be determined by checking if the lines
joining u} and the projections of the transformed camera centers
intersect with S 11 exactly as in Lemma 4.

4.4.  Visual Hull Refinement

After estimating the alignment across time, the rigid
motion {(R;,¢;)} is used to combine the J sets of
silhouette images {S;?;k =1,....K;j=1,...,J}
to get a tighter upper bound on the shape of the ob-
ject. By fixing #; as the reference time, we combine
{85}/ =2,...J with {S}} by considering the former
as “new” silhouette images captured by additional cam-
eras placed at positions and orientations transformed
by (R;,t;). In other words, for the silhouette image
Sf captured by camera k at time j, we use a new per-
spective projection function Hlj—n derived from IT*
through the rigid transformation (R}, ¢ ;). As a result,
the effective number of cameras is increased from K
to KJ.

4.5. Experimental Results

Two types of sequences are used to demonstrate the
validity of our alignment and refinement algorithm.
Firstly, a synthetic sequence is used to obtain a
quantitative comparison of several aspects of the the
algorithm. Two sets of experiments are run on the
synthetic sequence. Experiment Set A compares the
effectiveness of using (1) Colored Surface Points
to align Visual Hulls with (2) voxel models created
by Shape-From-Silhouette and (3) Space Carving
(Kutulakos and Seitz, 2000). Experiment Set B
studies how the alignment accuracy is affected by
each component, color and geometry in the error
measure in Egs. (8) and (9). After we have tested our
alignment algorithm on synthetic data, sequences of
real objects are used in Section 4.5.2 for a qualitative
evaluation on data with real noise, calibration errors
and imperfectly color balanced cameras. Note that in
all of the sequences discussed in this paper, the motion
of the object is aligned with respect to the first frame
of the sequence and we use the alignment results of
frame j — 1 to initialize the alignment of frame ;.

4.5.1. Synthetic Data Set: Torso Sequence. A syn-
thetic data set was created using a textured com-
puter mesh model resembling the human torso. The
model was moved under a known trajectory for
twenty two frames. At each time instant, images of
six cameras (K = 6) with known camera param-
eters were rendered using OpenGL. A total of 22
sets of color and silhouette images were generated.
The textured mesh model and some input images
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(a) The torso object and some of the input images of camera 1 of the synthetic torso sequence. (b) Graphs of the average RMS

errors in rotation and translation against the threshold used in SC. The bottom half of the figure illustrates the amplified part of the graph near
the optimal threshold value (0.108). Using Bounding Edges (the red dashed line) is always more accurate than using SC in alignment, even with

the optimal threshold.

for camera 1 at a variety of frames are shown in
Fig. 11(a).

Experiment Set A: BE/CSP versus SFS and SC

In Experiment Set A three algorithms were imple-
mented to show the effectiveness of using Bound-
ing Edges/Colored Surface Points to align Visual
Hulls compared to using voxel models created by
Shape-From-Silhouette (SFS) and Space Carving (SC)
(Kutulakos and Seitz, 2000). Basically all the three al-
gorithms use the same alignment procedure described
in Section 4.2.2 but with input data (surface points)
obtained from three different ways. In the first algo-
rithm, BEs and CSPs are extracted and used as the input
data for the alignment. In the second algorithm, a voxel
model is built from the silhouette images using voxel-
based SFS. Surface voxels are extracted and colored
by back-projecting onto the color images. The centers
of the colored surface voxels are then treated as input
data points for alignment. In the third algorithm, a voxel
model is first built using SFS (as in the second algo-
rithm) and further refined by Space Carving (SC). The
centers of the surface voxels (which are already colored
by SC) are used as input data for the alignment. Note
that in all of the above three algorithms, only the color
error measure is used in the optimization equations.
To investigate the effect of the space carving thresh-
old (which determines if a voxel is carved away or
not) on alignment, we vary the threshold value from

0 to 4.0 to generate the input data (see the description
of the second algorithm above) and compare the esti-
mated motion parameters with the ground-truth values.
Graphs of the average RMS errors in the rotation and
translation parameters against the threshold are shown
as the blue dotted-dashed lines in Fig. 11(b). When the
threshold is too small, many correct voxels are carved
away, resulting in a voxel model much smaller than the
actual object. When the threshold is too large, extra
incorrect voxels are not carved away, leaving a voxel
model bigger than the actual object. In both cases, the
wrong data points extracted from the incorrect voxel
models cause errors in the alignment process. The op-
timal threshold value is found to be around 0.108 and
the graph is amplified in the vicinity of this value in
the bottom part of Fig. 11(b). As a comparison, the
average RMS errors for the rotation and translation pa-
rameters obtained from using BEs and CSPs is drawn
as the horizontal red dashed line. With the optimal SC
threshold, the performance of using SFS+SC voxel
models is comparable but less accurate than that of us-
ing Bounding Edges and Colored Surface Points. The
results of the estimation of the Y-axis rotation angle
and the X-component of translation at each frame using
the SFS+4-SC input data with the optimal threshold are
plotted as thick blue dotted lines in Fig. 12(a) while the
results of using the SFS surface centers as input data are
plotted as magenta dotted-dashed lines. Also, the esti-
mated parameters of using BEs/CSPs as input data are
plotted as red dashed lines with asterisks, together with
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(a) Alignment results for the Y-axis rotation angle and the X-component of translation estimated at each frame (time) from

Experiment Set A with different inputs: BEs/CSPs (red dashed lines with asterisks), SFS voxel models (magenta dotted-dashed lines), SFS4SC
voxel models with the optimal threshold (blue thick dotted lines) and the ground-truth motion (solid black lines). Using BEs/CSPs is better than
using either SFS or SFS+SC. (b), (c) and (d) Graphs of the refinement errors (missing and extra voxels) against the total number of frames used.
Using BEs/CSPs has a lower error ratio than using either SFS or SFS+SC.

the ground-truth motion in solid black lines in the same
figure. As can be seen, alignment using the SFS voxel
model is much less accurate than using BEs/CSPs. SC
with the optimal threshold performs well, but not quite
as well as using BEs/CSPs. The results of all the mo-
tion (translation and rotation) parameters can be found
in Cheung (2003).

To study the effect of alignment on refinement, the
parameters estimated by the alignment algorithms were
used to refine the shape of the torso model using the
voxel-based SFS method as described in Section 4.4.
The size of voxels used was 7.8 mm x 7.8 mm X
7.8 mm whereas the size of the original torso mesh
model was approximately 542 mm x 286 mm X
498 mm. Since the mesh model cannot be used directly
to compare with the refined voxel models, we converted
the original mesh model into an reference voxel model
and used it to quantify the refinement results. We are
interested in two types of error voxels: (1) extra and
(2) missing voxels. Due to the conservative nature of
SFS, any voxel model constructed with finite number of
silhouette images will always have extra voxels as com-
pared to the actual object (the reference voxel model
in this case) and the number of extra voxels decreases
with the number of images used. On the other hand,

since the synthetic silhouettes are perfect, missing vox-
els are the results of (1) voxel decision problem around
the boundary of the silhouettes (see Cheung, 2003 for
details) and (2) misalignment of motion across frames.
Since the effect of the boundary problem is the same
for all of the algorithms, the number of missing voxels
indicates how the misalignment affects the refinement.

The quantitative refinement results are plotted in
Figs. 12(b) and (c) which show respectively the number
of extra and missing voxels between the refined shapes
and the object voxel models against the total number
of frames used. Figure 12(d) illustrates the ratio of to-
tal incorrect (missing plus extra) to total voxels. In all
of the refinement results, the number of extra voxels
decreases as the number of frames used increases as
discussed above because a tighter Visual Hull is ob-
tained with an increase in the number of silhouette
images. However, the number of missing voxels also
increases as the number of frames used increases due
to alignment errors which remove correct voxels dur-
ing construction. From the figure it can be seen that the
number of missing voxels is very large if the alignments
are way off (e.g. the magenta dotted-dashed curve for
the SFS voxel centers or the blue dotted curves with
‘+’> markers for SFS+SC with threshold 30% lower



than the optimal value). The best refinement results
are the ones using the motion parameters estimated us-
ing BEs/CSPs (the red dashed lines with asterisks in
Figs. 12(b), (c) and (d)).

Experiment Set B: Effect of Error Measure
on the Alignment Accuracy

Experiment Set B investigates the effect of using color
consistency and the geometric constraints as error mea-
sure on the alignment accuracy. In the first algorithm,
only the error from the geometrical constraints is used
(i.e. the first term dX (RW! +¢) in Eq. (8)). In the second
algorithm, only the error caused by the color inconsis-
tency is used (i.. the second term [c5(RW/{ +#) — 1 12
in Eq. (8)). In the third algorithm, both errors are used.
The results for the Y-axis rotation angle and the X-
axis translation component are shown in Figs. 13(a).
In the figure, the ground-truth motion values are drawn
with solid black lines, the results obtained from using
both geometric constraints and color consistency are
drawn with magenta dotted lines with an inverted tri-
angle, the results with only the geometric constraints
are drawn with blue dashed-dotted lines with circle,
and the results with only color consistency are drawn
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with red dashed lines with asterisks. As expected, the
results of using both error components are the best,
followed by the results using only the color consis-
tency. The results obtained using only the geometric
constraints are the worst of the three. As discussed in
Section 4.1.1, aligning Visual Hulls using only geo-
metric (silhouette) information is inherently ambigu-
ous. This means that if color consistency (the second
term of Eq. (8)) is not used, there may be more than
one global minimum to Eq. (10) (see the 2D example in
Fig. 6). Under such situations, optimizing Eq. (10) may
converge to a global minimum other than the actual mo-
tion of the object. This explains why the results of using
only the silhouette information are not as good as using
only color information, or both the silhouette and color
information.

The refinement results of Experiment Set B are
plotted in Figs. 13(b)—(d) which illustrate respec-
tively the extra and missing voxels and the ratio of
total incorrect (missing plus extra) to total voxels
against the total number of frames used for refine-
ment. The results are the best with the motion param-
eters estimated using both the color consistency and
the geometric constraints (the magenta dotted lines
with inverted triangle). Again just using the color
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(a) Results of the Y-axis rotation angle and the X-component of translation estimated at each frame for Experiment Set B with

different error measures: geometric constraints only (blue dashed-dotted lines with circle), color consistency only (red dashed lines with asterisks),
both geometric constraints and color consistency (magenta dotted lines with inverted triangle). The solid black lines represents the ground-truth
motion. The results obtained using both error components are the best followed by the results using only the color consistency. Due to the
alignment ambiguity, the results using only the geometrical constraints are the worst of the three. (b), (c) and (d) The refinement errors (missing
and extra voxels) against the total number of frames used. Using both the color consistency and the geometric constraints has lower error than

just using either one of them.
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consistency is better than just using geometric con-
straints. A video clip Torso.mpg® shows one of
the six input image sequences, the unaligned and
aligned Colored Surface Points and the temporal
refinement/alignment results using BEs/CSPs com-
puted with both the geometric and photometric error
measures.

4.5.2. Real Data Sets: Toy Pooh and Dinosaur/
Bananas.

A. Pooh Sequence. The first test object is a toy (Pooh)
with six calibrated cameras. The toy is placed on a table
and moved to new but unknown positions and orienta-
tions manually in each frame. A total of fifteen frames
are captured from each camera. The input images of
camera 1 at several times are shown in Fig. 14(a).
The CSPs extracted at time #; are shown in Fig. 14(b).
Figures 14(c) and (d) show respectively the unaligned
and aligned Colored Surface Points from all fifteen
frames. It can be seen that since some part of the body
of the toy is uniform in color, the positions of a few
CSPs are not correctly estimated. However, since there
are only a few of them and their deviations are small,
the alignment is still very accurate. This shows the ro-
bustness of our alignment algorithm that as long as

the number of incorrect CSPs are small, the algorithm
works well. Refinement is done using the voxel-based
SFS method. Figures 14(e)—(g) illustrate the refinement
results at time instants #; (6 images), #s (36 images)
and #;5 (90 images). The improvement in shape is very
significant from #; when 6 silhouette images are used
to #;5 when 90 silhouette images are used. The video
clip Pooh.mpg shows some of the input sequences,
the unaligned/aligned CSPs and the temporal refine-
ment/alignment results for this sequence.

B. Dinosaur-Banana Sequence. The objects used in
the second real data set are the toy dinosaur/bananas
shown in Fig. 1(a). Six cameras are used and the di-
nosaur/bananas are placed on a turn-table with un-
known rotation axis and rotation speed. Fifteen frames
are captured and the alignment and refinement re-
sults are shown in Fig. 15. The video clip Dinosaur-
Banana.mpg shows one of the six input image se-
quences, the unaligned/aligned Colored Surface Points
and the temporal refinement/alignment results of the
Dinosaur-Banana Sequence. Note that we have also
applied the temporal SFS algorithm for rigid objects
to sequences of a person standing rigidly on a turn-
table. The results will be presented in Part II of this
paper when we describe a system for building kine-
matic models of humans.

Figure 14. Pooh Data Set. (a) Some of the input images from camera 1. (b) Colored surface points at 1. (¢c) Unaligned Colored Surface Points
from all frames. (d) Aligned Colored Surface Points of all frames. (e) SFS model at #; (6 images used). (f) SFS refined shape at 5 (36 images
used). (g) SFS refined shape at 715 (90 images used). See Pooh.mpg for a movie illustrating these results.
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Figure 15. Dinosaur-Banana Sequence. (a) Example input images. (b) Unaligned Colored Surface Points from all frames. (c) Aligned Colored
Surface Points from all frames. (d) SFS model at #; (6 images used). (e) SFS refined shape at 7 (36 images used). (f) SFS refined shape at 75
(90 images used). There is significant shape improvement from (d) to (f). See Dinosaur-Banana.mpg for movie illustration.

4.5.3. Related Work. Despite the popularity of SFS
as a shape reconstruction method at single time in-
stant, little work has been done in extending it across
time. The work most related to ours is by Mendonca
etal. (2000) and Wong and Cipolla (2001a,2001b) who
study the problem of estimating structure and motion of
a smooth object undergoing circular motion from sil-
houette profiles. They assume a single camera which
is weakly calibrated (i.e. with known intrinsic but un-
known extrinsic parameters). Either the camera (on a
robotic arm) or the object (on a turntable) performs un-
known circular motion while the silhouette images are
taken. In Mendonca et al. (2001) symmetric properties
of the surface of revolution swept by the rotating object
are used to recover the revolution axis, leading to the
estimation of homographies and full epipolar geome-
tries between images using one-dimensional search. In
Wong and Cipolla (2001b), they identity and estimate
the frontier points (see Joshi et al., 1994 for the def-
inition) on the silhouette boundary and use them to
estimate the circular motion between images. Once the
motion has been estimated, the object shape can be
reconstructed using the classic SFS method.

Another group of researchers, lead by Joshi et al.
(1994, 1995) and Vijayakumar et al. (1996) have also
studied the problem of recovering the motion and shape
of a smooth curved object from silhouette images. They
define a local parabolic structure on the surface of the
object and use that, together with epipolar geometry,
to locate corresponding frontier points on three silhou-
ette images. The motion between the images is then
estimated using a two-step nonlinear minimization. In

contrast to these algorithms, our approach has two ad-
vantages: (1) no shape assumptions are made about the
object and (2) no assumptions are made about the mo-
tion (i.e. it does not have to be infinitesimal).

5. SFS Across Time: Articulated Objects

In this section we extend our temporal SFS algorithm
to articulated objects. An object is articulated if it con-
sists of a set of rigidly moving parts connected to each
other at certain articulation points. A good example of
an articulated object is the human body (if we approxi-
mate the body parts as rigid). Given CSPs of a moving
articulated object, recovering the shape and motion re-
quires two inter-related steps: (1) correctly segmenting
the CSPs to each part of the object and (2) estimat-
ing the shape and motion of the individual parts. To
solve this problem, we employ an idea similar to that
used for multiple-layer motion estimation in Sawhney
and Ayer (1996). The rigid parts of the articulated ob-
ject are first modeled as separate and independent of
each other. With this assumption, we iteratively (1) as-
sign the extracted CSPs to different parts of the object
based on their motions and (2) apply the rigid temporal
SFES algorithm to align each part across time. Once the
motions of the parts have been recovered, an articula-
tion constraint is applied to estimate the joint positions.
Note that this iterative approach can be categorized as
belonging to the Expectation Maximization framework
(Dempster et al., 1977). The whole algorithm is ex-
plained below using a two-part, one-joint articulated
object.
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Figure 16. A two-part articulated object at two time instants #; and
.

5.1. Problem Scenario

Consider an unknown one-joint articulated object O
which consists of two rigid parts A and B as shown
in Fig. 16 at two time instants #; and #. Assume
CSPs of the whole object have been extracted from
the color and silhouette images of K cameras, denoted
by {1'.‘, Sj?, Wj’ /JV;;j = 1, 2}. Furthermore, treating A
and B as two independently moving rigid objects al-
lows us to represent the relative motion of A between
t; and t, as (R4, t4) and that of B as (R%,¢Z). Now
consider the following two complementary cases.

5.2.  Alignment with Known Segmentation

Suppose we have segmented the CSPs at ¢; into two
groups belonging to part A and part B, represented by
G;‘ and Gf respectively for both j = 1, 2. By apply-
ing the rigid object temporal SFS algorithm described
in Section 4.2.3 (Eq. (10)) to A and B separately, es-
timates of the relative motions (R5, ¢, (R?,¢5) can
be obtained.

5.3.  Segmentation with Known Alignment

Assume we are given the relative motion
(Rg‘,t?), (Rf,tf) of A and B from #; to . For
a CSP W{ at time #;, consider the following two error
measures:

. 1 )
e'z”? = o Xk:{t *dé‘(R?Wl’ +t?)
1

+Hea(RIWi+6) — i PPh A
1

+[A(REW] +¢5) — i) (12)

{rxdy(RIW] +15)
k

Here e;’f is the error of W] with respect to the
color/silhouette images at #, if it belongs to part A.
Similarly e;'f is the error if Wli lies on the surface of
B. In these expressions the summations are over those
cameras where the transformed point is visible and n’l’A
and n%® represent the number of visible cameras for
the transformed points RS W! +¢4 and REW! 45 re-
spectively. By comparing the two errors in Eqs. (11)
and (12), a simple strategy to classify the point W/ is:

o QA /B
Gf ifey| <kxey,
. s .
WieGY ifey] <wkxesy, (13)

G otherwise

where 0 < x < 1 is a thresholding constant and G‘f
contains all the CSPs which are classified as neither
belonging to part A nor part B. Similarly, the CSPs
at time #, can be classified using the errors ell’é and
ei’g. In practice, the above decision rule does not work
very well on its own because of image/silhouette noise
and camera calibration errors. Fortunately we can use
spatial coherency and temporal consistency to improve
the segmentation.

To use spatial coherency, the notion of a spatial
neighborhood has to be defined. Since it is difficult to
define a spatial neighborhood for the scattered CSPs in
3D space (see for example Fig. 7(b)), an alternate way
is used. Recall (in Section 3.1) that each CSP W{ lies on
a Bounding Edge which in turn corresponds to a bound-
ary point ! of the silhouette image S’f. We define two
CSPs Wi and Wi *! as “neighbors” if their correspond-
ing 2D boundary points u} and u’™" are neighboring
pixels (in 8-connectivity sense) in the same silhouette
image. This neighborhood definition allows us to easily
apply spatial coherency to the CSPs. From Fig. 17(a) it
can be seen that different parts of an articulated object
usually project onto the silhouette image as continuous
outlines. Inspired by this property, the following spatial
coherency rule (SCR) is proposed.

Spatial Coherency Rule (SCR). 1If W/ is classified
as belonging to part A by Eq. (13), it stays as belong-
ing to part A if all of its m left and right immediate
“neighbors” are also classified as belonging to part A
by Eq. (13), otherwise it is reclassified as belonging to
G?, the group of CSPs that belongs to neither part A
nor part B. The same procedure applies to part B.
Figure 17(a) shows how the SCR can be used to
remove spurious segmentation errors. The second con-
straint we utilize to improve the segmentation results is
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Figure 17. Spatial Coherency Rule removes spurious segmentation errors.

temporal consistency as illustrated in Fig. 17(b). Con-
sider three successive frames captured at ¢;_, ; and
tj+1. Fora CSP W', it has two classifications due to the
motion from #;_; to ¢; and the motion from #; to #; ;.
Since WJ’: either belongs to part A or B, the temporal
consistency rule (TCR) simply requires that the two
classifications have to agree with each other:

Temporal Consistency Rule (TCR). 1f W} has the
same classification by SCR from #;_; to ¢; and from ¢;
to ¢41, the classification is maintained, otherwise, it is
reclassified as belonging to G‘?, the group of CSPs that
belongs to neither part A nor part B.

Note that SCR and TCR not only remove wrongly
segmented points, but they also remove some of the
correctly classified CSPs. Overall though they are ef-
fective because less but more accurate data is preferred
to abundant but inaccurate data, especially in our case
where the segmentation has a great effect on the motion
estimation.

5.4. Initialization

As common to all iterative EM algorithms, initializa-
tion is always a problem (Sawhney and Ayer, 1996).
Here we suggest two different approaches to start
our algorithm. Both approaches are commonly used
in the layer estimation literature (Sawhney and Ayer,
1996; Ke and Kanade, 2001). The first approach uses
the fact that the 6 DOF motion of each part of the
articulated object represents a single point in a six di-
mensional space. In other words, if we have a large set

of estimated motions of all the parts of the object, we
can apply a clustering algorithms to these estimates in
the 6D space to separate the motion of each individual
part. To get a set of estimated motions for all the parts,
the following method can be used. The CSPs at each
time instant are first divided into subgroups by cutting
the corresponding silhouette boundaries into arbitrary
segments. These subgroups of CSPs are then used to
generate the motion estimates using the VH alignment
algorithm, each time with a randomly chosen subgroup
from each time instant. Since this approach requires the
clustering of points in a 6D space, it performs best when
the motions between different parts of the articulated
object are relatively large so that the motion clusters
are distinct from each other.

The second approach is applicable in situations
where one part of the object is much larger than the
other. Assume, say, part A is the dominant part. Since
this assumption means that most of the CSPs of the
object belong to A, the dominant motion (R, t4) of
A can be approximated using all the CSPs. Once an
approximation of (R, t%) is available, the CSPs are
sorted in terms of their errors with respect to this dom-
inant motion. An initial segmentation is then obtained
by thresholding the sorted CSPs errors.

For a sequence of J frames, although we can ini-
tialize the segmentation of all frames together using
one step, it is impractical especially when J is large.
Instead we use a simpler approach and initialize the
segmentation independently and separately using two
(consecutive) frames at a time. Experimental results
(see Section 5.7) show that this works well for differ-
ent types of sequences.
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5.5.  Summary: Iterative Algorithm

Although we have described the algorithm above for
an articulated object with two rigid parts, it can be
generalized to apply to objects with N parts provided
N is known. The following summarizes our iterative
algorithm to estimate the shape and motion of parts A
and B over J frames:

Iterative Temporal SFS Algorithm
for Articulated Objects

1. Initialize the segmentation of the J sets of CSPs.
2. Iterate the following two steps until convergence (or
for a fixed number of iterations):

2a. Giventhe CSP segmentation {G;‘, Gf }, recover
the relative motions (R4, t}‘.‘) and (R?, t?) of A
and B over all frames j = 2, ..., J using the
rigid object temporal SFS algorithm described
in Section 4.2.3.

2b. Repartition the CSPs according to the estimated
motions by applying Eq. (13), followed by the
intra-frame SCR and then inter-frame TCR for
all frame j=1,..., J.

5.6. Joint Location Estimation

After recovering the motions of parts A and B sep-
arately, the point of articulation between them is es-
timated. Suppose we represent the joint position at
time 7, as YJ. Since YJ lies on both A and B, it
must satisfy the motion equation from #; to t, as

RYYE + ¢ = RJYE + ¢2. Putting together similar
equations for Y over J frames, we get

R} — R} -t}
vp = : ) (14)
R? — R% tB ¢4

The least squares solution of Eq. (14) can be computed
using Singular Value Decomposition.

5.7.  Experimental Results

5.7.1. Synthetic Data Set. 'We use an articulated mesh
model of a virtual computer human body as the syn-
thetic test subject. To generate a set of test sequences,
the computer human model is programmed to only
move one particular joint and the images of the move-
ments are rendered using OpenGL. Since only one joint
(and one body part) is moved at each time, we can con-
sider the virtual human body as an one-link two part
articulated object. A total of eight sets of data sequences
(each set with 8 cameras) are generated, correspond-
ing to the eight joints: left/right shoulder, elbow, hip
and knee. For each of these synthetic sequences, we
applied the articulated temporal SFS algorithm to re-
cover the shape, motion and the joint location of the
virtual human. Since the size of the whole body is
much larger than a single part, the dominant motion
initialization method is used. Figure 18 shows some
input images from one of cameras and the segmen-
tation/alignment/joint estimation results for the right
elbow and right hip joints. As can be seen, our itera-
tive segmentation/alignment algorithm performs well

Right Elbow Joint

Right Hip Joint

3 input images
from camera 6 . . .
P estimated joint position

Aligned and
Segmented CSPs

.- iUnaligned CSPs

3 input images :

Eom i estimated joint position
i

™= Unaligned CSPs  Aligned and
' Segmented CSPs

Figure 18. Input images and results for the right elbow and right hip joints of the synthetic virtual human. For each joint, the unaligned
CSPs from different frames are drawn with different colors. The aligned and segmented CSPs are shown with two different colors to show the
segmentation. The estimated articulation point (joint location) is indicated by the black sphere.
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Table 1. The ground-truth and estimated positions of the eight body joints for the synthetic sequences.
The absolute errors (averaging about 26 mm) is small compared to the actual size of the model (<500 mm

x 200 mm x 1750 mm).

Ground-truth (x, y, z)
Joints positions (in mm)

Distance
error (in mm)

Estimated (x, y, z)
positions (in mm)

Left Shoulder
Right Shoulder

(199.61, 66.06, 1404.75)
(—200.34, 66.06, 1404.75)

Left Elbow (411.75, —116.60, 1333.54)
Right Elbow (—407.00, 146.01, 1258.53)
Left Hip (87.02, 43.32,974.75)
Right Hip (=91.65, 42.37,979.51)
Left Knee (251.57, —438.03, 853.29)
Right Knee (—143.90, —399.59, 723.32)

(203.40, 54.06, 1403.80) 12.62
(—206.09, 73.87, 1398.53) 11.52
(412.98, —119.61, 1323.23) 10.81
(—398.89, 178.54, 1288.19) 44.76

(92.16, 40.46, 976.77) 6.22

(—85.20, —2.13, 965.11) 4721
(285.14, —432.44, 857.50) 34.29
(—102.92, —393.13, 741.42) 45.27

and the joint positions are estimated accurately in both
cases. Table 1 compares the ground-truth with the esti-
mated joint positions for all the 8 synthetic sequences.
The absolute distance errors between the ground-truth
and the estimated joints locations are small (averaging
about 26mm) when compared to the size of the human
model (=500 mm x 200 mm x 1750 mm). The in-
put images, CSPs and the results for the left hip and
knee joints are shown in the movie Synthetic-joints-
leftleg.mpg.

5.7.2. Real Data Sets. Two different data sets with
real objects were captured. The first real data set con-
tains two separate, independently moving rigid objects
while the second real data set investigates the perfor-
mance of our articulated temporal SFS algorithm for
the joint estimation for a real person.

A. Two Separately Moving Rigid Objects: Pooh-
Dinosaur Sequence. The Pooh and dinosaur from
Section 4.5.2 are used to test the performance of our it-
erative CSP segmentation/motion estimation algorithm
on two separate and independently moving rigid ob-
jects. Eight calibrated cameras (K = 8) were used in
this Pooh-Dinosaur sequence. Both toys are placed on
the floor and individually moved to new but unknown
positions and orientations manually in each frame.
Fourteen frames were captured for each camera. Since
the two objects are of comparable size but with large
relative motion, we use the first initialization approach
(clustering of motions) as described in Section 5.4 to
initialize the alignment. Figure 19(a) shows some of the
input images of camera 3. The segmentation/alignment
results using our temporal SFS algorithm are illustrated

in Figs. 19(b)—(f). Figure 19(b) shows the unaligned
CSPs for all the 14 frames. Figure 19(c) shows the
aligned and segmented CSPs. The figures demonstrate
that our algorithm correctly segments the CSPs as be-
longing to each object. The alignments of both toys are
also accurate except those of the dinosaur from frame
6 to frame 9 when the dinosaur rolled over. In those
frames, our alignment algorithm failed as the rotation
angles were too large (around 90 degrees). However,
the alignment recovers after frame 9 when the dinosaur
is upright again.

The shapes of the two toys were refined by SFS using
the estimated motions in the same fashion as discussed
in Section 4.4. Note that to refine the objects, there is
no need to segment (which is difficult to do due to oc-
clusion) the silhouettes as belonging to which object
as long as the motions of the objects are significantly
different from each other for at least one frame. The
voxels that do not belong to the dinosaur, say, would
be carved away by SFS over time as they do not fol-
low the motion of the dinosaur. Figures 19(d)—(f) illus-
trate the SFS refined voxel models of both objects at
t1, t5 and t;3 respectively. Since the alignment data for
the dinosaur from frame 6 to frame 9 are inaccurate,
those frames were not used to refine the shape of the
dinosaur. As can be seen, significant shape improve-
ment is obtained from #; to #;3. The video clip Pooh-
Dinosaur.mpg shows the input images from one of the
eight cameras, the unaligned/aligned/segmented CSPs
and the temporal refinement results.

B. Joints of Real Human. In the second set of real
data, we used videos of a person (SubjectE) to quali-
tatively test the performance of our articulated object
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Figure 19. The Pooh-Dinosaur sequence. (a) Some of the input images from camera 3. (b) The unaligned CSPs from all frames. (c) The aligned
and segmented CSPs. (d) SFS refined voxel models at 7; (8 silhouette images are used). (e) SES refined voxel models at 5 (40 silhouette images
are used). (). SFS refined voxel models at 73 (104 silhouettes are used for the toy Pooh and 72 silhouette images are used for the dinosaur).

temporal SFS algorithm for joint location estimation.
Eight sequences (each with 8 cameras) correspond-
ing to the movement of the left/right shoulder, elbow,
hip, knee joints of SubjectE were captured. In each
sequence, SubjectE only moves one of her joints so
that in that sequence her body can be considered as
an one-joint, two part articulated object, exactly as the
synthetic data set. Again, the dominant motion initial-
ization method is used. Some of the input images and
the results of segmentation/alignment/position estima-
tion for two joints (left elbow and left hip) are shown in
Fig. 20. As can be seen, the motion, the segmentation
of the body parts, and the joint locations are all esti-
mated correctly in both sequences. Some of the input
images, the CSPs and the segmentation/estimation re-

sults of the right arm joints for SubjectE can be found in
the movie clip SubjectE-joints-rightarm.mpg. Note
that the joint estimation results for another two sub-
jects SubjectG and SubjectS can be found in Part IT of
this paper when we discuss our human body kinematic
modeling system.

5.7.3. Related Work. Though the work by
Krahnstoever et al. (2001, 2003) uses only monocular
images, their idea is very similar to ours in the
sense that it is also based on the the layered motion
segmentation/estimation formulation (Sawhney and
Ayer, 1996). They first perform an EM-like segmen-
tation/motion estimation of 2D regions on monocular
images of the articulated object and then model

Left Elbow Joint

Left Hip Joint

3 input images
from camera 2
= -

estimated joint position

Aligned and

iUnaligned CSPs Segmented CSPs

3 input images
from camera 4

estimated joint position

: ‘:) I i " *
gned Aligned and
Segmented CSPs

j Unali

Figure 20.

Input images and results for the left elbow and left hip joints of SubjectE. For each joint, the unaligned CSPs from different frames

are drawn with different colors. The aligned and segmented CSPs are shown with two different colors to show the segmentation. The estimated

articulation point (joint location) is indicated by the black sphere.



the articulated parts by 2D cardboard models. As com-
mon to other monocular methods, their approach does
not handle occlusion and has difficulties estimating the
motion of objects which do not contain rotation around
an axis perpendicular to the image plane.

6. Conclusion

In this paper we have developed a theory of performing
Shape-From-Silhouette across time for both rigid ob-
jects and articulated objects undergoing arbitrary and
unknown motion. We first studied the ambiguity of
aligning two Visual Hulls, and then proposed an al-
gorithm using stereo to break the ambiguity. We first
represented each Visual Hull using Bounding Edges.
Colored Surface Points are then located on the Bound-
ing Edges by comparing color consistencies. The Col-
ored Surface Points are used to estimate the rigid mo-
tion of the object across time, using a 2D images/3D
points alignment algorithm. Once the alignment has
been computed, all of the images are considered as be-
ing captured at the same instant. The refined shape of
the object can then be obtained by any reconstruction
method such as SFS or Space Carving.

Our algorithm combines the advantages of both SFS
and Stereo. A key principle behind SFS, expressed in
the Second Fundamental Property of Visual Hulls, is
naturally embedded in the definition of the Bounding
Edges. The Bounding Edges incorporated, as a repre-
sentation for the Visual Hull, a great deal of the accurate
shape information that can be obtained from the sil-
houette images. To locate the touching surface points,
multi-image stereo (color consistency among images)
is used. Two major difficulties of doing stereo : visi-
bility and search size are both handled naturally using
the properties of the Bounding Edges. The ability to
combine the advantages of both SFS and Stereo is the
main reason why using Bounding Edges/Colored Sur-
face Points gives better results in motion alignment than
using voxel models obtained from SFS or SC (see Sec-
tion 4.5.1). Another disadvantage of using voxel mod-
els and Space Carving is that each decision (voxel is
carved away or not) is made individually for each voxel
according to a criterion involving thresholds. On the
contrary, in locating colored surface points on Bound-
ing Edges, the decision (which point on the Bounding
Edge touches the object) is made cooperatively (by
finding the point with the highest color consistency)
along all the points on the Bounding Edge, without the
need of adjusting thresholds. In summary, the infor-
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mation contained in Bounding Edges/Colored Surface
Points is more accurate than that contained in voxel
models constructed from SC/SFS. In parameter esti-
mation, few but more accurate data is always preferred
over abundant but less inaccurate data, especially in
applications such as alignment.

We also extended our Temporal SFS algorithm to
(piecewise rigid) articulated objects and successfully
applied it to solve the problems of segmenting CSPs
and recovering the motions of two independently mov-
ing rigid objects and joint positions estimation for the
human body. The advantage of our algorithm is that it
solves the difficult problem of shape/motion/joint esti-
mation by a two-step approach: first iteratively recover
the shape (in terms of CSP) and the motion of the in-
dividual parts of the articulated object and then locate
the joint using a simple motion constraint. The separa-
tion of the joint estimation and the motion estimation
greatly reduces the complexity of the problem. Since
our algorithm uses motion to segment the CSPs, it fails
when the relative motion between the parts of the ar-
ticulated objects is too small. Moreover, due to the EM
formulation of the algorithm, the convergence of the
algorithm depends on the initial estimates of the mo-
tion parameters. When the initial motion estimates are
too far from the correct values, the algorithm may fall
into a local minimum. Finally, although the algorithm
can be generalized to apply to objects with N parts, in
practice it does not work well when there are more than
four parts due to the local minimum problem.

In Part II of this paper we will show how our Tem-
poral SFS algorithms can be used to build a kine-
matic model of a person, consisting of detailed shape
and precise joint information. The kinematic model is
then used to perform vision-based (markerless) motion
capture.

6.1. Future Work

While our temporal SFS algorithm can be used to re-
cover the motion and shape of moving rigid and ar-
ticulated objects, a lot of naturally occurring objects
are non-rigid or deformable. A rational future direc-
tion is to extend our temporal SFS algorithms to de-
formable objects such as a piece of cloth or a crawling
caterpillar. There are two major difficulties in extend-
ing temporal SFS to non-rigid objects. The first diffi-
culty, which is common to other surface-point-based
3D shape/motion estimation methods (Aggarwal et al.,
1994), is to assume suitable shape and motion models
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for the object. The choice of the deformable model is
critical and depends on the application. The second dif-
ficulty is caused by the fact that since our temporal SFS
algorithm is not feature-based, the CSPs are not tracked
over time and there is no point-to-point correspondence
between two sets of CSPs extracted at different instants.
Hence, it is unclear how the chosen deformable model
can be applied to the CSPs across time. Despite these
difficulties, the possibility of extending temporal SFS
to non-rigid objects is worth studying as it would help
solve important non-rigid tracking problems in com-
puter vision.

Notes

1. Proofs of all the lemmas in this paper can be found at Cheung
(2003).

2. All of the movie clips can be found at http://www.cs.cmu.
edu/ german/research/Journal/IJCV/Theory/. Lower resolution
versions of some of the movies are also included in the supple-
mentary movie SFSAT__11_Theory.mpg.

References

Aggarwal, J., Cai, Q., Liao, W., and Sabata, B. 1994. Articulated
and elastic non-rigid motion: A review. In Proceedings of IEEE
Workshop on Motion of Non-rigid and Articulated Objects’94,
pp. 16-22.

Ahuja, N. and Veenstra, J. 1989. Generating octrees from object sil-
houettes in orthographic views. IEEE Transactions Pattern Anal-
ysis and Machine Intelligence, 11(2):137-149.

Baumgart, B.G. 1974. Geometric modeling for computer vision.
Ph.D. thesis, Stanford University.

Besl, P. and McKay, N. 1992. A method of registration of 3D shapes.
IEEE Transaction on Pattern Analysis and Machine Intelligence,
14(2):239-256.

Bottino, A. and Laurentini, A. 2000. Non-intrusive silhouette based
motion capture. In Proceedings of the Fourth World Multiconfer-
ence on Systemics, Cybernetics and Informatics SCI 2001, pp. 23—
26.

Buehler, C., Matusik, W., McMillan, L., and Gortler, S. 1999. Cre-
ating and rendering image-based visual hulls. Technical Report
MIT-LCS-TR-780, MIT.

Buehler, C., Matusik, W., and McMillan, L. 2001. Polyhedral visual
hulls for real-time rendering. In Proceedings of the 12th Euro-
graphics Workshop on Rendering.

Cheung, G., Baker, S., and Kanade, T. 2003. Visual hull align-
ment and refinement across time:a 3D reconstruction algorithm
combining shape-frame-silhouette with stereo. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’03), Madison, MI.

Cheung, G. 2003. Visual Hull Construction, Alignment and Refine-
ment for Human Kinematic Modeling, Motion Tracking and Ren-
dering. Ph.D. thesis, Carnegie Mellon University.

Delamarre, Q. and Faugeras, O. 1999. 3D articulated models and
multi-view tracking with silhouettes. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV’99), Corfu, Greece.

Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of Statistical
Society, B 39:1-38.

Dennis, J. and Schnabel, R. 1983. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice Hall,
Englewood Cliffs, NJ.

Irani, M., Hassner, T., and Anandan, P. 2002. What does the scene
look like from a scene point? In Proceedings of European Con-
ference on Computer Vision (ECCV’02), Copenhagen, Denmark.
pp- 883-897.

Jain, A. 1989. Fundamentals of Digital Image Processing. Prentice
Hall.

Joshi, T., Ahuja, N., and Ponce, J. 1994. Towards structure and
motion estimation from dynamic silhouettes. In Proceedings of
1EEE Workshop on Motion of Non-rigid and Articulated Objects,
pp. 166-171.

Joshi, T., Ahuja, N., and Ponce, J. 1995. Structure and motion es-
timation from dynamic silhouettes under perspective projection.
Technical Report UTUC-BI-AI-RCV-95-02, University of Illinois
Urbana Champaign.

Kakadiaris, I. and Metaxas, D. 1998. 3D human body model acqui-
sition from multiple views. International Journal on Computer
Vision, 30(3):191-218.

Ke, Q. and Kanade, T. 2001. A subspace approach to layer extrac-
tion. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’01), Kauai, HI.

Kim, Y. and Aggarwal, J. 1986. Rectangular parallelepiped coding:
A volumetric representation of three dimensional objects. IEEE
Journal of Robotics and Automation, RA-2:127-134.

Krahnstoever, N., Yeasin, M., and Sharma, R. 2001. Automatic ac-
quisition and initialization of kinematic models. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’01), Technical Sketches, Kauai, HI.

Krahnstoever, N., Yeasin, M., and Sharma, R. 2003. Automatic ac-
quisition and initialization of articulated models. In To appear in
Machine Vision and Applications (to accepted).

Kurazume, R., Nishino, K., Zhang, Z., and Ikeuchi, K. 2002. Si-
multaneous 2D images and 3D geometric model registration for
texture mapping utilizing reflectance attribute. In Proceedings of
Asian Conference on Computer Vision (ACCV’02), vol. 1, pp. 99—
106.

Kutulakos, K. and Seitz, S. 2000. A theory of shape by space
carving. International Journal of Computer Vision, 38(3):199—
218.

Laurentini, A. 1991. The visual hull: A new tool for contour-based
image understanding. In Proceedings of the Seventh Scandinavian
Conference on Image Analysis, pp. 993—-1002.

Laurentini, A. 1994. The visual hull concept for silhouette-based im-
age understanding. IEEE Transactions Pattern Analysis and Ma-
chine Intelligence, 16(2):150-162.

Laurentini, A. 1995. How far 3D shapes can be understood from 2D
silhouettes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(2):188-195.

Laurentini, A. 1999. The visual hull of curved objects. In Proceed-
ings of International Conference on Computer Vision (ICCV’99),
Corfu, Greece.



Lazebnik, S., Boyer, E., and Ponce, J. 2001. On computing exact
visual hulls of solids bounded by smooth surfaces. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’01), Kauai HI.

Martin, W. and Aggarwal, J. 1983. Volumetric descriptions of objects
from multiple views. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 5(2):150-174.

Matusik, W. 2001. Image-based visual hulls. Master’s thesis, Mas-
sachusetts Institute of Technology.

Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMil-
lan, L. 2000. Image-based visual hulls. In Computer Graph-
ics Annual Conference Series (SIGGRAPH’00), New Orleans,
LA.

Mendonca, P., Wong, K., and Cipolla, R. 2000. Camera pose esti-
mation and reconstruction from image profiles under circular mo-
tion. In Proceedings of European Conference on Computer Vision
(ECCV’00), Dublin, Ireland, pp. 864-877.

Mendonca, P., Wong, K., and Cipolla, R. 2001. Epipolar geometry
from profiles under circular motion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6):604-616.

Moezzi, S., Tai, L., and Gerard, P. 1997. Virtual view generation for
3D digital video. IEEE Computer Society Multimedia, 4(1).

Noborio, H., Fukuda, S., and Arimoto, S. 1988. Construction of the
octree approximating three-dimensional objects by using multiple
views. IEEE Transactions Pattern Analysis and Machine Intelli-
gence, 10(6):769-782.

Okutomi, M. and Kanade, T. 1993. A multiple-baseline stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(4):353-363.

Poelman, C. and Kanade, T. 1992. A paraperspective factoriza-
tion method for shape and motion recovery. Technical Report
CMU-CS-TR-92-208, Carnegie Mellon University, Pittsburgh,
PA.

Potmesil, M. 1987. Generating octree models of 3D objects from their
silhouettes in a sequence of images. Computer Vision, Graphics
and Image Processing, 40:1-20.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 1993. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge
University Press.

Shape-From-Silhouette Across Time Part I 247

Quan, L. and Kanade, T. 1996. A factorization method for affine
structure from line correspondences. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’96),
San Francisco, CA, pp. 803-808.

Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of the ICP
algorithm. In Third International Conference on 3D Digital Imag-
ing and Modeling, pp. 145-152.

Sawhney, H. and Ayer, S. 1996. Compact representations of videos
through dominant and multiple motion estimation. /[EEE Transac-
tion on Pattern Analysis and Machine Intelligence, 18(8):814-830.

Shanmukh, K. and Pujari, A. 1991. Volume intersection with optimal
set of directions. Pattern Recognition Letter, 12:165-170.

Szeliski, R. 1993. Rapid octree construction from image sequences.
Computer Vision, Graphics and Image Processing: Image Under-
standing, 58(1):23-32.

Szeliski, R. 1994. Image mosaicing for tele-reality applications.
Technical Report CRL 94/2, Compaq Cambridge Research Labo-
ratory.

Szeliski, R. and Golland, P. 1998. Stereo matching with transparency
and matting. In Proceedings of the Sixth International Conference
on Computer Vision (ICCV’98), pp. 517-524, Bombay, India.

Tomasi, C. and Kanade, T. 1992. Shape and motion from image
streams under orthography: A factorization method. International
Journal of Computer Vision, 9(2):137-154.

Vijayakumar, B., Kriegman, D., and Ponce, J. 1996. Structure and
motion of curved 3D objects from monocular silhouettes. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’96), San Francisco, CA, pp. 327-334.

Wheeler, M. 1996. Automatic Modeling and Localization for Object
Recognition. PhD thesis, Carnegie Mellon University.

Wong, K. and Cipolla, R. 2001. Head model acquisition and silhou-
ettes. In Proceedings of International Workshop on Visual Form
(IWVF-4).

Wong, K. and Cipolla, R. 2001. Structure and motion from silhou-
ettes. In Proceedings of International Conference on Computer
Vision (ICCV’01), Vancouver, Canada.

Zhang, Z. 1994. Iterative point matching for registration of free-form
curves and surfaces. International Journal of Computer Vision,
13(2):119-152.



