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RENÉ VIDAL
Center for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University, 308B Clark Hall,

3400 N. Charles St., Baltimore, MD 21218
rvidal@cis.jhu.edu

YI MA
Department of ECE, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, IL 61801

yima@uiuc.edu

STEFANO SOATTO
Computer Science Department, University of California at Los Angeles, 3531 Boelter Hall, Los Angeles,

CA 90095
soatto@cs.ucla.edu

SHANKAR SASTRY
Department of EECS, University of California at Berkeley, 237 Cory Hall, Berkeley, CA 94720

sastry@eecs.berkeley.edu

Received May 2002; Accepted February 2005

First online version published in April, 2006

Abstract. We present an algebraic geometric approach to 3-D motion estimation and segmentation of multiple
rigid-body motions from noise-free point correspondences in two perspective views. Our approach exploits the
algebraic and geometric properties of the so-called multibody epipolar constraint and its associated multibody
fundamental matrix, which are natural generalizations of the epipolar constraint and of the fundamental matrix to
multiple motions. We derive a rank constraint on a polynomial embedding of the correspondences, from which one
can estimate the number of independent motions as well as linearly solve for the multibody fundamental matrix. We
then show how to compute the epipolar lines from the first-order derivatives of the multibody epipolar constraint
and the epipoles by solving a plane clustering problem using Generalized PCA (GPCA). Given the epipoles and
epipolar lines, the estimation of individual fundamental matrices becomes a linear problem. The clustering of the
feature points is then automatically obtained from either the epipoles and epipolar lines or from the individual
fundamental matrices. Although our approach is mostly designed for noise-free correspondences, we also test its
performance on synthetic and real data with moderate levels of noise.
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1. Introduction

A classic problem in visual motion analysis is to es-
timate a motion model for a set of 2-D feature points
as they move in a video sequence. When the scene is
static, the problem of fitting a 3-D model compatible
with the structure and motion of the scene is well under-
stood (Hartley and Zisserman, 2000; Ma et al., 2003).
For instance, it is well-known that two views of a scene
are related by the so-called epipolar constraint and that
the motion of the camera can be estimated using linear
techniques such as the eight-point algorithm (Longuet-
Higgins, 1981). However, these techniques can not deal
with dynamic scenes in which different regions of the
image obey different motion models due to depth dis-
continuities, perspective effects, multiple moving ob-
jects, etc.

Motion estimation and segmentation refers to the
problem of fitting multiple motion models to the scene,
without knowing which feature points are moving ac-
cording to the same model. Previous work (Feng and
Perona, 1998) solves this problem by first clustering
the features corresponding to the same motion using
K -means or spectral clustering, and then estimating a
single motion model for each group. This can also be
done in a probabilistic framework (Torr, 1998) in which
a maximum-likelihood estimate of the parameters of
each motion model is sought by alternating between
feature clustering and single-body motion estimation
using the Expectation Maximization (EM) algorithm.
However, the convergence of EM to the global max-
imum depends strongly on initialization (Torr et al.,
2001).

In order to deal with the initialization problem, recent
work has concentrated on the study of the geometry of
dynamic scenes. Even for drastically simplified motion
models, such as multiple points moving linearly with
constant speed (Han and Kanade, 2000; Shashua and
Levin, 2001) or in a conic section (Avidan and Shashua,
2000), multiple points moving in a plane (Sturm, 2002),
or multiple translating planes (Wolf and Shashua,
2001), the geometric aspects of the problem are non-
trivial. More general motion models have only been
studied in the case of orthographic cameras observ-
ing multiple rigid-body motions (Costeira and Kanade,
1995; Kanatani, 2001; Vidal and Hartley, 2004) and
in the case of two perspective cameras observing two
rigid-body motions (Wolf and Shashua, 2001).

In this paper, we present an algebraic geometric
approach to the estimation and segmentation of an

unknown number of rigid-body motions from a set of
noise-free point correspondences in two perspective
views. Rather than alternating between feature cluster-
ing and single-body motion estimation, our approach
algebraically eliminates the feature clustering stage and
directly solves for the motion parameters in an alge-
braic fashion. This is achieved by fitting a multibody
motion model to all the image measurements and then
factorizing this model to obtain the individual motion
parameters. The final result is a natural generalization
of the geometry of the classical two-view structure from
motion problem (epipolar constraint, fundamental ma-
trix and eight-point algorithm) to the case of multiple
rigid-body motions.

Section 2 studies the geometry and algebra of the
multibody structure from motion problem. We intro-
duce the multibody epipolar constraint as a geometric
relationship between the motion parameters and the im-
age points that is satisfied by all the correspondences,
regardless of the body with which they are associated.
We show that the multibody epipolar constraint is bilin-
ear on a polynomial embedding of the correspondences
and linear on the so-called multibody fundamental ma-
trix F , an algebraic structure encoding the parameters
of all rigid-body motions. We then study the geometric
properties of F and prove that the embedded epipoles
of each independent motion are the intersection of the
left null space ofF with the so-called Veronese surface.

Section 3 presents an algebraic geometric algorithm
for estimating the number of motions, the motion pa-
rameters and the clustering of the correspondences. We
first derive a rank constraint on the matrix of embedded
correspondences from which one can estimate the num-
ber of independent motions n as well as linearly solve
for the multibody fundamental matrix F . Given n and
F , we show that one can estimate the epipolar line as-
sociated with each correspondence from the first-order
derivatives of the multibody epipolar constraint at the
correspondence. By applying this process to all the cor-
respondences, we obtain a collection of epipolar lines
that must intersect at the n epipoles. The estimation
of the epipoles is then equivalent to a plane clustering
problem, which we solve algebraically using Gener-
alized Principal Component Analysis (GPCA) (Vidal
et al., 2005, 2004, 2003). Given the epipoles and epipo-
lar lines, the estimation of individual fundamental ma-
trices becomes a linear problem. The clustering of the
feature points is then automatically obtained from ei-
ther the epipoles and epipolar lines or from the individ-
ual fundamental matrices. Since our technique is based
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on solving linear systems, taking derivatives of multi-
variate polynomials, and computing roots of univariate
polynomials, 3-D motion segmentation can be solved
in closed form if and only if the number of motions is
at most four.

Although our 3-D motion segmentation algorithm
is mostly designed for noise-free correspondences, in
Section 4 we present experiments on synthetic data that
evaluate the performance of our approach with respect
to moderate levels of noise. We also apply our algorithm
to the segmentation of an indoor sequence.

Remark 1. Although the proposed algebraic geomet-
ric algorithm is algebraically equivalent to the fac-
torization of symmetric tensors, we avoid the use of
tensorial notation throughout the paper, because algo-
rithms based on polynomial algebra are computation-
ally more straightforward and better established. As a
consequence, this paper requires little background be-
yond conventional linear and polynomial algebra.

2. Multibody Epipolar Geometry

In this section, we generalize classical epipolar geom-
etry to the case of multiple rigid-body motions. We
introduce the multibody epipolar constraint and the
multibody fundamental matrix, and analyze some of
their algebraic and geometric properties.

2.1. Two-View Multibody Structure From Motion
Problem

Consider a scene containing an unknown number n of
rigidly moving objects and let {gi (t) ∈ SE(3)}n

i=1 rep-
resent their poses at time t . If we assume that the n
objects are being observed by a moving perspective
camera whose pose at time t is g0(t) ∈ SE(3), then
the motion of object i relative to the camera between
two frames at times t and t + 1, is given by (Ri , Ti ) =
gi (t + 1)g0(t + 1)−1g0(t)gi (t)−1. Let Fi ∈ R3×3 be
the fundamental matrix associated with the i th rigid-
body motion (Ri , Ti ) ∈ SE(3) for i = 1, . . . , n. That
is, Fi = K −T

i [Ti ]× Ri K −1
i , where Ki ∈ R3×3 is the

camera calibration matrix, and [Ti ]× ∈ so(3) is the
skew-symmetric matrix representing the cross product
with Ti . We assume that the n rigid-body motions are
independent from each other, i.e., we assume that the
n fundamental matrices {Fi }n

i=1 are different (up to a
scale factor).

Let {X j ∈ R3}N
j=1 be a collection of points in 3-D

space lying on the n moving objects. We denote the
image of a point X j ∈ R3 with respect to image frame
I f as x j

f ∈ P2, for j = 1, . . . , N and f = 1, 2. In
order to avoid degenerate cases, we will assume that
the image points {x j

f } are in general position in 3-D
space, i.e., their corresponding 3-D points do not all
lie in any critical surface, for example. We will drop
the superscript when we refer to a generic image pair
(x1, x2). Also, we will use the homogeneous represen-
tation x = [x, y, z]T to refer to an arbitrary image point
in P2, unless otherwise stated.

In this paper, we are concerned with the following
problem.

Problem 1 (Two-view multibody structure from motion
problem.)

Given a collection of image pairs {(x j
1, x j

2)}N
j=1 corre-

sponding to an unknown number of independently and
rigidly moving objects, estimate the number of inde-
pendent motions n, the fundamental matrices {Fi }n

i=1,
and the object to which each image pair belongs.

2.2. The Multibody Epipolar Constraint

Let (x1, x2) be an arbitrary image pair associated with
any of the n moving objects. Then, there exists a fun-
damental matrix Fi ∈ R3×3 such that the following
epipolar constraint (Longuet-Higgins, 1981) is satis-
fied

xT
2 Fi x1 = 0. (1)

Therefore, regardless of the object to which the image
pair belongs, the following multibody epipolar con-
straint must be satisfied by the number of independent
motions n, the fundamental matrices {Fi }n

i=1 and the
image pair (x1, x2)

E(x1, x2)
.=

n∏
i=1

(
xT

2 Fi x1

) = 0. (2)

The multibody epipolar constraint eliminates the prob-
lem of clustering the correspondences by taking the
product of the epipolar constraints. Although this is not
the only way of algebraically eliminating feature clus-
tering, we will see shortly that (2) has the advantage
of being a polynomial in (x1, x2) with a nice algebraic
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Figure 1. Two views of two independently moving objects with two different rotations and translations: (R1, T1) and (R2, T2) relative to the

camera frame.

structure. For instance, we will show that the multi-
body epipolar constraint is an irreducible polynomial
of minimal degree n, whose coefficients can be easily
estimated from data, and whose derivatives encode the
motion parameters.

Example 1 (Two rigid-body motions). Imagine the
simplest case of a scene containing only two indepen-
dently moving objects as shown in Fig. 1. In this case,
both image pairs (x1

1, x1
2) and (x2

1, x2
2) satisfy the equa-

tion (
xT

2 F1x1

)(
xT

2 F2x1

) = 0

for F1 = [T1]× R1 and F2 = [T2]× R2. This equation
is no longer bilinear but rather bi-quadratic in the two
images x1 and x2 of any point X on one of these ob-
jects. Furthermore, the equation is no longer linear in
F1 or F2 but rather bilinear in (F1, F2). However, if
sufficiently many image pairs (x1, x2) are given, we
can still recover some information about the two fun-
damental matrices F1 and F2 from such equations, in
spite of the fact that we do not know the object or mo-
tion to which each image pair belongs. An algorithm
specifically designed for this special case (n = 2) was
presented in Wolf and Shashua (2001). In this paper,
we provide a general solution for an arbitrary number
of motions n.

2.3. The Multibody Fundamental Matrix

The multibody epipolar constraint allows us to convert
the multibody structure from motion problem (Prob-
lem 1) into one of solving for the number of indepen-
dent motions n and the fundamental matrices {Fi }n

i=1

from (2). However, while the epipolar constraint (1) is

bilinear in the image points and linear in the funda-
mental matrix, the multibody epipolar constraint (2) is
bi-homogeneous in the image points and multilinear in
the fundamental matrices. A standard technique used in
algebra to render a nonlinear problem linear is to find
an “embedding” that lifts the problem into a higher-
dimensional space. To this end, notice that the multi-
body epipolar constraint defines a homogeneous poly-
nomial of degree n in each of x1 and x2. For example, if
we let x1 = [x1, y1, z1]T , then Eq. (2) viewed as a func-
tion of x1 can be written as a linear combination of the
following monomials {xn

1 , xn−1
1 y1, xn−1

1 z1, . . . , zn
1}. It

is readily seen that there are a total of

Mn
.=

(
n + 2

2

)
= (n + 1)(n + 2)

2
(3)

different monomials, thus the dimension of the space of
homogeneous polynomials in 3 variables with real co-
efficients is Mn . Therefore, we can define the following
embedding (or lifting) from R3 into RMn :

Definition 1 (Veronese map (Harris, 1992)). The
Veronese map of degree n is defined as νn : R3 → RMn

νn : [x, y, z]T �→ [. . . , x I , . . .]T , (4)

where x I is a monomial of the form xn1 yn2 zn3 , with
0 ≤ n1, n2, n3 ≤ n, n1 + n2 + n3 = n, and x I ordered
in the degree-lexicographic order.

Example 2 (The Veronese map of degree two). The
Veronese map of degree n = 2 is given by ν2(x, y, z) =
[x2, xy, xz, y2, yz, z2]T ∈ R6.

Thanks to the Veronese map, we can convert
the multibody epipolar constraint (2) into a bilinear
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expression in νn(x1) and νn(x2) as stated by the follow-
ing theorem.

Theorem 1 (The bilinear multibody epipolar con-
straint). The multibody epipolar constraint (2) can
be written in bilinear form as

νn(x2)TFνn(x1) = 0, (5)

where the entries of F ∈ RMn×Mn are symmetric mul-
tilinear functions of degree n on the entries of the fun-
damental matrices {Fi }n

i=1.

Proof: Let �i = Fi x1 ∈ R3, for i = 1, . . . , n.
Then, the multibody epipolar constraint E(x1, x2) =∏n

i=1(xT
2 �i ) is a homogeneous polynomial of degree n

in x2 = [x2, y2, z2]T , i.e.,

E(x1, x2) =
∑

an1,n2,n3
xn1

2 yn2

2 zn3

2

.=
∑

aI x I
2

.= νn(x2)T a,

where a ∈ RMn is the vector of coefficients. From the
properties of polynomial multiplication, each aI is a
symmetric multilinear function of (�1,. . . , �n), i.e., it is
linear in each �i and aI (�1,. . . , �n)=aI (�σ (1),. . . ,�σ (n))
for all σ ∈ Sn , where Sn is the permutation group
of n elements. Since each �i is linear in x1, each aI is
in turn a homogeneous polynomial of degree n in x1,
i.e., a I = f T

I νn(x1), where each entry of f I ∈ RMn is
a symmetric multilinear function of the entries of the
Fi ’s. Letting

F .= [ f n,0,0, f n−1,1,0, . . . , f 0,0,n]T ∈ RMn×Mn ,

we obtain

E(x1, x2) = νn(x2)TFνn(x1) = 0.

We call the matrixF the multibody fundamental matrix,
because it is a natural generalization of the fundamen-
tal matrix to multiple motions. Since Eq. (5) clearly
resembles the bilinear form of the epipolar constraint
for a single rigid-body motion, we will refer to both
Eqs. (2) and (5) as the multibody epipolar constraint
from now on.

Remark 2. The multibody fundamental matrix is a
matrix representation of the symmetric tensor product

of all the fundamental matrices∑
σ∈Sn

Fσ (1) ⊗ Fσ (2) ⊗ · · · ⊗ Fσ (n), (6)

with Sn the permutation group of n elements and ⊗
the tensor product.

Although the multibody fundamental matrix F
seems a complicated mixture of all the individual fun-
damental matrices F1, . . . , Fn , we will show in Sec-
tion 3 that, under some mild conditions (e.g., the Fi ’s
are different), one can still recover all the individual
fundamental matrices from F by looking at the first-
order derivatives of the multibody epipolar constraint.
Before doing so, we shall further explore some alge-
braic and geometric properties of the multibody funda-
mental matrix.

2.4. Null Space of the Multibody Fundamental
Matrix

In this section, we study the relationships between
the multibody fundamental matrix F and the epipoles
e1, . . . , en associated with the fundamental matrices
F1, . . . , Fn .1 First of all, recall that the epipole ei as-
sociated with the i th motion in the second image is
defined as the left kernel of the (rank-2) fundamental
matrix Fi , that is

eT
i Fi

.= 0. (7)

Therefore, each epipole ei , i = 1, . . . , n, satisfies that

∀x ∈ R3,
(
eT

i F1x
)(

eT
i F2x

)
. . .

(
eT

i Fn x
)

= νn(ei )
TFνn(x) = 0. (8)

We call the vector νn(ei ) the embedded epipole associ-
ated with the i th motion. Since νn(x) as a vector spans
the entire RMn when x ranges over R3 (or P2),2 from (8)
we have

νn(ei )
TF = 0 for i = 1, . . . , n. (9)

Therefore, the embedded epipoles {νn(ei )}n
i=1 lie on

the left null space of F while the epipoles {ei }n
i=1 lie

on the left null space of {Fi }n
i=1. Hence, the rank ofF is

bounded above depending on the number of different
epipoles (up to a scale factor) as stated by Lemmas 1
and 2 below.
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Lemma 1 (Null space of F when the epipoles are dif-
ferent). Let F be the multibody fundamental matrix
generated by the fundamental matrices F1, . . . , Fn. If
the epipoles e1, . . . , en are different (up to a scale fac-
tor), then the (left) null space of F ∈ RMn×Mn contains
at least the n linearly independent vectors

νn(ei ) ∈ RMn , i = 1, . . . , n. (10)

Therefore, the rank of the multibody fundamental ma-
trix F is bounded above by

rank(F) ≤ (Mn − n). (11)

Proof: We only need to show that if the ei ’s are differ-
ent up to a scale factor, then the νn(ei )’s are linearly in-
dependent. If we let ei = [xi , yi , zi ]

T , for i = 1, . . . , n,
then we only need to prove that the rank of the follow-
ing matrix

U
.=

⎡⎢⎢⎢⎢⎣
νn(e1)T

νn(e2)T

...

νn(en)T

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
xn

1 xn−1
1 y1 xn−1

1 z1 . . . zn
1

xn
2 xn−1

2 y2 xn−1
2 z2 . . . zn

2

...
...

...
. . .

...

xn
n xn−1

n yn xn−1
n zn . . . zn

n

⎤⎥⎥⎥⎥⎦ ∈ Rn×Mn

is exactly n. Since the ei ’s are different up to a scale
factor, we can assume without loss of generality that so
are {[xi , zi ]}n

i=1 and that zi 	= 0.3 Then, after dividing
the i th row of U by zn

i and letting ti = xi/zi , we can
extract the following Van Der Monde sub-matrix of U

V
.=

⎡⎢⎢⎢⎢⎣
tn−1
1 tn−2

1 . . . 1

tn−1
2 tn−2

2 . . . 1

...
...

. . .
...

tn−1
n tn−2

n . . . 1

⎤⎥⎥⎥⎥⎦ ∈ Rn×n.

Since det(V ) = ∏
i< j (ti − t j ), the Van Der Monde ma-

trix V has rank n if and only if t1, . . . , tn are different.
Hence rank(U ) = rank(V ) = n.

Although we know that the linearly independent vec-
tors νn(ei )’s lie on the left null space of F , we do not

know if the n-dimensional subspace spanned by them
is equal to the left null space of F . That is, we do not
know if rank(F) = Mn − n. We conjecture that this is
true when the n epipoles are different up to scale.

Let us now consider the case in which one of the
epipoles is repeated. In this case, the null space of F
is actually enlarged by higher-order derivatives of the
Veronese map as stated by the following Lemma.

Lemma 2 (Null space of F when one epipole is re-
peated). Let F be the multibody fundamental matrix
generated by the fundamental matrices F1, . . . , Fn with
epipoles e1, . . . , en. Let e1 be repeated k times, i.e.,
e1 = · · · = ek (up to scale), and let the other n − k
epipoles be different. Then the rank of the multibody
fundamental matrix F is bounded by

rank(F) ≤ Mn − Mk−1 − (n − k). (12)

Proof: When k = 2, e1 = e2 is a “repeated
root” of νn(x)TF as a polynomial (matrix) in x =
[x1, x2, x3]T . Therefore, its first-order partial deriva-
tives must vanish at x = e1, i.e., Dνn(e1)TF =
[ ∂νn (e1)

∂x1
, ∂νn (e1)

∂x2
, ∂νn (e1)

∂x3
]TF = 0. This gives M1 = 3

linearly independent vectors in the left null space of
F , namely the columns of Dνn(e1), because Dνn(x) is
full rank for all x ∈ P2,4 and e1 	= 0. Furthermore, we
also have that ∀x ∈ R3, nνn(x) = Dνn(x)x. Therefore,
the span of the columns of Dνn(e1) contains νn(e1),
but does not contain νn(ei ) for i = 3, . . . , n. Hence
rank(F) ≤ Mn − M1 − (n − 1) = Mn − 3 − (n − 1).
Now if k > 2, all partial derivatives of νn(x)TF of order
less than k must vanish at x = e1. Furthermore, since
nνn(x) = Dνn(x)x, all the derivatives of order less
than (k −1) at x = e1, including the embedded epipole
νn(e1), must lie in the span of the derivatives of order
(k − 1). As in the case k = 2 one can show that these
Mk−1 partial derivatives are linearly independent and
that their span does not contain the other n−k embedded
epipoles {νn(ei )}n

i=k+1. This gives at least Mk−1+(n−k)
linearly independent vectors in null(F). The readers are
referred to Fan and Vidal (2005) for further details.

Example 3 (Two repeated epipoles). In the two-body
problem, if F1 and F2 have the same (left) epipole,
then the rank of the two-body fundamental matrix F is
bounded above by M2 − M1 − (2 − 2) = 6 − 3 = 3
instead of M2 − 2 = 4.

Since the null space ofF is enlarged by higher-order
derivatives of the Veronese map evaluated at repeated
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epipoles, in order to identify the embedded epipoles
νn(ei ) from the left null space of F we will need to
exploit the algebraic structure of the Veronese map νn .
Let us denote the image of the real projective space P2

under νn as νn(P2).5 The following theorem establishes
a key relationship between the null space of F and the
epipoles of each fundamental matrix.

Theorem 2 (Veronese null space of multibody funda-
mental matrix). The intersection of the left null space
of the multibody fundamental matrix F , null(F), with
the Veronese surface νn(P2) is exactly

null(F) ∩ νn(P2) = {νn(ei )}n
i=1. (13)

Proof: Let x ∈ P2 be a vector whose Veronese map
is in the left null space of F . We then have

νn(x)TF = 0 ⇔ ∀y ∈ P2, νn(x)TFνn(y) = 0.

Since F is a multibody fundamental matrix, for this x
we have that

∀y ∈ P2, νn(x)TFνn(y) =
n∏

i=1

(xT Fi y) = 0.

If xT Fi 	= 0 for all i = 1, . . . , n, then the set of y
that satisfy the above equation is simply the union of
n 2-dimensional subspaces in P2, which will never fill
the entire space P2. Hence we must have xT Fi = 0 for
some i . Therefore, x must be one of the epipoles.

The significance of Theorem 2 is that, in spite of the
fact that repeated epipoles may enlarge the null space
of F , and that we do not know if the dimension of
the null space equals n for different epipoles, one may
always find the epipoles exactly by intersecting the left
null space of F with the Veronese surface νn(P2), as
illustrated in Fig. 2.

However, even though Theorem 2 gives a nice con-
ceptual description of the relation between the multi-
body fundamental matrix F and the multiple epipoles
{ei }n

i=1, it does not provide a computational algorithm
for estimating the individual epipoles from the inter-
section of null(F) with νn(P2). One possible approach,
explored in Wolf and Shashua (2001) for n = 2 and
generalized in Vidal et al. (2002) to n ≥ 2, consists of
determining a vector v ∈ Rn such that Bv ∈ νn(P2),
where B is a matrix whose columns form a basis for

Figure 2. The intersection of νn(P2) and null(F) is exactly n points

representing the Veronese map of the n epipoles, repeated or not.

the left null space of F . Finding v, hence the epipoles,
is equivalent to solving for the roots of polynomials of
degree n in n − 1 variables. Although this is feasible
for n = 2 and even for n = 3, it is computationally
formidable for n > 3.

In the next section, we propose a completely dif-
ferent approach for estimating the epipoles. We first
estimate a set of epipolar lines from the derivatives
of the multibody epipolar constraint and then cluster
the epipolar lines using GPCA. Given the epipoles and
epipolar lines, the estimation of the individual funda-
mental matrices becomes a linear problem.

3. Multibody Motion Estimation and
Segmentation

Up until now, we have been mostly concerned with the
study of the geometry and algebra of the multibody
structure from motion problem. From now on, we will
concentrate on the computational aspects of the prob-
lem. More specifically, this section proposes an alge-
braic geometric algorithm for estimating the number of
motions, the fundamental matrices and the clustering
of the image points. The algorithm proceeds as follows.
Section 3.1 shows how to estimate the number of mo-
tions n and the multibody fundamental matrix F from
a rank constraint on the embedded correspondences.
Section 3.2 shows how to estimate the epipolar line as-
sociated with each image pair from the partial deriva-
tives of the multibody epipolar constraint. Section 3.3
shows that the estimation of the epipoles is equivalent
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to a plane clustering problem which can be solved in an
algebraic fashion using GPCA. Section 3.4 shows how
to estimate the individual fundamental matrices from
epipoles and epipolar lines and Section 3.5 shows how
to cluster the image points from either the epipoles and
epipolar lines or from the individual fundamental ma-
trices. Section 3.6 summarizes our multibody structure
from motion algorithm and analyzes some of its prop-
erties.

3.1. Estimating the Number of Motions n and the
Multibody Fundamental Matrix F

Notice that, by definition, the multibody fundamental
matrix F depends explicitly on the number of indepen-
dent motions n. Therefore, even though the multibody
epipolar constraint (5) is linear in F , we cannot use
it to estimate F without knowing n in advance. Fortu-
nately, one can use the multibody epipolar constraint
to derive a rank constraint on the image measurements
from which one can compute n explicitly. Given n, the
estimation of F becomes a linear problem. To see this,
let us first rewrite the multibody epipolar constraint (5)
as

(νn(x2) ⊗ νn(x1))T f = 0, (14)

where f ∈ RM2
n is the stack of the rows of F and ⊗

represents the Kronecker product. Given a collection
of image pairs {(x j

1, x j
2)}N

j=1, the vector f satisfies the
system of linear equations

Vn f
.=

⎡⎢⎢⎢⎢⎢⎣

(
νn

(
x1

2

) ⊗ νn
(
x1

1

))T(
νn

(
x2

2

) ⊗ νn
(
x2

1

))T

...(
νn

(
xN

2

) ⊗ νn
(
xN

1

))T

⎤⎥⎥⎥⎥⎥⎦ f = 0. (15)

In order to determine f uniquely (up to a scale factor)
from (15), we must have that

rank(Vn) = M2
n − 1. (16)

The above rank constraint on the matrix Vn provides
an effective criterion for determining the number of
independent motions n from the given image pairs, as
stated by the following theorem.

Theorem 3 (Number of independent motions).
Let {(x j

1, x j
2)}N

j=1 be a collection of image pairs

corresponding to 3-D points in general configura-
tion and undergoing an unknown number n of in-
dependent rigid-body motions with nonzero transla-
tion. Let V i ∈ RN×M2

i be the matrix defined in (15),
but computed using the Veronese map νi of de-
gree i ≥ 1. Then, if the number of image pairs
is big enough (N ≥ M2

n − 1 when n is known)
and at least 8 points correspond to each motion, we
have

rank(V i )

⎧⎪⎨⎪⎩
> M2

i − 1, if i < n,

= M2
i − 1, if i = n,

< M2
i − 1, if i > n.

(17)

Therefore, the number of independent motions n is
given by

n
.= min

{
i : rank(V i ) = M2

i − 1
}
. (18)

Proof: Let Zi be the set of points (x1, x2) that sat-
isfy xT

2 Fi x1 = 0. Since each fundamental matrix Fi

has rank 2, the polynomial pi = xT
2 Fi x1 is irre-

ducible over the real field R, i.e., it can not be fac-
tored as a product of nonconstant polynomials with
real coefficients. This implies that any polynomial p
in (x1, x2) that vanishes on the entire set Zi must be
of the form p = pi h, where h is some polynomial.
Hence, if F1, . . . , Fn are different up to scale, a poly-
nomial that vanishes on the set ∪n

i=1 Zi must be of the
form p = p1 p2 · · · pnh for some h. Therefore, the only
polynomial of minimal degree that vanishes on ∪n

i=1 Zi

is

p = p1 p2 . . . pn = (
xT

2 F1x1

)(
xT

2 F2x1

)
. . .

(
xT

2 Fn x1

)
.

Since the rows of Vn are of the form (νn(x2)⊗νn(x1))T

and the entries of νn(x2) ⊗ νn(x1) are exactly the inde-
pendent monomials of p (as we will show below), this
implies that if the number of data points per motion is
at least 8 and N ≥ M2

n − 1, then:

1. There is no polynomial of degree 2i < 2n whose co-
efficients are in the null space of V i , i.e., rank(V i ) =
M2

i > M2
i − 1 for i < n.

2. There is a unique polynomial of degree 2n, namely
p, whose coefficients are in the null space of Vn ,
i.e., rank(Vn) = M2

n − 1.
3. There is more than one polynomial of degree 2i >

2n (one for each independent choice of the 2(i −n)-
degree polynomial h in p = p1 p2 · · · pnh) with
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coefficients in the null space of V i , i.e., rank(V i ) <

M2
i − 1 for i > n.

The rest of the proof is to show that the entries of
νn(x2)⊗νn(x1) are exactly the independent monomials
in the polynomial p, which we do by induction. Since
the claim is obvious for n = 1, we assume that it is true
for n and prove it for n + 1. Let x1 = [x1, y1, z1]T and
x2 = [x2, y2, z2]T . Then the entries of νn(x2) ⊗ νn(x1)
are of the form (xm1

2 ym2

2 zm3

2 )(xn1

1 yn2

1 zn3

1 ) with m1 +m2 +
m3 = n1 + n2 + n3 = n, while the entries of x2 ⊗ x1

are of the form (xi1

2 yi2

2 zi3

2 )(x j1
1 y j2

1 z j3
1 ) with i1 + i2 + i3 =

j1 + j2 + j3 = 1. Thus a basis for the product of
these monomials is given by the entries of νn+1(x2) ⊗
νn+1(x1).

The significance of Theorem 3 is that the number of
independent motions n can now be determined incre-
mentally using Eq. (18). Once the number of motions
is known, the multibody fundamental matrix F is sim-
ply the 1-D null space of the corresponding matrix Vn ,
which can be linearly obtained. Nevertheless, in order
for this scheme to work, the minimum number of im-
age pairs needed is N ≥ M2

n − 1. For n = 1, 2, 3, 4,
the minimum N is 8, 35, 99, 225, respectively. If n is
large, N grows approximately in the order of O(n4)—a
price to pay for working with a linear representation of
Problem 1. In Section 3.6 we will discuss many vari-
ations to the general scheme that will significantly re-
duce the number of data points required, especially for
large n.

Remark 3 (Estimating n and F from noisy correspon-
dences). In the presence of a moderate level of noise,
if n is known we can still solve for the multibody fun-
damental matrix f in (15), in a least-squares sense:
we let f be the eigenvector of V T

n Vn associated with
its smallest eigenvalue. However, when the number of
motions n is unknown we cannot directly estimate it
from (18), because the matrix V i may be full rank for
all i . In this case, we compute n from a noisy matrix
V i as

n = arg min
i≥1

σ 2
M2

i
(V i )∑M2

i −1

k=1 σ 2
k (V i )

+ μ
(
M2

i − 1
)
, (19)

where σk(V i ) is the kth singular value of V i and μ is a
parameter. The above formula for estimating n is moti-
vated by model selection techniques (Kanatani, 2002)
in which one minimizes a cost function that consists of

a data fitting term and a model complexity term. The
data fitting term measures how well the data is approx-
imated by the model—in this case how close the matrix
V i is to dropping rank by one. The model complexity
term penalizes choosing models of high complexity –
in this case choosing a large rank.

3.2. Estimating the Epipolar Lines {� j }N
j=1

Given a point x1 in the first view, the epipolar lines
associated with it in the second view are defined as
�i

.= Fi x1 ∈ P2, i = 1, . . . , n. In the case of a single
motion (n = 1), we know from the epipolar constraint
that there is only one epipolar line � = Fx1 associated
with x1 and that this line must pass through the corre-
sponding point in the second view x2, i.e., xT

2 � = 0. In
the case of n motions there are n possible epipolar lines
{�i }n

i=1 associated with a point x1 in the first view, each
one corresponding to each one of the n motions. One
of these n epipolar lines, say � = �i , corresponds to
the actual motion of x1 and hence it must pass through
x2, i.e., there exists and i such that xT

2 �i = 0. We will
refer to � as the epipolar line associated with (x1, x2).

We now concentrate on how to determine the n
epipolar lines {�i }n

i=1 associated with x1 and the epipo-
lar line � associated with (x1, x2) from the multibody
fundamental matrix F . To this end, notice that if F
is the multibody fundamental matrix associated with
{Fi }n

i=1, then

E(x1, x2) = νn(x2)TFνn(x1) =
n∏

i=1

(
xT

2 Fi x1

)
=

n∏
i=1

(
xT

2 �i
)
. (20)

Therefore, the vector �̃
.= Fνn(x1) ∈ RMn represents

the coefficients of the homogeneous polynomial in x

qn(x)
.= (xT �1)(xT �2) . . . (xT �n) = νn(x)T �̃. (21)

We call the vector �̃ the multibody epipolar line as-
sociated with x1. Notice that �̃ is a vector representa-
tion of the symmetric tensor product of all the epipo-
lar lines �1, . . . , �n and is in general not the Veronese
map (or lifting) νn(�i ) of any particular epipolar line
�i , i = 1, . . . , n. From (21) we notice that in order to
estimate the individual epipolar lines {�i }n

i=1 associated
with any image point x1 from the multibody epipolar
line �̃, we can factorize the homogeneous polynomial of
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degree n, qn(x), into a product of n homogeneous poly-
nomials of degree one {(�T

i x)}n
i=1. We showed in Vidal

et al. (2003) that this polynomial factorization problem
has a unique solution (up to a scale for each factor) and
that is algebraically equivalent to solving for the roots
of a polynomial of degree n in one variable, plus solv-
ing a linear system in n variables. We shall assume that
this polynomial factorization technique is available to
us from now on, and refer interested readers to Vidal
et al. (2003) for further details. Given such a factor-
ization of �̃ into the n epipolar lines {�i }n

i=1 associated
with x1, we can compute the epipolar line � associated
with (x1, x2) as the vector �i that minimizes (xT

2 �i )
2

for i = 1, . . . , n.
We can interpret the factorization of the multibody

epipolar line �̃ = Fνn(x1) as a generalization of the
conventional “epipolar transfer” to multiple motions.
In essence, the multibody fundamental matrixF allows
us to “transfer” a point x1 in the first image to a set of
epipolar lines in the second image, the same way a
fundamental matrix maps a point in the first image to
an epipolar line in the second image. We illustrate the
multibody epipolar transfer process with the following
sequence of maps

x1
Veronese�−→ νn(x1)

Epipolar
Transfer�−→ Fνn(x1)

Polynomial
Factorization�−→ {�i }n

i=1,

as shown geometrically in Fig. 3.
There is however a simpler and more elegant way of

computing the epipolar line � associated with an im-
age pair (x1, x2). Notice from Eq. (20) that the partial
derivative of the multibody epipolar constraint with re-

Figure 3. The multibody fundamental matrixF maps each point x1

in the first image to n epipolar lines �1, . . . , �n which pass through

the n epipoles e1, . . . , en respectively. One of these epipolar lines

must pass through x2.

spect to x2 is given by

∂

∂x2

(νn(x2)TFνn(x1)) =
n∑

i=1

∏
�	=i

(
xT

2 F�x1

)
(Fi x1).

(22)

Therefore, if the image pair (x1, x2) corresponds to
motion i , i.e., if xT

2 Fi x1 = 0, then

∂

∂x2

(νn(x2)TFνn(x1)) =
∏
�	=i

(
xT

2 F�x1

)
(Fi x1)

∼ Fi x1 = �i . (23)

In other words, the partial derivative of the multi-
body epipolar constraint with respect to x2 evaluated at
(x1, x2) is proportional to the epipolar line associated
with (x1, x2) in the second view. Similarly, the partial
derivative of the multibody epipolar constraint with re-
spect to x1 evaluated at (x1, x2) is proportional to the
epipolar line associated with (x1, x2) in the first view.
Therefore, given a set of image pairs {(x j

1, x j
2)}N

j=1, we
can obtain its corresponding collection of N epipo-
lar lines in the first and second views, {� j

1}N
j=1 and

{� j
2}N

j=1, from the first-order derivatives of the multi-
body epipolar constraint. We illustrate this multibody
epipolar transfer process with the following diagram

x2

↓
x1

Veronese�−→ νn(x1)

Epipolar
Transfer�−→ Fνn(x1)

Polynomial
Differentiation�−→ �.

The only case in which this process fails is when a
particular image pair (x1, x2) belongs to two or more
motions, i.e., if xT

2 Fi x1 = xT
2 Fj x1 = 0 for some i 	=

j = 1, .., n, because in this case the multibody epipolar
constraint has a repeated factor, hence its derivative at
the image pair is zero. We summarize our discussion
so far with the following theorem.

Theorem 4 (Epipolar lines from the multibody fun-
damental matrix). Let F ∈ RMn×Mn be a multibody
fundamental matrix generated by n different funda-
mental matrices {Fi }n

i=1. Also let (x1, x2) be an im-
age pair associated with only one of the motions, i.e.,
xT

2 (Fi − Fj )x1 	= 0 for i 	= j = 1, . . . , n. Then one
can compute the epipolar line �1 associated with the
image pair (x1, x2) in the first view as

�1 ∼ ∂

∂x1

(νn(x2)TFνn(x1)), (24)
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and the epipolar line �2 associated with the image pair
(x1, x2) in the second view as

�2 ∼ ∂

∂x2

(νn(x2)TFνn(x1)). (25)

Remark 4 (Computing derivatives of homogeneous
polynomials). In order to obtain the epipolar lines,
we need to compute the derivatives of a homogeneous
polynomial of degree n, qn(x) = cT νn(x), with known
c. A simple calculation shows that ∂qn (x)

∂xk
= cT ∂νn (x)

∂xk
=

cT Enkνn−1(x), with Enk ∈ NMn×Mn−1 a constant matrix
containing some of the exponents of νn(x). Therefore,
the computation of the derivatives is done algebraically,
i.e., it does not involve taking derivatives of the (possi-
bly noisy) data.

3.3. Estimating the Epipoles {ei }n
i=1

Given a set of epipolar lines, we now describe how
to compute the epipoles. Recall that the (left) epipole
associated with each (rank-2) fundamental matrix Fi ∈
R3×3 is defined as the vector ei ∈ P2 lying in the (left)
null space of Fi , i.e., eT

i Fi = 0. Now let � ∈ P2 be
an arbitrary epipolar line associated with some image
point in the first frame. Since � must pass through one
of the epipoles (see Fig. 4), there exists an i such that
eT

i � = 0. Therefore, every epipolar line � has to satisfy
the following polynomial constraint

pn(�)
.= (

eT
1 �

)(
eT

2 �
)
. . .

(
eT

n �
) = ẽT νn(�) = 0, (26)

regardless of the motion with which it is associated.
We call the vector ẽ ∈ RMn the multibody epipole as-
sociated with the n motions. As before, ẽ is a vec-
tor representation of the symmetric tensor product of
the individual epipoles e1, . . . , en and it is in general
different from any of the embedded epipoles νn(ei ),
i = 1, . . . , n.

Given a collection {� j }N
j=1 of N ≥ Mn − 1 epipo-

lar lines computed by either polynomial factorization
or polynomial differentiation, we can obtain the multi-
body epipole ẽ ∈ RMn as the solution to the linear
system

Pn ẽ
.=

⎡⎢⎢⎢⎢⎣
νn(�1)T

νn(�2)T

...

νn(�N )T

⎤⎥⎥⎥⎥⎦ ẽ = 0. (27)

In order for Eq. (27) to have a unique solution (up to
a scale factor), we will need to replace n by the number
of different epipoles (up to a scale factor) as stated by
the following theorem.

Theorem 5 (Number of different epipoles). Let
{� j }N

j=1 be a set of epipolar lines corresponding to 3-D
points in general configuration and undergoing n in-
dependent rigid-body motions with nonzero translation
(relative to the camera). Let Pi ∈ RN×Mi be the matrix
of embedded epipolar lines defined in (27), but com-
puted using the Veronese map νi of degree i ≥ 1. If the
number of lines is big enough (N ≥ Mn − 1 when n is
known) and at least 2 lines pass through each epipole,
then

rank(Pi )

⎧⎪⎨⎪⎩
> Mi − 1, if i < ne,

= Mi − 1, if i = ne,

< Mi − 1, if i > ne.

(28)

Therefore, the number of different epipoles ne ≤ n is
given by

ne
.= min{i : rank(Pi ) = Mi − 1}. (29)

Proof: See Vidal et al. (2005).

Similarly to Remark 3, in the presence of noisy cor-
respondences we may estimate the number of different
epipoles as

ne = arg min
i≥1

σ 2
Mi

(Pi )∑Mi −1
k=1 σ 2

k (Pi )
+ μ(Mi − 1), (30)

where σk(Pi ) is the kth singular value of Pi and μ is a
parameter. Once the number of different epipoles has
been computed, the multibody epipole ẽ ∈ RMne can
be obtained in a least-squares sense as the eigenvector
of PT

ne
Pne associated with its smallest eigenvalue.

Once ẽ has been computed, the rest of the problem
is to compute the individual epipoles {ei }ne

i=1. As il-
lustrated in Fig. 4, each epipole ei corresponds to the
intersection of the epipolar lines associated with the i th
motion. Since at this point we do not know yet which
epipolar lines correspond to which motion, we cannot
directly estimate the epipoles. However, we know that
for each epipolar line � there exists an epipole ei such
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Figure 4. When n objects move independently, the epipolar lines

in the second view associated with each image point in the first view

form ne ≤ n groups intersecting respectively at ne different epipoles

(up to scale) in the second view.

that eT
i � = 0. Therefore, we have

∂

∂�

(
pne (�)

) =
ne∑

i=1

∏
�	=i

(
eT
� �

)
ei =

∏
�	=i

(
eT
� �

)
ei ∼ ei .

(31)

In other words, the partial derivative of pne (�) evalu-
ated at an epipolar line � is proportional to the epipole
associated with that epipolar line.

By applying (31) to the set of N epipolar lines
{� j }N

j=1 in the second view, we can compute their corre-
sponding N left epipoles. In the absence of noise, only
ne out of the N epipoles are different up to scale, hence
one may automatically obtain the ne epipoles {ei }ne

i=1

and the clustering of the epipolar lines. In the presence
of noise, however, all the N epipoles will be differ-
ent. Therefore, instead of computing one epipole for
each one of the N epipolar lines, we can obtain the ne

epipoles {ei }ne
i=1 directly by evaluating (31) at ne lines

{l i }ne
i=1 passing through the ne epipoles. In principle,

one could choose those ne lines from the N epipolar
lines, however we do not know which epipolar lines
pass through which epipoles. We therefore choose the
ne lines {l i }ne

i=1 as follows. Let L1 ∈ P2 and L2 ∈ P2 be
two randomly chosen lines in the plane. In order for the
line L1 + tL2 with t ∈ R to pass through one of the ne

epipoles we must have that pne (L1 + tL2) = 0. There-
fore, we can choose ne lines {l i }ne

i=1 passing through the
ne epipoles as

l i = L1 + tiL2 i = 1, . . . ne, (32)

where {ti ∈ R}ne
i=1 are the ne roots of the neth-degree

univariate polynomial pne (L1 + tL2). We have shown
the following result.

Theorem 6 (Epipoles from the multibody epipole).
Let ne and ẽ ∈ RMne be the number of different
epipoles and the multibody epipole, respectively. Also
let L1 ∈ P2 and L2 ∈ P2 be two randomly chosen
lines in the plane. The individual epipoles {ei }ne

i=1 can
be obtained from the derivatives of pne (�) = ẽT νne (�)
as

ei = Dpne (�)

‖Dpne (�)‖
∣∣∣∣
�=l i

i = 1, . . . , ne, (33)

where {li = L1 + tiL2}ne
i=1 and {ti ∈ R}ne

i=1 are the ne

roots of the univariate polynomial pne (L1 + tL2).

Remark 5 (Estimation of epipoles using GPCA).
Since each epipolar line must pass through one of
the epipoles, if we work in homogeneous coordinates
then we may interpret each epipolar line as a vector
� ∈ R3 lying in one out of ne planes with normal vectors
{ei ∈ P2}ne

i=1. Therefore, the problem of estimating the
ne epipoles from N epipolar lines is equivalent to the
problem of clustering N data points lying on ne planes
in R3. The GPCA algorithm of Vidal et al. (2004) gives
an algebraic solution to the more general problem of
clustering data lying on a collection of subspaces. The-
orem 6 is in essence a special case of GPCA.

Remark 6 (Estimation of epipoles in the presence of
noise). Notice that Theorem 6 is also applicable when
the correspondences are corrupted with a moderate
level of noise. As we alluded to earlier, one can esti-
mate the multibody epipole in a least-squares sense and
the derivatives of pne (�) as described in Remark 4. The
roots of pne (L1 + tL2) can also be computed, except
that one may obtain complex roots when two epipoles
are similar or when the noise level is high. We refer the
interested reader to Vidal et al. (2004) for variations
of the GPCA algorithm that choose the lines {l i }ne

i=1 in
a way that does not require solving for the roots of a
univariate polynomial.

Remark 7 (Left and right epipoles). Notice that one
may compute the set of right epipoles, {ei1}n

i=1 such
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that Fi ei1 = 0, in a similar fashion. We can just ap-
ply Theorem 6 to the multibody epipole ẽ obtained by
solving the linear system in (27) from a set of epipolar
lines in the first (rather than the second) view.

3.4. Estimating the Individual Fundamental
Matrices {Fi }n

i=1

Given the epipolar lines {� j }N
j=1 and the epipoles

{ei }ne
i=1, we now show how to recover each one of the

individual fundamental matrices {Fi }n
i=1. To avoid de-

generate cases, we will assume that all the epipoles are
different up to scale,6 i.e.,

ne = n. (34)

Since at this point both epipolar lines and epipoles
are known, we may cluster the epipolar lines and/or the
correspondences according to the motion they belong.
For instance, we can assign image pair (x j

1, x j
2) and

epipolar line � j to group i if

i = arg min
�=1,...n

(
eT
� �

j)2
. (35)

Once the epipolar lines and/or the correspondences
have been clustered, we can compute a fundamental
matrix Fi for each group by using either of the follow-
ing procedures:

1. Fundamental matrices from eight-point algorithm:
apply the eight-point algorithm to the image pairs
in group i , where i = 1, . . . , n.

2. Fundamental matrices from epipolar lines: If the
image point x j

1 belongs to group i , then we must

have � j ∼ Fi x
j
1. Therefore, we can compute funda-

mental matrix Fi by solving the set of equations

[� j ]×Fi x
j
1 = 0 for all j in group i = 1, . . . , n.

(36)

Notice that both of these procedures can also be ap-
plied in the case of noisy correspondences by solv-
ing for the individual fundamental matrices in a least-
squares sense.

3.5. Clustering the Feature Points

Feature clustering refers to the problem of assigning
each image pair {(x j

1, x j
2)}N

j=1, to the motion it cor-
responds. In the previous section we already showed
how to solve this problem by using epipoles and epipo-
lar lines. More specifically, we assigned an image pair
(x j

1, x j
2) to group i if

i = arg min
�=1,...n

(
eT
� �

j)2
. (37)

Alternatively, one can also cluster the feature points
by using the already computed fundamental matrices.
For example, we can assign image pair (x j

1, x j
2) to group

i if

i = arg min
�=1,...,n

(
x jT

2 F�x j
1

)2
. (38)

In the presence of noise, the square of the epipolar
constraint is only an algebraic way of measuring how
close an image pair (x1, x2) is to satisfying the epipolar
constraint. We therefore assign image pair (x j

1, x j
2) to

the group i that minimizes the square of the Sampson
error (Hartley and Zisserman, 2000), also known as
the normalized epipolar constraint (Ma et al., 2001),
i.e.,

i = arg min
�=1,...,n

(
ES(F�)

.=
(
x jT

2 F�x j
1

)2∥∥[e3]× F T
� x j

2

∥∥2 + ∥∥[e3]× F�x j
1

∥∥2

)
,

(39)

where e3 = [0, 0, 1]T ∈ R3.

3.6. Two-View Multibody Structure from Motion
Algorithm

We are now ready to present an algebraic geometric
algorithm for multibody motion estimation and seg-
mentation from two perspective views. Given a collec-
tion of N ≥ M2

n − 1 image pairs {(x j
1, x j

2)}N
j=1, Al-

gorithm 1 determines the number of independent mo-
tions n, the individual fundamental matrices {Fi }n

i=1

and the clustering of the image pairs. Therefore, Al-
gorithm 1 is a natural generalization of the eight-
point algorithm to the case of multiple rigid-body
motions.
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Remark 8 (Comments about the algorithm).

1. Algebraic solvability. The only nonlinear part of
Algorithm 1 is to solve for the roots of a univari-
ate polynomial of degree n in Step 5. Therefore,
the multibody structure from motion problem is
algebraically solvable (i.e., there is a closed form
solution) if and only if the number of motions is
such that n ≤ 4 (see (Lang, 1993)). When n ≥ 5,
the above algorithm must rely on a numerical solu-
tion for the roots of those polynomials.

2. Repeated epipoles. If two individual fundamental
matrices share the same (left) epipoles, we cannot
segment the epipolar lines as described in Step 6 of
Algorithm 1. In this case, one can consider the right
epipoles (in the first image frame) instead, since it
is extremely rare that two motions give rise to the
same left and right epipoles.7

3. Special motions and structures. Algorithm 1
works for independent motions with nonzero trans-
lation and different epipoles and for 3-D points in
general configuration. Future research is needed for
special motions such as pure rotation or repeated
left and right epipoles, and for special structures,
e.g., planar objects. We refer the interested reader
to Vidal and Ma (2004) for the study of some of
these cases, such as pure rotation and planar struc-
tures, by using homographies rather than fundamen-
tal matrices to model each rigid-body motion.

4. Minimum number of feature points. A draw-
back of Algorithm 1 is that it needs a lot of im-
age pairs in order to compute the multibody fun-
damental matrix, which often makes it impracti-
cal for large n. However, one can significantly re-
duce the data requirements by incorporating partial
knowledge about the motion or the segmentation
of the objects with minor changes in the general
algorithm. We now discuss a few of such possible
variations.

(a) Multiple linearly moving objects. In many
practical situations, the motion of the objects
can be well approximated by a linear motion,
i.e., there is only translation but no rotation.
In this case, the epipolar constraint reduces to
xT

2 [ei ]×x1 = 0 or eT
i [x2]×x1 = 0, where ei ∈

P2 represents the epipole associated with the
i th motion, i = 1, . . . , n. Therefore, the vector
� = [x2]×x1 ∈ P2 is an epipolar line satisfying
the polynomial pn(�) = (eT

1 �)(eT
2 �) . . . (eT

n �) =
0. Given a set of image pairs {(x j

1, x j
2)}N

j=1

Algorithm 1 (Two-view multibody structure from mo-
tion algorithm).

Given a collection of image pairs {(x j
1, x j

2)}N
j=1 corre-

sponding to N points undergoing n different rigid-body
motions relative to a moving perspective camera, re-
cover the number of independent motions n, the funda-
mental matrix Fi associated with motion i = 1, . . . , n,
and the object to which each image pair belongs as
follows:

1. Number of motions. Apply the Veronese map νi

of degree i = 1, 2, . . . , n to the image points
{(x j

1, x j
2)}N

j=1 to form the embedded data matrix V i

in (15). Compute the number of independent mo-
tions n from a rank constraint on V i as described in
Remark 3.

2. Multibody fundamental matrix. Compute the
multibody fundamental matrix F as the least-
squares solution to the linear system Vn f = 0
in (15), where Vn is computed using the Veronese
map νn of degree n.

3. Epipolar transfer. Compute the epipolar lines
{� j }N

j=1 in the second view associated with each im-

age pair {(x j
1, x j

2)}N
j=1 from the partial derivative of

the multibody epipolar constraint with respect to x2

evaluated at each image pair, as described in Theo-
rem 4.

4. Multibody epipole. Use the epipolar lines {� j }N
j=1

to estimate the multibody epipole ẽ as the coeffi-
cients of the polynomial pn(�) in (26) by solving
the linear system Pn ẽ = 0 in (27), where Pn is the
matrix of embedded epipolar lines.

5. Individual epipoles. Compute the individual
epipoles {ei }n

i=1 from the multibody epipole ẽ∈RMn

by evaluating the derivatives of pn(�) = ẽT νn(�) at
the n lines {li = L1 + tiL2}n

i=1, where L1 and L2

are chosen at random and {ti }n
i=1 are the roots of the

univariate polynomial pn(L1 + tL2).
6. Individual fundamental matrices. Assign image

pair (x j
1, x j

2) to motion i = arg min�=1,...n(eT
� �

j )2.
Then obtain the individual fundamental matrices
{Fi }n

i=1 by applying the eight-point algorithm to
each group, as described in Section 3.4.

7. Feature clustering from fundamental matrices.
Assign image pair (x j

1, x j
2) to motion i if

i = arg min
�=1,...,n

(
x jT

2 F�x j
1

)2∥∥[e3]×F T
� x j

2

∥∥2 + ∥∥[e3]×F�x j
1

∥∥2
.
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corresponding to N points undergoing n dif-
ferent linear motions {ei ∈ P2}n

i=1, one can use

the set of epipolar lines {� j = [x j
2]×x j

1}N
j=1 to

estimate the epipoles ei using Steps 4 and 5 of
Algorithm 1. Notice that the epipoles are re-
covered directly using polynomial differentia-
tion without estimating the multibody funda-
mental matrix F first. Furthermore, given the
epipoles, the fundamental matrices are trivially
obtained as Fi = [ei ]×. The clustering of the
image points is then obtained from Step 7 of
Algorithm 1. We conclude that if the motions
are linear, we only need N = Mn − 1 image
pairs versus N = M2

n − 1 needed in the gen-
eral case. So when n is large, the total number
of image pairs needed grows as O(n2) for the
linear motion case versus O(n4) for the general
case. Therefore, the number of feature points
that need to be tracked on each object grows
linearly in the number of independent motions.
For instance, when n = 10, one only needs to
track 7 points on each object, which is a mild
requirement given that the case n = 10 occurs
rather rarely in most applications.

(b) Constant motions. In many vision and con-
trol applications, the motion of the objects in
the scene changes slowly relative to the im-
age sampling rate. Thus, if the sampling rate
is even, we may assume that for a number of
image frames, say m, the motion of each ob-
ject between consecutive pairs of images is the
same. Hence all the feature points correspond-
ing to the m − 1 image pairs in between can
be used to estimate the same multibody funda-
mental matrix. In essence, this corresponds to
segmenting the trajectories of the image points
rather than the points themselves. For exam-
ple, when m = 5 and n = 4, we only need to
track (M2

4 − 1)/4 = 225/4 ≈ 57 image points
between each of the 4 consecutive pairs of im-
ages instead of 255. That is about 57/4 ≈ 15
features on each object on each image frame,
which is easier to achieve in practice. In general
if m = O(n), O(n2) feature points per object
need to be tracked in each image. For exam-
ple, when m = n + 1 = 6, one needs to track
about 18 points on each object, which is not so
demanding given the nature of the problem.

(c) Internal structure of F . The only step of Al-
gorithm 1 that requires O(n4) image pairs is the

estimation of the multibody fundamental matrix
F . Step 2 requires a lot of data points, becauseF
is estimated linearly without taking into account
the rich internal algebraic structure of F (e.g.,
rank(F) ≤ Mn − n). Future research is needed
to reduce the minimum number of image pairs
by considering constraints among entries of F ,
in the same spirit that the 8-point algorithm for
n = 1 can be reduced to 7 points if the algebraic
property det(F) = 0 is used.

5. Noise sensitivity. Algorithm 1 gives a purely alge-
braic solution to the multibody structure from mo-
tion problem. Future research is needed to address
the sensitivity of the algorithm to noise in the image
measurements. In particular, one should pay atten-
tion to Step 2, which is sensitive to noise, because it
does not exploit the algebraic structure of the multi-
body fundamental matrix F .

6. Optimality. Notice that linearly solving for
the multibody fundamental matrix through the
Veronese embedding is sub-optimal from a statis-
tical point of view. We refer the interested reader
to Vidal and Sastry (2003) for the derivation of the
optimal function for motion estimation and segmen-
tation in the case where the correspondences are
corrupted with i.i.d. zero-mean Gaussian noise.

At the end of our theoretical development, Table 1
summarizes our results with a comparison of the ge-
ometric entities associated with two views of 1 rigid-
body motion and two views of n rigid-body motions.

4. Experimental Results

In this section, we evaluate the performance of our mo-
tion segmentation algorithm with respect to the amount
of noise in the image measurements. We also present
experimental results on the segmentation of an indoor
sequence.

We first test the algorithm on synthetic data. We ran-
domly pick n = 2 collections of N = 100n feature
points and apply a different (randomly chosen) rigid
body motion (Ri , Ti ) ∈ SE(3), with Ri ∈ SO(3) the
rotation and Ti ∈ R3 the translation. We add zero-mean
Gaussian noise with standard deviation (std) from 0 to
1 pixels to the images x1 and x2. The image size is
1000 pixels. We run 1000 trials for each noise level.
For each trial, the classification error is computed as
the percentage of misclassified points, and the error be-
tween the true motions {(Ri , Ti )}n

i=1 and their estimates
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Table 1. Comparison between the geometry for two views of 1 rigid-body motion and the geometry

of n rigid-body motions.

Comparison of 2 views of 1 body 2 views of n bodies

An image pair x1, x2 ∈ R3 νn(x1), νn(x2) ∈ RMn

Epipolar constraint xT
2 Fx1 = 0 νn(x2)T Fνn(x1) = 0

Fundamental matrix F ∈ R3×3 F ∈ RMn×Mn

Linear estimation from N image pairs

⎡⎢⎢⎢⎣
x1

2 ⊗ x1
1

x2
2 ⊗ x2

1

.

.

.

xN
2 ⊗ xN

1

⎤⎥⎥⎥⎦ f = 0

⎡⎢⎢⎢⎣
νn(x1

2) ⊗ νn(x1
1)

νn(x2
2) ⊗ νn(x2

1)

.

.

.

νn(xN
2 ) ⊗ νn(xN

1 )

⎤⎥⎥⎥⎦ f = 0

Epipole eT F = 0 νn(e)T F = 0

Epipolar lines � = Fx1 ∈ R3 �̃ = Fνn(x1) ∈ RMn

Epipolar line & point xT
2 � = 0 νn(x2)T �̃ = 0

Epipolar line & epipole eT � = 0 ẽT νn(�) = 0

{(R̂i , T̂i )}n
i=1 are computed as

Rotation error = 1

n

n∑
i=1

∣∣∣∣acos

(
trace(Ri R̂T

i ) − 1

2

)∣∣∣∣ degrees

Translation error = 1

n

n∑
i=1

∣∣∣∣acos

(
T T

i T̂i

‖Ti‖‖T̂i‖

)∣∣∣∣ degrees

Figure 5 plots the mean classification error, the rota-
tion error and the translation error (degrees) as a func-
tion of noise. In all trials the number of motions was
correctly estimated from Eq. (19) as n = 2.8 The mean
classification error is less than 7% using an assignment
based on epipoles and epipolar lines, and can be re-
duced to about 3.25% using an assignment based on
the Sampson error. The rotation error is less than 0.38◦

and the translation error is less than 0.83◦.

Figure 5. Percentage of correct classification and error in the estimation of rotation and translation (in degrees).

We also tested the proposed approach by segmenting
a real sequence in which a moving camera observes a
can moving in front of a static background consisting
of a T -shirt and a book. We manually extracted a to-
tal of N = 170 correspondences: 70 for the can and
100 for the background. For comparison purposes, we
estimated the ground truth motion (Ri , Ti ) by apply-
ing the eight-point algorithm to manually segmented
correspondences. Figure 6 shows the first frame of
the sequence as well as the relative displacement of
the correspondences between the two frames. We ap-
plied Algorithm 1 to estimate the number of motions as
n = 2.9 We obtained a misclassification error of 5.88%
when the clustering is obtained using epipolar lines and
epipoles only. We used this segmentation to obtain the
motion parameters for each group. The error in rota-
tion was 0.07◦ for the background and 4.12◦ for the can.
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Figure 6. Top: first frame of a sequence with two rigid-body motions—the can and the background—and the 2-D displacements of the 140

correspondences from the first view (‘◦’) to the second (‘→’). Bottom: segmentation of the 170 correspondences using epipoles and epipolar

lines (left) and using Sampson distance (right).

The error in translation was 0.21◦ for the background
and 4.51◦ for the can. Given the motion parameters
for each group, we re-clustered the features using
the Sampson error (39). The misclassification error
reduced to 0%.

5. Discussions, Conclusions and Future Work

We have presented a novel geometric approach for the
analysis of dynamic scenes containing multiple rigidly
moving objects seen in two perspective views. Instead
of iterating between feature clustering and single body
motion estimation, our approach eliminates the clus-
tering problem and solves directly for the motion pa-
rameters. This is achieved by exploiting the algebraic
and geometric properties of the so-called multibody
epipolar constraint and its associated multibody fun-
damental matrix, which are natural generalizations of
the epipolar constraint and of the fundamental matrix

to multiple moving objects. Overall, the proposed algo-
rithm provides a principled solution to the problem and
paves the way to a more systematic study of its many
variations, such as special motions, special structures,
multiple frames, etc.

Issues such as the effect of noise, outliers, incorrect
correspondences and missing data have not been sys-
tematically studied. The present algorithm can tolerate
a moderate amount of noise, provided that the multi-
body fundamental matrix is well estimated. However,
further research is needed to improve the estimation of
the number of motions and of the multibody fundamen-
tal matrix, e.g., by incorporating its internal algebraic
structure in the current approach. We refer the reader
to Vidal and Sastry (2003) for more details on the es-
timation of the multibody fundamental matrix in the
presence of zero-mean Gaussian noise. Our discussion
has also suggested that the use of multiple images may
reduce the amount of feature points needed from each
image (pair), thus improving the performance of the
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algorithm. We have shown that this is indeed the case
in Hartley and Vidal (2004), where we considered the
motion segmentation problem in the case of three per-
spective views. The case of multiple affine views with
missing correspondences can be found in Vidal and
Hartley (2004).

Notes

1. The relationships between epipoles and epipolar lines will be

studied in the next section, where we will show how both of them

can be computed from the derivatives of the multibody epipolar

constraint.

2. This is simply because the Mn monomials in νn(x) are linearly

independent.

3. This assumption is not always satisfied, e.g., for n = 3 motions

with epipoles along the X , Y and Z axes. However, as long as

the ei ’s are different up to scale, one can always find a non-

singular linear transformation ei �→ T ei on R3 that makes the

assumption true. Furthermore, this linear transformation induces

a linear transformation on the lifted space RMn that preserves the

rank of the matrix U .

4. For n = 1, Dνn(x) is clearly full rank. For n ≥ 2, notice that if

y = [y1, y2, y3]T is such that Dνn(x)y = 0, then nxn−1
j y j = 0

for j = 1, . . . , 3. Thus y = 0 if all entries of x are nonzero. One

can show that y = 0 even when one or two entries of x are zero

by properly choosing additional equations from Dνn(x)y = 0.

5. This is the so-called (real) Veronese surface in Algebraic Geom-

etry (Harris, 1992).

6. Notice that this is not a strong assumption. If two individual fun-

damental matrices share the same (left) epipoles, one can consider

the right epipoles (in the first image frame) instead, because it is

extremely rare that two motions give rise to the same left and right

epipoles. In fact, this happens only when the rotation axes of the

two motions are equal to each other and parallel to the translation

direction.

7. This happens only when the rotation axes of the two motions are

equal to each other and parallel to the translation direction.

8. We use μ = 5×10−3 in equation (19) for computing the number

of motions.

9. We use μ = 5×10−3 in equation (19) for computing the number

of motions.
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