
International Journal of Computer Vision 62(1/2), 161–176, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Composite Texture Synthesis

A. ZALESNY AND V. FERRARI
D-ITET/BIWI, ETH Zurich, Switzerland

zalesny@vision.ee.ethz.ch

ferrari@vision.ee.ethz.ch

G. CAENEN
ESAT/PSI Visics, University of Leuven, Belgium

caenen@esat.kuleuven.ac.be

L. VAN GOOL
D-ITET/BIWI, ETH Zurich, Switzerland; ESAT/PSI Visics, University of Leuven, Belgium

vangool@vision.ee.ethz.ch; vangool@esat.kuleuven.ac.be

Received December 10, 2002; Revised July 11, 2003; Accepted October 3, 2003

First online version published in November, 2004

Abstract. Many textures require complex models to describe their intricate structures. Their modeling can be
simplified if they are considered composites of simpler subtextures. After an initial, unsupervised segmentation
of the composite texture into the subtextures, it can be described at two levels. One is a label map texture, which
captures the layout of the different subtextures. The other consists of the different subtextures. This scheme has to
be refined to also include mutual influences between textures, mainly found near their boundaries. The proposed
composite texture model also includes these. The paper describes an improved implementation of this idea. Whereas
in a previous implementation subtextures and their interactions were synthesized sequentially, this paper proposes
a parallel implementation, which yields results of higher quality.

Keywords: texture synthesis, texture analysis, statistical texture modeling, composite textures, hierarchical texture
model

1. Introduction

Many textures are so complex that for their analysis
and synthesis they can better be considered a compo-
sition of simpler subtextures. A good case in point
is landscape textures. Open pastures can be mixed
with patches of forest and rock. The direct synthesis
of the overall texture would defy existing methods,
which is in compliance with observations in Gousseau
(2002) stating that the textures are as a rule interme-
diate objects between homogeneous fields and com-

plicated scenes, and the analysis/synthesis of the to-
tally averaged behavior can fail in reproducing impor-
tant texture features. The whole only appears to be
one texture at a very coarse scale. In terms of inten-
sity, colors, and simple filter outputs such scene can
not be considered “homogeneous”. The homogeneity
rather exists in terms of the regularity (in a structural
or stochastic sense) in the layout of simpler subtex-
tures as well as in the properties of the subtextures
themselves. We propose such hierarchical approach to
texture synthesis. We show that this approach can be

162 Zalesny et al.

Figure 1. The image on the left shows a complex landscape texture; the image on the right shows the result of attempting to synthesize similar
texture from its basic model that considers the original as one, single texture.

used to synthesize intricate textures and even complete
scenes.

Figure 1 shows an example texture image. A model
for this texture was extracted using a method in Zalesny
and Van Gool (2001). This method will be referred to as
the “basic method”, and such model as a “basic model”.

Figure 1 also shows a texture that has been synthe-
sized on the basis of this model. As can be seen, the
result is not entirely convincing. The problem is that
the pattern in the example image is too complicated to
be dealt with as a single texture. In cases like this a
more sophisticated texture model is needed. As men-
tioned, the idea explored in this paper is that a prior
decomposition of such textures into their subtextures
(e.g. grass, sand, bush, rock, etc. in the example image)
is useful. As mentioned in Paget (1999), distinguishing
between subtextures, i.e. decomposing or segmenting,
is in general easier than texture synthesis. This allows
to separate both procedures and use much more com-
plex iterative modeling/generating algorithms only for
analysis/synthesis. Despite the fact, that simple pair-
wise pixel statistics are used for modeling, their opti-
mal combination yields a powerful generative model
of textures, whereas for segmentation it is enough to
use a preselected filter bank.

The layout of these subtextures can be described as
a “label map”, where pixels are given integer labels
corresponding to the subtexture they belong to. This
label map can be considered as a texture in its own
right, which can be modeled using an approach for sim-
ple textures such as our basic modeling scheme and of
which more can then be synthesized. Also the subtex-
tures can be modeled using their basic model and these
subtextures can be filled in at the places prescribed by
the synthesized label map.

The creation of a composite texture model starts with
one or more example images of that texture as the only
input. A first step is the decomposition of the texture
into its subtextures. This is the subject of Section 3. We
propose an unsupervised segmentation scheme, which
calculates pixel similarity scores on the basis of color
and local image structure and which uses these to group
pixels through efficient clique partitioning. Once this
decomposition has been achieved, the hierarchical tex-
ture model can be extracted. This process is described
in Section 2.

Based on such model, texture synthesis amounts to
first synthesizing a label map, and then synthesizing
the subtextures at the corresponding places. Results
are shown in Section 4. Section 5 concludes the paper.

This paper presents an improved version of an ear-
lier composite texture approach that we presented in
Zalesny et al. (2002). An idea similar to our composite
texture approach has been propounded independently
in Hertzmann (2001), but their “texture by numbers”
scheme (based on smart copying from the example
(Efros and Leung, 1999; Wei and Levoy, 2000)) did
not include the automated extraction or synthesis of
the label maps (they were hand drawn).

2. Composite Texture Modeling

This section focuses on the construction of the com-
posite texture model, on the basis of an example image
and its segmentation. We start with a short description
of the “basic model”, used for the description of simple
textures. Then, interdependencies between subtextures
are noted to be an issue. After these introductory sec-
tions the actual composite texture modeling process is

Composite Texture Synthesis 163

described. Finally, it is explained how the model is used
for the synthesis of composite textures.

2.1. The Basic Texture Model

Before explaining the composite texture algorithm, we
concisely describe our basic texture model for sin-
gle textures, in order to make this paper more self-
contained and to introduce some of the concepts that
will also play an important role with the composite tex-
ture scheme. The point of departure of the basic model
is the co-occurrence principle. Simple statistics about
the colors at pixel pairs are extracted, where the pixels
take on carefully selected, relative positions. The ap-
proach differs in this selectivity from more broad-brush
co-occurrence methods (Gagalowicz and Ma, 1985;
Gimel’farb, 1999), where all possible pairs are con-
sidered. Every different type of pair—i.e. every differ-
ent relative position—is referred at as a clique type.
The notion “clique” is meant in a graph-theoretical
sense where pixels are nodes, and arcs connect those
pixels into pairs whose statistics are used in the tex-
ture model. This way one obtains the so-called neigh-
borhood graph where pairs are second-order cliques.
Figure 2 exemplifies clique types assuming the trans-
lation invariance scheme.

The statistics gathered for these cliques are the his-
tograms of the intensity differences between the head
and tail pixels of the pairs, and this for all three color
bands R, G, and B. Clique types are selected mutually
dependent, one-by-one, each time adding the type with
statistics computed from the current synthesis deviat-
ing most from those of the target texture. The initial set
of clique types is restricted only by the maximal clique
length, which is proportional to the size of the image
under consideration. After the clique selection process
is over, all clique types have statistics similar to those of
the target texture, but only a small fraction of the types
needed to be included in the model, which therefore
is very compact. Hence, the basic model consists of a
selection of cliques (the so-called “neighborhood sys-

Figure 2. Clique type assignment for the translation invariant
scheme.

tem”) and their color statistics (the so-called “statisti-
cal parameter set”). A more detailed explanation about
these basic models and how they are used for texture
synthesis is given in Zalesny and Van Gool (2001).

2.2. Subtexture Interactions

A straightforward implementation for composite tex-
ture synthesis would use the basic method first to syn-
thesize a novel label map, after which it would be ap-
plied to each of the subtextures separately, in order to
fill them in at the appropriate places. In reality, subtex-
tures are not stationary within their patch boundaries.
Typically there are natural processes at work (geologi-
cal, biological, . . .) that cause interactions between the
subtextures. There are transition zones around some
of the subtexture boundaries. Figure 3 illustrates such
transition effect. The image on the left is an original im-
age of zebra fur. The image in the middle is the result of
taking the left image label map (consisting of the black
and white stripes) and filling in the black and white
subtextures. The boundaries between the two look un-
natural. The image on the right has been synthesized
taking the subtexture interactions into account, using
the algorithm proposed in this paper. The texture looks
much better now.

In Zalesny et al. (2002) we have proposed a scheme
that orders the subtextures by complexity, and then
embarks on a sequential synthesis, starting with the
simplest. Only interactions with subtextures that have
been synthesized already are taken into account. In
this paper we propose an alternative, parallel approach,
where all subtextures and their interactions are taken
care of simultaneously, both during modeling and syn-
thesis. The sequential aspect that remains, is that first
the label texture is synthesized and only then the
subtextures.

2.3. A Parallel Composite Texture Scheme

The parallel composite texture scheme is a general-
ization of the basic scheme in Zalesny and Van Gool
(2001). It is also based on the careful selection of
cliques and the statistics of their head-tail intensity dif-
ferences. Yet, for composite texture a distinction will be
made between “intra-label” and “inter-label” cliques.
Intra-label cliques have both their head and tail pix-
els within the same subtexture. Inter-label cliques have
their head and tail pixels within different subtextures.

164 Zalesny et al.

Figure 3. Composite texture synthesis of zebra fur with and without subtexture interactions demonstrates the importance of the latter.

The parallel composite texture modeling scheme
takes the following steps:

1. Segment the example image of the composite tex-
ture. The image and the resulting label map are the
input for the modeling procedure. Let K be the num-
ber of subtextures and B the number of image color
bands.

2. Calculate the intensity difference histograms for all
inter-label and intra-label clique types that occur in
the example image, up to a maximal, user-specified
head-tail distance (the clique length). They will be
referred to as reference histograms. After this step
the example image is no longer needed.

3. Construct an initial composite texture model con-
taining the K × B intensity histograms for each
subtexture and each color band and 2K × B clique
types and their statistics: for each subtexture/band
the shortest horizontal and shortest vertical cliques
are added to the model. The head and tail pixels are
direct neighbors.

Loop:

4. Synthesize a texture using the input label map and
the current composite texture model, as discussed
further on.

5. Calculate the intensity difference histograms for all
inter-label and intra-label clique types from the im-
age synthesized in step 4, up to a maximal, user-
specified clique length. They will be referred to as
current histograms.

6. Measure the histogram distances—a weighted (see
below) Euclidean distance between the reference
and current histograms.

7. If the maximal histogram distance is less than a
threshold go to the step 9.

8. Add the following 2K histograms to the composite
model: (a) K intra-label ones, for each subtexture
the one with the largest histogram distance; (b) K
inter-label ones, those with the largest histogram
distance for pairs of subtextures (k, n) for all n and
one fixed k at a time.

Loop end.

9. Model the label map as a normal non-composite tex-
ture (i.e. using the basic model), except that instead
of intensity difference histograms co-occurrence
matrices are used.

Stop.

The number of image bands could vary in general,
including for example multispectral images or even ad-
ditional heterogeneous image properties like filter re-
sponses etc. In the latter case the intensity differences
can be substituted by other statistics including the com-
plete or quantized co-occurrence.

The statistical data kept for the cliques normally con-
sist of intensity histograms, but for the label map texture
model a complete label co-occurrence matrix is stored.
Indeed, the label map generation is driven by label co-
occurrences and not differences because the latter are
meaningless in that case. Also, there are only a few la-
bels in a typical segmentation and, hence, taking the full
co-occurrence matrix rather than only difference his-
tograms into account comes at an affordable cost. We
now concisely describe how texture synthesis is carried
out, and how the histogram distances are calculated.

Composite Texture Synthesis 165

2.4. Composite Texture Synthesis

Texture synthesis is organized as an iterative procedure
that generates an image sequence, where histogram dis-
tances for the clique types in the model decrease with
respect to the corresponding reference histograms. This
evolution is based on non-stationary, stochastic relax-
ation, underpinned by Markov Random Field theory.
Non-stationary means that the control parameters of
the synthesizer (in our case these are so-called Gibbs
parameters of the random field) are changed based on
the comparison of the reference and current histograms.
A more detailed account is given in Zalesny and Van
Gool (2001).

A separate note on the synthesis of subtexture inter-
actions is in order here. Even if the modeling proce-
dure selects quite a few inter-label clique types, they
still represent a very sparse sample from all possible
such clique types, as there are of the order of K 2 sub-
texture pairs, as opposed to K subtextures, for which
just as many clique types were selected. Thus, many
subtexture pairs do not interact according to the com-
posite texture model, i.e. there are no cliques in the
model corresponding to the label pair under considera-
tion. For such pairs, subtexture knitting—a predefined
type of interaction—is used. During knitting neighbor-
ing pixels outside the subtexture’s area are nevertheless
treated as if they lay within, and this for all clique types
of that subtexture. The intensity difference is calculated
and its entry in the histogram for the given subtexture
is used. Knitting produces smooth transitions between
subtextures. In case clique types describing the interac-
tion between a subtexture pair have been included in the
model, their statistical data are used instead and knit-
ting is turned off for that pair. During normal synthe-
sis, the composite texture model is available from the
start and all subtexture pairs without modeled interac-
tions are known beforehand. Hence, knitting is always
applied to the same subtexture pairs, i.e., it is static.
During the texture modeling stage the set of selected
clique types will be constantly updated and the knitting
is adaptive. Knitting will be automatically switched off
for subtexture pairs with a selected inter-label clique
type. This will also happen for subtexture pairs that do
not interact, e.g. a texture that simply occludes another
one. This is because during the composite texture mod-
eling process knitting is turned on for all pairs which
are left without an inter-label clique type. Knitting will
not give good results for independent pairs though, as
it blends the textures near their border. Hence, a clique

type will be selected for such pairs, as the statistics near
the border are being driven away from reality under the
influence of knitting. The selection of this clique type
turns off further knitting, and will itself prescribe statis-
tics that are in line with the subtextures’ independence.
This process may not be very elegant in the case of
independent subtextures, but it works.

2.5. Histogram Distances

The texture modeling algorithm heavily relies on his-
togram distances. For intra-label cliques, these are
weighted Euclidean distances, where the weight is cal-
culated as follows:

weight(k, k, type) = N (k, k, t ype)

Nmax
, (1)

where the clique count N (·) is the number of cliques
of this type having both the head and the tail inside the
label class k, and Nmax is the maximum clique count
reached over all clique types. The rationale behind this
weighing is that types with low clique counts must not
dominate the model, as the corresponding statistical
relevance will be wanting. This weight also reduces
the influence of long clique types, which tend to have
lower clique counts. For the inter-label cliques, this
effect is achieved by making the weights dependent on
clique length explicitly:

weight(k, n, type) =
(

1 − l2(type)

(lmax + 1)2

)
Nmax(k, n)

Nmax
,

(2)

where Nmax(k, n) is the maximal clique count among
the types for the given subtexture pair, l(type) is the
clique length, and lmax is the maximal clique length
taken over all types present in the example texture.
Such weighing again increases the statistical stability
and gives preference to shorter cliques, which seems
natural as the mutual influence of the subtextures can
be expected to be stronger near their boundary.

2.6. Parallel vs. Sequential Approach

As mentioned before, prior to this work we have pro-
posed a sequential composite texture scheme (Zalesny
and Van Gool, 2001). The main advantage of the par-
allel approach discussed here is that all bidirectional,

166 Zalesny et al.

pairwise subtexture interactions can be taken into ac-
count. This, in general, results in better quality and
a more compact model. Additionally, there is a dis-
turbing asymmetry between the model extraction and
subsequent texture synthesis procedures with the se-
quential approach. During modeling the surrounding
subtextures are ideal, i.e. taken from the reference im-
age. This is not the case during the synthesis stage,
where the sequential method has to build further on the
basis of previously synthesized subtextures. There is a
risk that the sequentially generated subtextures will be
of lower and lower quality, due to error accumulation.
The parallel approach, in contrast, is free from these
drawbacks, as both the modeling and synthesis stages
operate under similar conditions. The advantage of the
sequential modeling step (but not the synthesis one!) is
that every subtexture can be modeled simultaneously,
distributed over different computers. But as speed is
more crucial during synthesis, this advantage is lim-
ited in practice. During model extraction, the foremost
problem is the clique type selection. This problem is
more complicated in the parallel case, as there are many
more clique types to choose from. At every iteration of
the modeling algorithm a choice can be made between
all inter- and intra-label cliques.

3. Texture Decomposition

In order for the texture modeling and synthesis ap-
proach to work, the decomposition of the texture into its
subtextures needs to be available. We propose an unsu-
pervised segmentation scheme, which calculates pixel
similarity scores on the basis of color and local image
structure and which uses these to group pixels through
efficient clique partitioning. Once this decomposition
has been achieved, the hierarchical texture model can
be extracted. The approach is unsupervised in the sense
that neither the number nor the sizes of subtextures are
given to the system.

Important to mention is that, in contrast with tradi-
tional segmentation schemes, we envisage a clustering
that is not necessarily semantically correct. Our goal
is to reduce the complexity of the texture in terms of
structure and color properties.

3.1. Pixel Similarity Scores

For the description of the subtextures, both color and
structural information is taken into account. Local

statistics of the (L , a, b) color coordinates and response
energies of a set of Gabor filters (f1, . . . , fn) are cho-
sen, but another wavelet family or filter bank could be
used to optimize the system.

The initial (L , a, b)-color and (f1, . . . , fn)-
structural feature vector of an image pixel i are both
referred to as xi , for the sake of simplicity. The local
statistics of the vectors x j near the pixel i are captured
by a local histogram pi .

To avoid problems with sparse high-dimensional his-
tograms, we first cluster both feature spaces separately.
For the structural features this processing is done in the
same vein as the texton analysis in Malik et al. (2000)
The cluster centers are obtained using the k-means al-
gorithm and will serve as bin centers for the local his-
tograms.

Instead of assigning a pixel to a single bin, each
pixel is assigned a vector of weights that express its
affinity to the different bins. The weights are based
on the Euclidean distances to the bin centers: if dik =
‖xi − bk‖ is the distance between a feature value xi

and the k-th bin center, we compute the corresponding
weight as

wik = e−d2
ik/2σ 2

. (3)

The resulting local weighted histogram pi of pixel i is
obtained by averaging the weights over a region Ri :

pi (k) = 1

|Ri |
∑
j∈Ri

w jk . (4)

In our experiments, Ri was chosen a fixed shape: a disc
with a radius of 8 pixels. The values pi (k) can therefore
be computed for all pixels at once (denoted P(k)), using
the convolution:

P(k) = Wk ∗ χD with

Wk(i) = wik and χD(i) =
{

1 if i ∈ D,

0 if i /∈ D,
(5)

where D = {i |‖i‖ < 8}.
The resulting weighted histogram can be consid-

ered a smooth version of the traditional histogram. The
weighting causes small changes in the feature vectors
(e.g. due to non-uniform illumination) to result in small
changes in the histogram. In traditional histograms this
is often not the case as pixels may suddenly jump to
another bin. Figure 4 illustrates this by computing his-
tograms of two rectangular patches from a single Bro-
datz texture. These patches have similar texture, only

Composite Texture Synthesis 167

Figure 4. (top left) patches with identical texture and different illumination; (bottom left) traditional intensity histograms of the patches; (right)
weighted histograms of the patches.

the illumination is different. Clearly the weighted his-
tograms (right) are less sensitive to this difference. This
is reflected in a higher Bhattacharyya score (6).

Color and structural histograms are computed sep-
arately. In a final stage, the color and structure his-
tograms are simply concatenated into a single, longer
histogram and the pi (k) are scaled to ensure the sum
to 1.

In order to compare the feature histograms, we have
used the Bhattacharyya coefficient ρ. Its definition for
two frequency histograms p = (p1, . . . , pn) and q =
(q1, . . . qn) is:

ρ(p, q) =
∑

i

√
pi qi . (6)

This coefficient is proven to be more robust (Aherne
et al., 1998) in the case of zero count bins and non-
uniform variance than the more popular chi-squared
statistic (denoted χ2). In fact, after a few manipula-
tions one can show the following relation in case the
histograms are sufficiently similar:

ρ(p, q) ≈ 1 − 1

8

∑
i

(qi − pi)2

pi
= 1 − 1

8
χ2(p, q).

(7)

Another advantage of the Bhattacharyya coefficient
over the χ2-measure is that it is symmetric, which is
more natural when similarity has to be expressed.

In order to evaluate the similarity between two pix-
els, their feature histograms are not simply compared.
Rather, the comparison of the histogram for the first
pixel is made with those of all pixels in a neigh-
borhood of the second. The best possible score is
taken as the similarity S′ (i, j) between the two pix-
els. This allows the system to assess similarity with-
out having to collect histograms from large regions
Ri . Additional advantages of such approach are that
boundaries between subtextures are slightly better lo-
cated and narrow subtextures can still be distinguished.
Figure 5 illustrates the behavior near texture bound-
aries and an example of an improved segmentation as

Figure 5. (a) comparison between two pixels using shifted match-
ing; the dashed lines indicate the supports of the histograms that yield
optimal similarities between i and subtextures T1 and T2; (b) com-
parison without shifts. The similarity scores S′(i, 1) and S′(i, 2) for
(a), although both significantly higher than S(i, 1) and S(i, 2) in (b),
are proportionally closer to the desired similarities, as is indicated
schematically.

168 Zalesny et al.

Figure 6. (a) original image (texture collage) and segmentations obtained: (b) with CP, larger regions, and no shifted matching; (c) using CP
and shifted matching (smaller regions, mean shift optimization); and (d) using a version of Normalized Cuts along with its standard parameter
set available at http://www.cs.berkeley.edu.

well as a comparison with Normalized Cuts is shown in
Fig. 6.

Using the shifting strategy has three major effects on
the similarity scores, depending on the location of the
pixels:

1. Pixels that lie in the interior of a subtexture only
have strong similarities with this texture.

2. Pixels near a texture border (Fig. 5) attain an
increased similarity score when compared to the
particular subtexture they belong to. Comparisons
made with the neighboring texture will also yield
higher scores, yet less extreme ones.

3. Pixels on a texture border are very similar to both
adjacent textures.

To fully exploit this shifted matching result we trans-
form our similarity scores using S′(i, j) → S′(i, j)n ,
with n = 10 in our experiments. This causes the sim-

ilarities established between pixels of type 2 and their
neighbor texture to decrease significantly.

The search for the location with the best matching
histogram close to the second pixel is based on the mean
shift gradient to maximize the Bhattacharyya measure
(Comaniciu and Meer, 2000). This avoids having to
perform an exhaustive search.

A final refinement is by defining a symmetric sim-
ilarity measure S : S(i, j) = S(j, i) = max{S′(i, j),
S′(j, i)}.

As shifted matches cause neighboring pixels to have
an exact match, the similarity scores are only computed
for a subsample (a regular grid) of the image pixels,
which also yields a computational advantage. Yet, af-
ter segmentation of this sample, a high-resolution seg-
mentation map is obtained as follows. The histogram
of each pixel is first compared to each entry in the list
of neighboring sample histograms. The pixel is then
assigned to the best matching class in the list.

Composite Texture Synthesis 169

Our particular segmentation algorithm requires a
similarity matrix S with entries ≥0 indicating that pix-
els are likely to belong together and entries <0 indi-
cating the opposite. The absolute value of the entry is a
measure of confidence. So far, all the similarities S have
positive values. We subtract a constant value, which
was determined experimentally and kept the same in
all our experiments. With this fixed value images with
different numbers of subtextures could be segmented
successfully. Hence, the number of subtextures was not
given to the system, as would e.g. be required in k-
means clustering. Having this threshold in the system
can be an advantage, as it allows the user to express
what he or she considers being perceptually similar:
the threshold determines the simplicity or homogene-
ity of each subtexture or in other words, the level of
hierarchy.

3.2. Pixel Grouping

In order to achieve the intended, unsupervised segmen-
tation of the composite textures into simpler subtex-
tures, pixels need to be grouped into disjoint classes,
based on their pairwise similarity scores. Taken on their
own, these similarities are too noisy to yield robust
results. Pixels belonging to the same subtexture may
e.g. have a negative score (false negative) and pixels
of different subtextures may have positive scores (false
positives). Nevertheless, taken altogether, the similar-
ity scores carry quite reliable information about the
correct grouping. The transitivity of subtexture mem-
bership is crucial: if pixels i and j are in the same
class and j and k too, then i , j and k must belong to
the same class. Even if one of the pairs gets a falsely
negative score, the two others can override a decision
to split. Next, we formulate the texture segmentation
problem so as to exploit transitivity to detect and avoid
false scores. We present a time-optimized adaptation
of the grouping algorithm we first introduced in Ferrari
et al. (2001). We construct a complete graph G where
each vertex represents a pixel and where edges are
weighted with the pairwise similarity scores. We par-
tition G into completely connected disjoint subsets of
vertices (usually also cliques but please note the differ-
ent meaning in this context) through edge removal so
as to maximize the total score on the remaining edges
(Clique Partitioning, or CP). As to avoid confusion with
a clique concept defined earlier, we will use the word
“component” instead of clique here. The transitivity
property is ensured by the component constraint: ev-

ery two vertices in a component are connected, and
no two vertices from different components are con-
nected. The CP formulation of texture segmentation is
made possible by the presence of positive and nega-
tive weights: they naturally lead to the definition of a
best solution without the need of knowing the num-
ber of components (subtextures) or the introduction of
artificial stopping criteria as in other graph-based ap-
proaches based on strictly positive weights (Shi and
Malik, 1997; Aslam et al., 2000). On the other hand,
our approach needs the parameter t0 that determines the
splitting point between positive and negative scores.
But, as our experiments have shown, the same parame-
ter value yields good results for a wide range of im-
ages. Moreover, the same value yields good results
for examples with a variable number of subtextures.
This is much better than having to specify this num-
ber, as would e.g. be necessary in a k-means clustering
approach.

CP can be solved by Linear Programming (Graham
et al., 1995) (LP). Let wi j be the weight of the edge
connecting (i, j), and xi j ∈ {1, 0} indicate whether the
edge exists in the solution (0 = no, 1 = yes). The
following LP can be established:

maximize
∑

1≤i< j≤n

wi j xi j

subject to

xi j + x jk − xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n

xi j − x jk − xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n

−xi j + x jk + xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n

xi j ∈ {0, 1}, ∀ 1 ≤ i < j ≤ n.

(8)

The inequalities express the transitivity con-
straints, while the objective function to be maxi-
mized corresponds to the sum of the intra-component
edges.

Unfortunately CP is an NP-hard problem (Graham
et al., 1995): LP (8) has worst case exponential com-
plexity in the number n of vertices (pixels), making it
impractical for large n. The challenge is to find a prac-
tical way out of this complexity trap. The correct par-
titioning of the example in Fig. 7 is {{1, 3}, {2, 4, 5}}.
A simple greedy strategy merging two vertices (i, j)
if wi j > 0 fails because it merges (1, 2) as its first
move. Such an approach suffers from two problems:
the generated solution depends on the order by which
vertices are processed and it looks only at local
information.

170 Zalesny et al.

Figure 7. An example graph and two iterations of our heuristic.
Edges that are not displayed have zero weight.

We propose the following iterative heuristic. The al-
gorithm starts with the partition

� = {{i}}1≤i≤n (9)

composed of n singleton components each containing
a different vertex. The function

m(c1, c2) =
∑

i∈c1, j∈c2

wi j (10)

defines the cost of merging components c1, c2. We con-
sider the functions

b(c) = max
t∈�

m(c, t),

d(c) = arg max
t∈�

m(c, t),
(11)

representing, respectively, the score of the best merging
choice for component c and the associated component
to merge with. We merge components ci , c j if and only
if the three following conditions are met simultane-
ously

d(ci) = c j , d(c j) = ci , b(ci) = b(c j) > 0. (12)

In other words, two components are merged only if
each one represents the best merging option for the
other and if merging them increases the total score.
At each iteration the functions b(c), d(c) are com-
puted, and all pairs of components fulfilling the cri-
teria are merged. The algorithm iterates until no two
components can be merged. The function m can be
progressively computed from its values in the previous
iteration. The basic observation is that for any pair of
merged components ck = ci ∪c j , the function changes
to m(cl , ck) = m(cl , ci)+m(cl , c j) for all cl /∈ {ci , c j }.
This strongly reduces the amount of operations needed
to compute m and makes the algorithm much faster
than in Ferrari et al. (2001).

Figure 7 shows an interesting case. In the first iter-
ation {1} is merged with {3} and {4} with {5}. Notice
how {2} is, correctly, not merged with {1} even though
m({1}, {2}) = 3 > 0. In the second iteration {2} is cor-
rectly merged with {4, 5}, resisting the (false) attraction
of {1, 3} (m({1, 3}, {2}) = 1, d({1, 3}) = {2}). The
algorithm terminates after the third iteration because
m({1, 3}, {2, 4, 5}) = −3 < 0. The second iteration
shows the power of CP. Vertex 2 is connected to unreli-
able edges (w12 is false positive, w25 is false negative.
Given vertices {1, 2, 3} only, it is not possible to derive
the correct partitioning {{1, 3}, {2}}; but, as we add ver-
tices {4, 5}, the global information increases and CP
arrives at the correct partitioning.

The proposed heuristic is order independent, takes
a more global view than a direct greedy strategy, and
resolves several ambiguous situations while maintain-
ing polynomial complexity. Analysis reveals that the
exact amount of operations depends on the structure
of the data, but it is at most 4n2 in the average case.
Moreover, the operations are simple: only comparisons
and sums of real values (no multiplication or division
is involved).

In the first iterations, being biased toward highly pos-
itive weights, the algorithm risks to take wrong merg-
ing decisions. Nevertheless our merging criterion en-
sures this risk to quickly diminish with the size of the
components in the correct solution (number of pixels
forming each subtexture) and at each iteration, as the
components grow and increase their resistance against
spurious weights.

4. Results

In this section we first present the results of experiments
that test the effectiveness of the CP algorithm as a sub-
stitute for the much slower LP algorithm, as proposed
in Section 3. Once the viability of this approach for
the creation of label maps has been established, a sec-
ond section describes results of our parallel composite
texture synthesis.

4.1. Performance of the CP Approximation

The practical shortcut for the implementation of CP
may raise some questions as to its performance. In par-
ticular, how much noise on the edge weights (i.e. uncer-
tainty on the similarity scores) can it withstand? And,
how well does the heuristic approximation approach
the true solution of CP?

Composite Texture Synthesis 171

We tested both LP and the heuristic on random in-
stances of the CP problem. Graphs with a priori known,
correct partitioning were generated. Their sizes dif-
fered in that both the number of components and the
total number of vertices (all components had the same
size) were varied. Intra-component weights were uni-
formly distributed in [−a, 9] with a real number, while
inter-component weights were uniformly distributed
in [−9, a], yielding an ill-signed edge percentage of
a/(a + 9). This noise level could be controlled by vary-
ing the parameter a. Let the difference between two
partitionings be the minimum amount of vertices that
should change their component membership in one par-
titioning to get the other. The quality of the produced
partitionings is evaluated in terms of average percent-
age of misclassified vertices: the difference between
the produced partitioning and the correct one, averaged
over 100 instances and divided by the total number of
vertices in a single instance.

Table 1 reports the performance of our approxima-
tion for larger problem sizes. Given 25% noise level, the
average error already becomes negligible with compo-
nent sizes between 10 and 20 (less than 0.5%). In prob-
lems of this size, or larger, the algorithm can withstand
even higher noise levels, still producing high quality
solutions. In the case of 1000 vertices and 10 compo-
nents, even with 40% noise level (a = 6), the algorithm
produces solutions, which are closer than 1% to the cor-
rect one. This case is of particular interest as its size is
similar to the typical texture segmentation problems.

Table 2 shows a comparison between our approx-
imation to CP and the optimal solution computed by
LP on various problem sizes, with constant noise level
set to 25% (a = 3). In all cases the partitionings pro-
duced by the two algorithms are virtually identical: the
average percentual difference is very small as shown
in the third column of the table. Due to the very high
computational demands posed by LP, the largest prob-
lem reported here has only 24 vertices. Beyond that

Table 1. Performance of the CP approximation algo-
rithm on various problem sizes.

Vertices Components Noise level Err% approx

40 4 25 0.33

60 4 25 0.1

60 4 33 2.1

120 5 36 1.6

1000 10 40 0.7

Table 2. Comparison of LP and our approximation. The
noise level is 25%. Diff % is the average percentual difference
between the partitionings produced by the two algorithms.

Vert. Components Diff% Err% LP Err% approx

15 3 0.53 6.8 6.93

12 2 0.5 2.92 3.08

21 3 0.05 2.19 2.14

24 3 0.2 1.13 1.33

The two Err columns report the average percentage misclas-
sified vertices for each algorithm.

point, computation times run into the hours, which we
consider as too impractical. Note that the average per-
centage of misclassifications quickly drops with the
size of the components.

The proposed heuristic is fast: it completed these
problems in less than 0.1 seconds, except for the 1000
vertices one, which took about 4 seconds on the av-
erage. The ability to deal with thousands of vertices is
particularly important in our application, as every pixel
to be clustered will correspond to a vertex. Figure 8
shows the average error for a problem with 100 vertices
and 5 components as a function of the noise level (a
varies from 3 to 5.5). Although the error grows faster
than linearly, and the problem has a relatively small
size, the algorithm produces high quality solutions in
situations with as much as 36% of noise.

These encouraging results show CP’s robustness to
noise and support our heuristic as a good approxima-
tion. Components in these experiments were only given
the same size to simplify the discussion. The algorithm
itself deals with differently sized components.

Figure 8. Relationship between noise level and error, for a 100 ver-
tices, 5 component problem. The average percentage of misclassified
vertices (X-axis) is still low with as much as 36% noise level.

172 Zalesny et al.

4.2. Composite Texture Synthesis Results

This section presents some of the results obtained with
the parallel composite texture synthesis as described in

Figure 9. Real landscape (top left) and label map (top right); synthetic landscape when keeping this label map (bottom).

Figure 10. Synthetic label map (left) and completely synthetic landscape (right).

the paper. The various stages of our method will be sys-
tematically explained through an example. Afterwards
we will focus on the different aspects that were touched
upon in the paper using adequate examples.

Composite Texture Synthesis 173

4.2.1. The Complete Scheme. The landscape shown
in Fig. 9 (top left) is clearly too complex to be syn-
thesized when regarded as a single texture. Therefore,
in keeping with the propounded composite texture ap-
proach, it is decomposed by analyzing the local color
and structural properties. The CP-algorithm yields a la-
bel map based on the homogeneity of these properties,
as shown in Fig. 9 (top right). Based on this label map
and the example image, a model for the subtextures and
their interactions is learned. In order to show the effec-
tiveness of the texture synthesis, we also show the same
landscape layout, but with the label regions filled with
textures generated on the basis of this model (Fig. 9
bottom). Of course, it is the very goal of the approach
to go one step further and to create wholly new patterns.
To that end, a new label map is generated, as shown in
Fig. 10 (left), and this is filled with the correspond-

Figure 11. Landscape texture synthesis. Left: original images with three different subtextures for the top landscape and two subtextures for
the bottom landscape; middle: results with the older, sequential approach, right: parallel composite texture synthesis with better, more natural
texture transitions.

ing subtextures (Fig. 10 right). The overall impression
is quite realistic. The label map is capable to capture
the main, systematic aspects of the layout. The sky is,
e.g. created at the top, and also the different land cover
types keep their natural, overall configuration.

4.2.2. Parallel vs. Sequential Approach. Figure 11
shows three images of two landscapes. The ones on the
left are the original images, used as the sole examples.
The images in the middle show the result of our previ-
ous, sequential texture synthesis method (Zalesny et al.,
2002) applied to a synthesized label map. The images
on the right show the same experiment, but now with
textures synthesized by the parallel approach described
in this paper. The overall results of the parallel method
look better. In particular, unnaturally sharp transitions
between the subtextures have been eliminated. This can

174 Zalesny et al.

Figure 12. Synthetic zebra fur based on a synthetic layout label
map, demonstrates the importance of presenting a sufficiently large
example image (cf. Fig. 3). One stripe is unnaturally wide.

e.g. be seen at the boundaries between the bush and
grass textures of the top row. Also, the shadowing ef-
fects, learned as an interaction between bush and stone,
added more reality to that result. In the sequential ap-
proach, only interactions with previously synthesized
textures can be taken into account, not with those to
come later in the process.

4.2.3. Dealing with Semantics. Figure 12 shows a
synthetic example of zebra fur. The label map for this
example was synthesized only including information
from the original image (Fig. 3). Apparently this did

Figure 13. Left: original aerial image of a landscape, right: image synthesized based on the original label map. The overall impression is
satisfactory, but a semantic concept like road continuity was—of course—not picked up.

Figure 14. Patterns that are traditionally considered as a single texture can benefit from the composite texture approach just the same. (a)
original image; (b) synthesis using basic model with 3000 iterations; (c) synthesis using basic model with 500 iterations; (d) composite texture
based synthesis (two subtextures).

not suffice to capture sufficient statistics for the stripe
layout (corresponding to the two subtextures in the la-
bel map). Without any further semantic knowledge, the
system has generated one stripe, which is too wide,
giving an unnatural impression. A larger texture sam-
ple should be provided as an example to resolve this.
Figure 13 shows another example where the model fails
to pick up the underlying semantics. Despite the glob-
ally satisfying impression of the landscape, the model
failed to “understand” the road separating the vineyard
from the slope. Nevertheless the road was partially re-
constructed as a transition effect when incorporating
the subtexture interactions.

4.2.4. Processing Simple Textures as Composite
Textures. Figure 14 illustrates that the composite tex-
ture approach even holds good promise for “simple”
textures. Given the example on the left, a basic model
was extracted and used to synthesize the two middle
textures. For the texture (b) 59 cliques were selected
and the synthesis was allowed to run over 3000 iter-
ations. The image (c) shows the result if the number
of iterations with the basic model is restricted to 500.
Quality has clearly suffered. The image on the right

Composite Texture Synthesis 175

Figure 15. The sea sponge texture with cavities cannot be synthe-
sized as a single subtexture with the basic model.

is the result of a composite texture synthesis. Bright
and dark regions were distinguished as two subtextures.
Not only is this latter result better, it also took only 100
iterations, while the total number of cliques (for the
two subtextures and their interactions) was still limited
to 59. The computational complexity of the parallel
approach is lower, because every pixel is involved in
about only half as many cliques.

Figure 16. (a) original image; (b) label map of the sponge texture after the extra decomposition into two subtextures; (c) synthesis based on
the original label map using this extra level of decomposition. The cavities of the sponge are recovered.

4.2.5. Multiple Level Decomposition. We will now
briefly illustrate the potential of increasing the number
of layers in the composite texture description. So far,
we have considered only two: the label map and directly
beneath the subtextures. On the other hand, Fig. 14 has
demonstrated that it may be useful to also subdivide
the subtextures themselves. This is in agreement with
the strategy as originally described, i.e., to decompose
until a level of sufficient homogeneity in terms of sim-
ple properties is achieved. The sponge texture in the
center of Fig. 16(a) is quite intricate. The cavities show
patterns that have to be captured quite precisely and
simultaneously their structure varies over the texture,
due to perspective effects and changing orientations.
Figure 15 shows a cutout of the sponge texture and a
synthetic result, based on the basic model for this tex-
ture. The result more or less averages out the cavity
variations in the example. The sponge is segmented

176 Zalesny et al.

out as a separate subtexture by an initial segmentation.
Now, by lowering the threshold introduced at the end
of Section 3.1 for this part, a further decomposition is
achieved (Fig. 16(b)). In Fig. 16(c) the result of the syn-
thesis based on this additional decomposition is shown.
Clearly, the cavities have been recovered. This result
is however preliminary as we don’t have a systematic
way of deciding where to stop the decomposition. This
will be the subject of future research.

5. Conclusions

We have described a hierarchical texture synthesis ap-
proach, that considers textures as composites of simpler
subtextures, that are studied in terms of their own statis-
tics, that of their interactions, and that of their layout.
The approach supports the fully automated synthesis of
complex textures from example images, without ver-
batim copying.

The following observation made this hierarchical ap-
proach possible: it is easier to distinguish textures than
to synthesize them. It is in a full agreement with the
complexity comparison between the segmenting and
synthesizing stages. Segmentation uses fixed filters,
which are texture- and mutually-independent, while
the synthesis uses an optimal texture- and mutually-
dependent pixel pair type selection obtained during
the analysis-by-synthesis procedure. Despite a seam-
ing simplicity of the pairwise statistics they, if taken
together, represent much more intricate pixel interde-
pendency compared to the segmenting filters.

In the current approach only one level of the hierar-
chy is thoroughly explored and a promising extension
towards multiple levels is suggested. Future research
will crack down on this problem of how to optimize
the trade-off between the complexity of the label maps
and the homogeneity of the subtextures they contain.

Acknowledgments

The authors gratefully acknowledge support by the Eu-
ropean IST projects “3D-Murale” and “CogViSys”.

References

Aherne, F., Thacker, N., and Rockett, P. 1998. The Bhattacharyya
metric as an absolute similarity measure for frequency coded data.
Kybernetika, 34(4):363–368.

Aslam, J., Leblanc, A., and Stein, C. 2000. A new approach to clus-
tering. Workshop on Algorithm Engineering.

Comaniciu, D. and Meer, P. 2000. Real-time tracking of non-
rigid objects using mean shift. In Proc. ICPR, vol. 3, pp. 629–
632.

Efros, A. and Leung, T. 1999. Texture synthesis by non-parametric
sampling. In Proc. ICCV, vol. 2, pp. 1033–1038.

Ferrari, V., Tuytelaars, T., and Van Gool, L. 2001. Real-time affine
region tracking and coplanar grouping. In Proc. CVPR, vol. II,
pp. 226–233.

Gagalowicz, A. and Ma, S.D. 1985. Sequential synthesis of natu-
ral textures. Computer Vision, Graphics, and Image Processing,
30:289–315.

Gimel’farb, G. 1999. Image Textures and Gibbs Random Fields.
Kluwer Academic Publishers: Dordrecht, p. 250.

Gousseau, Y. 2002. Texture synthesis through level sets. In Proc.
Texture 2002 Workshop, pp. 53–57.

Graham, R., Groetschel, M., and Lovasz, L. (Eds.). 1995. Handbook
of Combinatorics. Elsevier, vol. 2, pp. 1890–1894.

Hertzmann, A., Jacobs, C., Oliver, N., Curless, B., and Salesin
D. 2001. Image analogies. In Proc. SIGGRAPH, pp. 327–
340.

Malik, J., Belongie, S., Leung, T., and Shi, J. 2000. Contour
and texture analysis for image segmentation. Perceptual Orga-
nization for Artificial Vision Systems, Boyer and Sarkar (Eds.),
Kluwer.

Paget, R. 1999. Nonparametric Markov random field models for
natural texture images. PhD Thesis, University of Queensland,
February 1999.

Puzicha, J., Hofmann, T., and Buhmann, J. 1999. Histogram clus-
tering for unsupervised segmentation and image retrieval. Pattern
Recognition Letters, 20(9):899–909.

Puzicha, J. and Belongie, S. 2000. Model-based Halftoning for color
image segmentation.

Shi, J. and Malik, J. 1997. Normalized cuts and image segmentation.
In Proc. CVPR, pp. 731–737.

Wei, L.-Y. and Levoy, M. 2000. Fast texture synthesis using tree-
structured vector quantization. In Proc. SIGGRAPH, pp. 479–
488.

Zalesny, A. and Van Gool, L. 2001. A compact model for viewpoint
dependent texture synthesis. In SMILE 2000, Workshop on 3D
Structure from Images, Lecture Notes in Computer Science, M.
Pollefeys et al. (Eds.), vol. 2018, pp. 124–143.

Zalesny, A., Ferrari, V., Caenen, G., Auf der Maur, D., and Van
Gool, L. 2002. Composite texture descriptions. In Proc. ECCV,
pp. 180–194.

