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ARIANA, projet commun CNRS/INRIA/UNSA, INRIA Sophia Antipolis 2004, route des Lucioles, BP93, 06902

Sophia Antipolis Cedex, France
Laure.Blanc Feraud@sophia.inria.fr

Received July 13, 2004; Revised March 16, 2005; Accepted May 9, 2005

First online version published in January, 2006

Abstract. In this paper, we propose a new mathematical model for detecting in an image singularities of codi-
mension greater than or equal to two. This means we want to detect isolated points in a 2-D image or points and
curves in a 3-D image. We drew one’s inspiration from Ginzburg-Landau (G-L) models which have proved their
efficiency for modeling many phenomena in physics. We introduce the model, state its mathematical properties and
give some experimental results demonstrating its capability in image processing.
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1. Introduction

The goal of this paper is to propose a new mathemat-
ical model for detecting in an image singularities of
codimension greater than or equal to two. This means
we want to detect isolated points in a 2-D image or
points and curves in a 3-D image. To the best of our
knowledge there exist in the literature few works tack-

∗Author is now with CMLA (CNRS UMR 8536), ENS Cachan,
France.

ling this problem. Most of existing models are devoted
to the detection of singularities of codimension-one,
e.g. curves in R

2 or surfaces in R
3. Recently Lorigo

et al. (1999) have developed a codimension-two
geodesic active contour scheme for the segmentation
of thin structures. Their algorithm is based on work
in differential geometry (Ambrosio and Soner, 1996)
concerning the evolution of arbitrary dimensional man-
ifolds in arbitrary dimensional space. See also Ruuth
et al. (1998) for a diffusion-generated motion scheme
for codimension-curves. Lorigo et al. have applied
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their algorithm for automatically segmenting blood
vessels in volumetric resonance angiography images.

Here our approach is quite different. We drew
one’s inspiration from Ginzburg-Landau (G-L) models
which have proved their efficiency for modeling many
phenomena in physics and in particular in the theory
of superconductors. G-L models are well-adapted to
detect singularities in signals which modelize material
conductivity. In this paper, our objective is to apply
this type of model to capture singularities in images.
There exists a general theory of G-L models involv-
ing functions u from R

n+k into R
k for the study of

singularities of codimension-k in an ambient space of
dimension n + k (see Alberti et al., 2003). Our future
objective is to process 3D images and to detect curves
in R

3. As a preliminary work, we focus in this paper on
2D-images. In this context, we introduce the simplest
G-L model, state its mathematical properties and give
some experimental results demonstrating its capabil-
ity in image processing. More precisely, we examine
the case k = 2 and n = 0, which results in detecting
isolated points in 2D images. Though simple detectors
(for example based on the Laplacien of the 2D image)
could be used for this task, we think that the study of
the G-L 2-D model is a necessary first step to show the
ability of the proposed model to detect singularities
of codimension 2 and to understand more complicated
topological situations in R

3.
We will also show some experiments in the case

k = 1 and n = 1. In this case we will see that our algo-
rithm is able to detect curves which are not necessarily
closed and that we can also capture certain quadruple
junctions.

The plan of the paper is organized as follows. In Sec-
tion 2 we introduce the G-L model and give its main
physical and mathematical properties. Then in Section
3 we show how such a model can be adapted to the
detection of points in 2-D images. In Section 4 we
display some numerical results demonstrating that our
algorithm also applies for the detection of curves in
2-D images and in particular its capability to process
the detection of nonclosed curves. We also display re-
sults showing the robustness of our approach against
noise.

2. The Ginzburg-Landau Model

In this section we introduce the Ginzburg-Landau
model. We first present the origin of the model, then
we give its main mathematical properties and finally

we show how this model can be used for detecting in
an image singularities of codimension-two.

The Ginzburg-Landau model was designed in the
fifties by Ginzburg and Landau (1950) to modelize
phenomenological patterns in superconductor material
near their critical temperature. Semiconductors have
the particularity that, when they are cooled down be-
low a critical temperature, they become “superconduct-
ing” which means that there can be permanent currents
without dissipation.

There exists an important literature concerning
G-L models. It is not the place here to review all
these results. We will only give those which are the
most linked to our purpose. Most of them rely on the
simplified energy:

Eε(u) = 1

2

∫

�

(
|∇u|2 + 1

2ε2
(1 − |u|2)2

)
dx (1)

or on the associated flow governed by the evolution
equation:

∂u

∂t
= �u + 1

ε2
u ( 1 − |u|2) (2)

where u : � ⊂ R
2 → R

2. The parameter ε is a small
positive constant which has the dimension of a length
and depends on the material and its temperature. Of
course G-L models are interesting and useful if we
associate to (1) or (2) some singular data (for exam-
ple Dirichlet data u(x) = u0(x) on the boundary ∂�).
That also allows to avoid trivial solution. The func-
tion u is a complex-valued function which indicates
the local state of the material (in the superconductor
theory |u| is proportional to the density of supercon-
ducting electrons). Usually a solution |uε| takes values
close to 1 almost everywhere for ε small enough, and
takes values close to 0 on small regions of characteris-
tic size ε which are singularity regions for the physical
model under consideration (for example, loss of su-
perconductivity). Therefore if we want to detect these
singularities we only have to display the set where |uε|
takes values close to 0. Let us remark that points can be
considered as the intersection of two curves u1(x) = 0
and u2(x) = 0. So we stress that u needs to be a
vector and not a scalar if we want to detect singulari-
ties of codimension 2 in R

2 (see Bethuel et al., 1994)
for a theoretical explanation). Let us note incidentally
that there exist other works in image processing using



Detecting Codimension—Two Objects in an Image with Ginzburg-Landau Models 31

complex-values functions (see for example Gilboa
et al., 2001; 2004).

As Dirichlet data are not quite natural in image anal-
ysis, we thus incorporate in (1), a data term of the
type

∫
�

|u − u0|2dx and we consider Neumann bound-
ary conditions. For this type of model as pointed out by
Chen et al. (1998), it may happen that singularities of
initial data can eventually disappear from the domain
(for example a singularity can merge with other singu-
larities). Hence to stabilize each singularity we need
to create an energy barrier around the singularities by
incorporating an appropriate diffusion coefficient a(x)
in the first diffusion term of (1). Before writing down
our final model (see Section 3) we quote from Chen
et al. (1998) a result which was the starting point of our
study. Let us consider the following Ginzburg-Landau
equation with a variable diffusion coefficient and Neu-
mann boundary condition:

div(a(x)∇�) + (1 − |�|2)� in �,
∂�

∂ �n = 0 on ∂�

(3)

where a(x) is a positive smooth function, �n is the
unit outward vector on ∂�, and the unknown � is
a complex-valued function.

Theorem 2.1 (Chen et al., 1998). Let � be
a bounded domain in R

2 with regular bound-
ary. Given arbitrarily a finite number of distinct
points {a j } ⊂ �, j = 1, . . . , N and let ρ < ρ0

with ρ0 = min{min 1
2 |a j − ak |, 1 ≤ j < k ≤

N ; min dist(a j , ∂�), 1 ≤ j ≤ N }, then there exists a
regular function a(x) > 0 such that equation (3) with
Neumann boundary conditions has a stable solution
�(x) whose zero set Z [�] = {x ∈ �/�(x) = 0} is ρ-
close to the prescribed configuration in the sense that

Z [�] ⊂
N⋃

j=1

Bρ(a j ), Z [�] ∩ Bρ(a j ) 
= 0

where Bρ(a j ) is a disc of center a j and radius ρ.
Typically the function a(x) is close to zero only in

Bρ(a j ). In the spirit of the above theorem, our objective
in what follows is to propose some functions a(x) of
the initial image which allow us to detect singularities
of codimension 2 and 1 in a 2D-image.

3. Detection of Singularities of Codimension-2
in 2-D Images

Let us now begin with the problem of detecting sin-
gularities of codimension-two in a 2-D image. From
the previous results, this means that we need to con-
sider complex functions defined on �. First, we have
from an initial 2-D image f (x) to construct a complex-
valued image u0 (we only consider gray-level images).
There are many ways for doing it. We choose the
one’s proposed by Grossauer and Scherzer (2003). We
first rescale the intensity image f (x) to the interval
[−1, 1], then f (x) is identified with the real part of
a complex valued function u0: � → C by defining
Im(u0) =

√
1 − f (x)2 , so that | u0| = 1. For de-

tecting singularities of codimension-two (points) we
propose to search for minimizers uε ∈ H 1(�; C) of
the following G-L functional:

Fε(u) = µ

∫
�

a(x)|∇u|2 + 1

ε2

∫
�

(
1 − |u|2)2

+ λ

2

∫
�

|u − u0|2 (4)

where a(x) is a diffusion coefficient and u is a complex
valued function as u0. The first term of Fε is a regular-
ization term, the second one forces a solution u to be
such that |u| = 1 almost everywhere, and the third one
is a data term. The choice of the data term is a current
subject of investigation.

If we denote by u (for the sake of clarity, we omit
the ε dependence) a minimizer of Fε(u) then it satisfies
the Euler-Lagrange system:

−µdiv(a(x)∇u) − 1

ε2
u(1 − |u|2) + λ(u − u0)

= 0 in � (5)

and ∂u
∂ �n = 0 on ∂� (where �n is the outward unit normal

to ∂�).
Now, since we want to detect singularities created

by discontinuity points (or Dirac singularities whose
support are points), we choose a(x) as follows:

a(x) = W (� f ) (6)

where f is the initial gray level image. The operator
� f stands for the Laplacien and W is a nonincreasing
function with W (0) = 1 and W (+∞) = 0. Let us re-
mark that isolated points can be detected as maximum
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of the absolute value of the Laplacien. Typically, we
choose

W (t) = 1

1 + (t/α)2
(7)

where α is a parameter modelling the size of the dis-
continuity step. Moreover, since f may not be twice
differentiable (in fact f is not continuous at points we
want to detect), we first smooth it by convolution with
a Gaussian kernel before computing W. We will see in
Section 3.3 that this model behaves as the one given
in Theorem 2.1: the set {x ∈ �/|uε | � 0} is the set of
the singularities (discontinuity points) of u if ε small
enough, and thus also the discontinuity points of the
image f.

3.1. Evolution Equation

As it is often done, to solve equation (5), we embed it
into a dynamical scheme:

∂u

∂t
= µdiv(a(x)∇u) + 1

ε2
u

(
1 − |u|2) − λ (u − u0)

(8)

with Neumann boundary conditions and initial condi-
tion u(t = 0, x) = u0(x). We write u = (u1, u2), so
that we can rewrite (5) as:




∂u1

∂t
= µdiv(a(x)∇u1) + 1

ε2
u1

(
1 − (

u2
1 + u2

2

))
−λ (u1 − (u0)1)

∂u2

∂t
= µdiv(a(x)∇u2) + 1

ε2
u2

(
1 − (

u2
1 + u2

2

))
−λ (u2 − (u0)2)

(9)

(u0)1 is the original image, after it has been rescaled

between −1 and 1. We take (u0)2 =
√

1 − (u0)2
1 (so

that (u0)2
1 + (u0)2

2 = 1).

3.2. Discretization of the Model

The image is a two dimension vector of size N × N .
We denote by X the Euclidean space R

N×N and Y =
X × X . The space X will be endowed with the scalar
product ( f, g)X = ∑

1≤i, j≤N fi, j gi, j and the norm
‖ f ‖X = √

( f, f )X . We introduce a discrete version of
the gradient operator. If f ∈ X , the gradient ∇ f is a

vector in Y given by:

(∇ f )i, j = (
(∇ f )1

i, j , (∇ f )2
i, j

)

with

(∇ f )1
i, j =

{
fi+1, j − fi, j if i < N

0 if i = N

and

(∇ f )2
i, j =

{
fi, j+1 − fi, j if j < N

0 if j = N

We also introduce a discrete version of the diver-
gence operator. We define it by analogy with the contin-
uous setting by div = −∇∗ where ∇∗ is the adjoint of
∇: that is, for every p ∈ Y and f ∈ X, (−divp, f )X =
(p,∇ f )Y . It is easy to check that:

(div(p))i, j =




p1
i, j − p1

i−1, j if 1 < i < N

p1
i, j if i = 1

−p1
i−1, j if i = N

+




p2
i, j − p2

i, j−1 if 1 < j < N

p2
i, j if j = 1

−p2
i, j−1 if j = N

(10)

Finally, we define a discrete version of the Laplacian
operator by setting � f = div(∇ f ) if f ∈ X .

Time Discretization. We use an explicit Euler
scheme with respect to the time variable t, that is we

approximate ∂u
∂t by

un+1
i, j −un

i, j

δt (where n stands for the it-
eration time). To solve (8), we use an explicit scheme:

un+1
i, j = un

i, j + δt
(
µ(div(ai, j u

n
i, j )

+ 1

ε2
un

i, j

(
1 − ∣∣un

i, j

∣∣2 ) − λ
(
un

i, j − u0
i, j

) )
(11)

with u0
i, j = (u0)i, j ∀(i, j).
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We thus get the following system (we omit
subindices i, j refering to the pixel location):




un+1
1 = un

1 + δt
(
µ(div

(
aun

1

)

+ 1
ε2 un

1

(
1 −

((
un

1

)2 + (
un

2

)2
))

−λ
(
un

1 − (u0)1
))

un+1
2 = un

2 + δt
(
µ(div

(
aun

2

)

+ 1
ε2 un

2

(
1 −

((
un+1

1

)2 + (
un

2

)2
))

− λ (u2 − (u0)2))

(12)

3.3. Numerical Results

3.3.1. Parameters. We need to fix several parameters
before running our algorithm. Fortunately, they have
an intuitive explanation which makes them easy to fix.
We first need to fix the parameters λ,µ and ε used in
system (9).

1. ε is to be small. We use values ranging from 0.1 to
1.0 (we have mainly used ε = 0.1 and ε = 0.5).
It controls the critical size of the points our algo-
rithm detects, i.e. the resolution of the segmented
image. The smaller it is, the finer the resolution
is. Nevertheless, one must not set it too small, be-
cause the spatial discretization of the image is fixed.
Moreover, the smaller ε is, the smaller the time dis-
cretisation step δt has to be fixed (otherwise, the
numerical algorithm does not converge).

2. λ is the fidelity parameter to the initial data. Since
we initialize u to u0, we do not need to use a large

value. In our numerical experiments, we have al-
most always used λ = 0.1.

3. µ is the regularization parameter. We use values
ranging from 0.1 to 50.0 (but we have mainly used
µ = 1). It mainly depends on how noisy the initial
image is. The larger the noise is, the larger µ should
be.

We also need to fix the parameter α in equation
(7). It represents the critical size of the step of the
discontinuity that our algorithm detects. The smaller it
is, the smaller the detected steps are.

And as we have said, before computing � f in the
diffusion term (6), we regularize f by convolution
with a Gaussian kernel of standard deviation σ . We
use values ranging from 3 to 7. The larger the noise is,
the larger we set σ (in the case when the original image
has not been degraded by some noise, we sometimes
do not regularize f).

Computation Time. Since we minimize the func-
tional by solving the associated Euler-Lagrange system
with a gradient descent method, we have to choose the
time discretization step δt as well as a small stopping
criterion TOL. Concerning δt , it needs to be chosen
quite small so that the scheme be stable. To check if
the scheme is stable, one just needs to look at the differ-
ences |un+1

1 −un
1|. If δt is correct, then these differences

decrease. Otherwise, they explode within a few itera-
tions. We want to choose δt as large as possible, so that
the algorithm be fast. But the smaller ε is, the smaller
δt needs to be. In practice, we have used values of δt
ranging from 0.00005 to 0.01. Concerning TOL, we
have used the value 0.0001. We iterate algorithm (9)
until max

{ |un+1
1 −un

1 |
|un

1 | ,
|un+1

2 −un
2 |

|un
2 |

}
≤ TOL .

Figure 1. Synthetic image: in this very simple example, the points are well detected. W is the thresholding function (7) based on the Laplacien.
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Figure 2. Noisy synthetic images: as the standard deviation of the noise increases, then the detection of the points gets less accurate.

Figure 3. Detecting points: as expected, the dashes of the leopard are detected as singularities.
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Figure 4. Detecting points in a noisy image (σ = 20).

Figure 5. Biological points: the structures are detected as sequences of points.

Figure 6. Original SAR image.

With such parameters, it takes less than 30 seconds
to process a 256 ∗ 256 image.

3.3.2. Commentaries. In all our numerical examples,
we also show the result we get with a Laplacien based
detector. We just use the function W proposed in (7)
(we mention the value of α we use in the Figures).
This detector is based on the values of the Laplacien
of the image (after it has been smoothed by a Gaussian
kernel). Large values of the Laplacien correspond to
a singularity in the image. This means that W is close
to 0 on a singularity, and close to 1 in flat regions. We
could also have used a classical detector such as the
Harris detector (Harris and Stephens, 1988). But this
detector was originally designed to capture the corners
of an image, and we have checked numerically that it
performs not as well as the W-detector on pointwise
singularities.

On Fig. 1, we show an example on a synthetic image:
our algorithm catches the points very well. We also
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Figure 7. Segmentation of the SAR image of Figure 15: the pro-
posed model merges the detected points into lines.

display the result we get with the W-detector (7). Our
model clearly compares well. On Fig. 2, we have added
a Gaussian noise (respectively with standard deviation
σ = 10, 30 and 50). The algorithm still performs well.
In practice, to create the noisy images, we have first
added the Gaussian noise to f, and then rescaled it to
the interval [−1, 1]. As the level of the noise increases,
our model seems to compare well with the W-detector.

On Fig. 3, we show what happens on a real im-
age: we catch the dashes of the leopard. Figure 4 is
the same example, but with an additive Gaussian noise
with standard deviation σ = 20. On both examples,
the shape of the leopard is given by its dashes. Fig-
ure 3 also clearly illustrates the role of the µ parame-
ter: the larger µ is, the more regularized the solution
is.

Figure 5 shows an example of a biologic image.
Although we use the model (4) which is designed to
catch points, we nevertheless detect lines as sequence
of points.

Figure 8. A synthetic image: with the proposed model, the edges are well-detected except for the square.
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Figure 9. Quadruple junction (good case): in this situation, the
proposed model can deal with a quadruple junction.

Figure 10. Quadruple junction (wrong case): in this situation, the
proposed model cannot deal with a quadruple junction. This is the
reason why the square is not segmented in Fig. 8.

Finally, Figs. 6 and 7 shows an application to SAR
interferometry (Lewis, 1998). In this case too, the lines
are formed by sequences of points. We will come back
to this application in the next section. It should be
noticed that with our model, the detected points seem
to be merged into lines in this case.

4. Detection of Codimension-1 Structures
in 2D-Images

As we mentionned in the introduction, in this case, we
do not work with complex-values function but with
scalar-values functions and we search for a minimizer
of problem (4).

In the existing literature, there are many approaches
to detect lines in an image. For instance, based on the
gradient, there is the classical Canny-Deriche approach
(Aubert and Kornprobst, 2002). There has also been
a lot of approaches using snakes and active contours
(Aubert and Blanc-Feraud, 1999; Aubert and Korn-
probst, 2002; Caselles et al., 1993, 1997; Malladi et
al., 1994; Osher and Fedkiw, 2001; Sussman et al.,
1994).

We propose here a powerfull algorithm to catch
curves in a 2-D image. Comparing with active con-

tour methods, our new algorithm can catch nonclosed
curves, and the initilization is completely automatic.

4.1. Evolution Equation

As before, we embed PDE (5) into a dynamical
scheme:

∂u

∂t
= µdiv(a(x)u) + 1

ε2
u(1 − |u|2)

−λ(u − u0) in � (13)

with ∂u
∂ �n = 0 on ∂�. Moreover, we impose u(t = 0, x)

= u0(x). λ and µ are positive weighting parameters.
We then discretize the PDE (13) with finite differences.

In Section 3 we had chosen a(x) = W (� f ) (see Eq.
(6)). As the singularities we seek are no longer points
but lines, we now choose:

a(x) = W (∇ f ) (14)

where f is the initial gray level image and W is the same
function as in Section 3 (see Eq. (7)). Let us remark
that lines can be detected as maximum of the absolute
value of the gradient.

We use the same numerical scheme as in Section 3
(see Eq. (11)), but now the unknown u is a scalar
function.

un+1
i, j = un

i, j + δt

(
µ�un

i, j + 1

ε2
un

i, j

(
1 − |un

i, j |2
)

− λ
(
un

i, j − u0
i, j

) )
(15)

The initialization u0 is the original image which has
been rescaled between −1 and 1.

4.2. Numerical results

We set the parameters in the same way as in the pre-
ceeding section. We have decided to compare our
model with the classical Canny-Deriche algorithm.
We have used the implemantation in Megawave2
(http://www.cmla.ens-cachan.fr/Cmla/Megawave/).

Figure 8 is an example of segmentation of an image
without any noise. One can see that it gives very good
edges (comparing with the Canny-Deriche edge de-
tector). The only problem is that our algorithm does
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Figure 11. A noisy image: the result is to be compared with the one of Fig. 8 (which corresponds to the noise free case). Because of the noise,
the fine details are not segmented as well as in Fig. 8, but the result is still good.

Figure 12. A nonclosed curve: even though the noise standard deviation is quite high, the proposed model is able to find the curve.
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Figure 13. Biological lines: the original image is the same as the one of Fig. 5. This illustrates the difference between the proposed model to
detect lines and the proposed one to detect points.

Figure 14. Biological image: the structures (which are lines in this image) are well segmented by the proposed algorithm.
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not detect the square. We illustrate more precisely
this problem on Figs. 9 and 10. Figure 9 gives an
example of segmentation with a quadruple junction.
In this case, the algorithm performs very well. But
one can see on Fig. 10 that our model cannot han-
dle any quadruple junctions. In fact, in many situ-
ations, one needs more than two phases. Here, for
quadruple junctions we need four phases. In other
words, the attracting term in the G-L functional must
have four potential wells. Notice that for n-junctions,
n ≥ 4, we only need four potential wells. We are
currently working on modifying our functional in this
direction.

Figure 11 is an example of segmentation of the image
of Fig. 8 with some Gaussian noise (with standard
deviation σ = 20). The result is still a very good one
even if the noise is quite strong.

On Fig. 12, we have tested our algorithm on a non-
closed curve. We can see that we can detect it, even
when there is a strong Gaussian noise (with standard
deviation σ = 80).

Figure 13 is to be compared with Fig. 5. One
clearly sees that both models do not perform the
same way. The model of this section tries to find
lines in an image, whereas the model of the pre-
vious section aims at finding points. Therefore, in
this case, the points are represented by circles, and
the lines by their edges (since they have a too large
width with respect to the parameter ε which has been
used).

Figure 14 shows a segmentation result on a biologi-
cal image. Contrary to Fig. 13, the lines are represented
by a single curve (as in Fig. 12). This comes from the
width of the lines to be detected and the value of ε

(ε = 0.5 in this case). If we set ε smaller, then the lines
are considered as objects with non-negligeable width
(as in Fig. 13 or 8).

We come back to SAR image application (Lewis,
1998). We use our algorithm on the same interfer-
ometric image as in Fig. 7 (where the original im-
age is displayed). On Fig. 15, we see that we get
too many lines (in fact, we get twice as many line
as we should want). One way to correct this problem
is to use the result we get with the point version of
the algorithm (Fig. 7). We just multiply both results
(i.e. the gray level value of the final result in posi-
tion (i, j) is the product of the gray-level value of the
point detection in Fig. 7 in position (i, j) and the gray-
level value of the segmentation in Fig. 15 in position

Figure 15. Segmentation of the SAR image of Fig. 15. This result
is to be compared with the one of Fig. 7. With our model to detect
lines, we get twice as many lines as we should.

(i, j) ), so that we just keep the lines we want (see
Fig. 16).

Computation Time. As we have explained before, we
tune the time discretization step δt and the small stop-
ping criterion TOL in the same way as in the preceed-
ing section. With such parameters, it takes less than



Detecting Codimension—Two Objects in an Image with Ginzburg-Landau Models 41

Figure 16. SAR image segmentation using both models: this result
is obtained with a pixel by pixel multiplication of the results of Fig. 7
(with our model to detect points) and of Fig. 15 (with our model to
detect lines).

15 seconds to process a 256 ∗ 256 image (in this case,
the algorithm is faster since there is just one equation).
This is of course longer than a line detector such as
the Canny-Deriche one. But it compares pretty well to
the methods based on snake approaches. For instance,
in the case of geodesic active contours, the complexity
is then higher since there is a periodic reinitialization
procedure (Aubert and Kornprobst, 2002).

5. Conclusion and Future Prospects

In this paper, we have displayed some experimental
results using Ginzburg-Landau functionals for the de-
tection of objects of codimension 2 or 1 in a 2-D image.
We got a new model to carry out such tasks. We have
also stated some mathematical results about GL mod-
els. However these results are not directly applicable
to our functional since we add a data term and we have
to study theoretically the behaviour of uε as ε tends to
0. This will be made in a future work. Our numerical
results confirm the interest in using such an approach.
From a numerical point of view, we also have to go
further into the tuning of the parameter ε. It is closely
related to the mesh-size h. We conjecture that a relation
of the type h = O(ε) must hold for ensuring the con-
vergence of the discrete functional to the continuous

one’s. That is why we choose ε close to 1 in our ex-
periments since classically in image processing h = 1.
This type of results have been pointed out for similar
problems in Aubert et al. (2004).

Acknowledgment

We thank Philippe Lecomte (INRA Sophia-Antipolis,
France) for providing us with some biological images.

References

Alberti, G., Baldo, S., and Orlandi, G. 2003. Variational convergence
for functionals of Ginzburg-Landau type. Preprint.

Ambrosio, L. and Soner, H.M. 1996. Level set approach to mean
curvature flow in arbitrary dimension. Journal of Differential
Geometry, 43.

Aubert, G. and Blanc-Feraud, L. 1999. Some remarks on the
equivalence between 2D and 3D classical snakes and geodesic
active Contours. IJCV, 34(1):19–28.
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