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Abstract. We describe a mathematical and algorithmic study of the Lambertian “Shape-From-Shading” problem
for orthographic and pinhole cameras. Our approach is based upon the notion of viscosity solutions of Hamilton-
Jacobi equations. This approach provides a mathematical framework in which we can show that the problem
is well-posed (we prove the existence of a solution and we characterize all the solutions). Our contribution is
threefold. First, we model the camera both as orthographic and as perspective (pinhole), whereas most authors
assume an orthographic projection (see Horn and Brooks (1989) for a survey of the SFS problem up to 1989 and
Zhang et al. (1999), Kozera (1998), Durou et al. (2004) for more recent ones); thus we extend the applicability
of shape from shading methods to more realistic acquisition models. In particular it extends the work of Prados
et al. (2002a) and Rouy and Tourin (1992). We provide some novel mathematical formulations of this problem
yielding new partial differential equations. Results about the existence and uniqueness of their solutions are also
obtained. Second, by introducing a “generic” Hamiltonian, we define a general framework allowing to deal with
both models (orthographic and perspective), thereby simplifying the formalization of the problem. Thanks to this
unification, each algorithm we propose can compute numerical solutions corresponding to all the modeling. Third,
our work allows us to come up with two new generic algorithms for computing numerical approximations of
the “continuous solution of the “Shape-From-Shading” problem as well as a proof of their convergence toward
that solution. Moreover, our two generic algorithms are able to deal with discontinuous images as well as images
containing black shadows.

Keywords: shape from shading, Lambertian reflectance, pinhole camera, orthographic and perspective projection,
black shadows, discontinuous images, viscosity solutions

1. Introduction

Shape From Shading (SFS) has been a central problem
in the field of computer vision since the early days. The
problem is to compute the three-dimensional shape
of a surface from the brightness variations in a black
and white image of that surface. The work in our field
was pioneered by Horn who was the first to pose the
problem as that of finding the solution of a nonlinear
first-order partial differential equation (PDE) called
the brightness equation (Horn, 1975). Later on,

various approaches have been proposed: the book
(Horn and Brooks, 1989) contains a very nice survey
of the research in SFS up to 1989; for a more recent
overview, see Zhang et al. (1999) and Kozera (1998).
Despite the richness of the literature in this area, all
approaches are based on very restrictive assumptions.
For example, most SFS algorithms have been devel-
oped under the assumption of orthographic projection.
Few SFS approaches consider the perspective projec-
tion problem (i.e consider a pinhole camera model
instead of a simple affine model). Penna (1989a, b)
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proposes a local method using geometrical properties.
His formulation of the problem leads him to solve a
system of algebric equations. Weiss (1997) proposes
a physical formalism which can exploit invariants of
the imaging process and geometric knowledge about
the surface. Penna (1989a, b) and Weiss (1997) do
not present numerical results; they only describe a
theoretical method. Lee and Kuo (1994) present a
variational approach. They minimize a cost functional
based on a local linear approximation of the reflectance
map. Hasegawa and Tozzi (1996) suggest to combine
SFS with photogrammetry to reconstruct the surface
and calibrate the camera. Their method consists in
solving large systems of linear equations and seems
to be suitable only for small images. More recently,
Samaras and Metaras (1999) propose a solution of
the “perspective SFS” by using a deformable model,
Yuen et al. (2002) and Tankus et al. (2004, 2005)
propose an adaptation of the fast marching algorithm
of Kimmel and Sethian (2001), Okatani and Deguchi
(1996, 1997), propose an extension of the methods of
propagation of the equal-height contours of Bruckstein
(1988), Kimmel and Bruckstein (1995b), and Tankus
et al. (2003) or Courteille et al. (2004) propose some
“local” methods. Let us note that in the articles (Penna,
1989a, b; Weiss, 1997; Lee and Kuo, 1994; Hasegawa
and Tozzi, 1996; Samaras and Metaxas, 1999; Yuen
et al., 2002) the authors do not really formulate a PDE
adapted to the perspective modeling. Here, we also
propose a solution of the “perspective SFS” problem,
but in contrast with the previous work of Penna (1989a,
b), Weiss (1997), Lee and Kuo (1994), Hasegawa
and Tozzi (1996), Samaras and Metaxas (1999), Yuen
et al. (2002), Tankus et al. (2003), Courteille et al.
(2004), our formalism is completely based on PDEs.
Also, we formulate precise and explicit PDEs (Eqs.
(8)1 and (10)) corresponding to the perspective SFS
problem.2 Note that the formulation of these new
PDEs allows to prove existence and uniqueness results
for the perspective SFS problem. Regarding this point,
let us emphasize the importance of the questions of
the existence and uniqueness of a solution of the SFS
problem. These questions as well as those related to
the convergence of numerical schemes for computing
the solutions became central in the last decade of the
20th century. For example, the papers of Bruss (1982),
Brooks et al. (1992), Horn et al. (1993), and Durou and
Maı̂tre (1996), and Durou and Piau (2000), show the
difficulty of these questions. The first results related
to the convergence of the numerical approximations

have been presented by Dupuis and Oliensis (1994)
and Rouy and Tourin (1992), Lions et al. (1993). More
recent results can be found in Falcone and Sagona
(1997), Falcone et al. (2001), Prados et al. (2002a).
Let us mention here that all the previous theoretical
work only dealt with the simplest version of the SFS
problem (with orthographic projection). In this article,
we deal with the same questions in the framework of
the “perspective SFS” problem. Let us also remark
that the papers of Penna (1989a, b), Weiss (1997), Lee
and Kuo (1994), Hasegawa and Tozzi (1996), Samaras
and Metaxas (1999), Yuen et al. (2002), Tankus et al.
(2003), and Courteille et al. (2004) do not deal at all
with these questions.

The perspective projection hypothesis extends the
applicability of SFS methods to more realistic images:
we can recover the shapes of objects which are located
near the camera. The modeling we propose in Prados
and Faugeras (2001, 2003) (as that of Penna (1989a,
b), Lee and Kuo (1994), Samaras and Metaxas (1999),
Yuen et al. (2002), Tankus et al. (2003), and Courteille
et al. (2004)) assumes that the scene is illuminated by
a single point light source located at infinity. In this
article, we also deal with scenes which are illuminated
by a single point light source located at the optical
center (case also considered by Okatani and Deguchi
(1996, 1997)). We formulate a new PDE (Eq. (10)),
design an original algorithm and prove existence and
uniqueness of a solution, thereby completing our previ-
ous work (Prados and Faugeras, 2003). This modeling
(perspective camera and light source is located at the
optical center) realistically describes a simple camera
equiped with a flash, or such medical imaging systems
as endoscopy.

We also unify the classical model which assumes
that the camera performs an orthographic projection,
and the perspective model which assumes that the cam-
era is a pinhole. To this end, we introduce a “generic”
Eq. (24). Note that the classical SFS equations and
the two new perspective SFS equations (8) and (10)
are particular cases of the “generic” equation (24).3

This generic formulation considerably simplifies the
formalization of the problem. It also naturally sug-
gests “generic” algorithms, each of which can compute
numerical solutions of various perspective and ortho-
graphic SFS problems.

Finally, the algorithms we propose can deal with im-
ages containing discontinuities and black shadows. We
prove the stability of our SFS approximation schemes
and the convergence of our SFS algorithms when ap-
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plied to such images. We also prove that our algorithms
are robust to pixel noise and to the errors on the pa-
rameters of the models, e.g. the light source direction.

2. Mathematical Formulations
of the Lambertian SFS Problem

The SFS problem is to recover the three-dimensional
shape of a scene from the brightness variations in a
black and white image of that scene.

The scene is represented by a surface S. Let � be an
open set of R

2 representing the domain of definition of
the image; for example, � is the rectangular domain
]0, X [×]0, Y [. We assume that S can be explicitly pa-
rameterized by a function S from the closure �̄ of the
set � into R

3 by x �→ S(x);

S = {
S(x); x ∈ �̄

}
.

The image intensity is modelled as a function I from
�̄ into the closed interval [0, 1], by

I : �̄ → [0, 1] : x �→ I (x).

For all x ∈ �̄, the intensity I (x) is the brightness
obtained when imaging the point S(x) of the surface S.
We assume that a single point light source illuminates
the scene. Thus with each point X in R

3 we associate
the unit “light vector” L(X ) pointing to the light source.
Finally, we assume that the scene is Lambertian. We
suppose that the albedo is constant and equal to 1. For
all x in �̄, let us denote n(x), a normal vector of the
surface S at the point S(x) such that

n(x) · L(S(x)) ≥ 0.

With all the above hypotheses, the brightness I (x) of
the point S(x) of the surface S is the cosine of the angle
(n(x), L(S(x))). In other words:

I (x) = n(x) · L(S(x))

|n(x)| . (1)

Note that, through differential calculus,4 we can easily
obtain an explicit expression for n(x).

2.1. The “Orthographic SFS” Problem

In this subsection we revisit one of the simplest ver-
sions of the shape from shading problem. We assume

that the light source is located at infinity. Thus, all light
vectors are parallel and we can represent the light di-
rection by a constant vector L = (α, β, γ ). We assume
that the light source is above the surface, then γ > 0.
We note l = (α, β). We assume that the camera per-
forms an orthographic projection of the scene. With
this hypothesis, it is natural to define the surface S by

S = {
(x1, x2, u(x1, x2)); (x1, x2) ∈ �̄

}
.

So, if the plane (0, �x1, �x2) represents the retinal plane
then |u(x)| is the distance of the points S(x) in the
scene to the camera (see Fig. 1). For such a surface S,
a normal vector n(x) is given by

n(x) = (−∇u(x), 1) .

Given these hypotheses, the brightness equation (1)
becomes

∀x ∈ �, I (x) = −∇u(x) · l + γ
√

1 + |∇u(x)|2
, (2)

and therefore the shape from shading problem is, given
an image I and a light source direction L, find a function
u : �̄ −→ R satisfying the equation:

∀x ∈ �, I (x)
√

1 + |∇u(x)|2 + ∇u(x) · l − γ = 0.

(3)

Figure 1. Image arising from an orthogonal projection. The
intensity of the “pixel”(x1, x2) is the intensity of the point
(x1, x2, u(x1, x2)) on the surface S; (we assume that the camera
and the light source are above the surface).
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Note that by using the change of variables

v(x) = l · x + γ u(x), (4)

(proposed by Dupuis and Oliensis (1994)), the PDE
(3) can be rewriten as

∀x ∈ �, I (x)
√

|∇v(x) − l|2 + γ 2 + ∇v(x) · l − 1 = 0.

(5)

Also, in the case where the light source is in the same
direction as the direction of projection (it is the case
considered by Rouy and Tourin (1992)), we have L =
(0, 0, 1), and the PDE (2) can be rewriten as an Eikonal
equation:

∀x ∈ �, |∇u(x)| −
√

1

I (x)2
− 1 = 0. (6)

2.2. The “Perspective SFS” Problem

In this section, we assume that the camera performs a
perspective projection of the scene and that the light
source is located at infinity. A “pinhole” camera is
represented by its retinal plane and its optical center.
It is characterized by its focal length f ; see Fig. 2. We
assume that the scene can be represented by a surface

Figure 2. Image arising from a perspective projection. The
intensity of the “pixel”(x1, x2) is the intensity of the point
u(x1, x2)(x1, x2,− f ) on the surface S; (we assume that the cam-
era and the light source are above the surface).

S defined by

S = {u(x1, x2)(x1, x2,− f ; (x1, x2) ∈ �̄}.

A normal vector of such a surface is given by:

n(x) =
(

f ∇u(x)

u(x) + x · ∇u(x)

)

.

As in Section 2.1, we represent the light by a constant
unit vector L = (α, β, γ ), with γ > 0 (we suppose
that the light source is above the surface S). We note
l = (α, β). In this context, the irradiance equation
becomes:

I (x) = f l · ∇u(x) + γ (x · ∇u(x) + u(x))
√

f 2|∇u(x)|2 + (x · ∇u(x) + u(x))2
. (7)

Now, let us suppose that the points of the surface
S are visible (according to Fig. 2); So u verifies
∀x ∈ �̄, u(x) > 0. Since Eq. (7) is homogeneous
in ∇u(x) and u(x), we can simplify it by the change
of variables5 v = ln(u). Thus the “perspective SFS”
problem consists in solving the PDE:

I (x)
√

f 2|∇v|2 + (x · ∇v + 1)2

− ( f l + γ x) · ∇v − γ = 0. (8)

2.3. The “Perspective SFS” with a Point Light
Source Located at the Optical Center

In this section, we assume that the camera performs a
perspective projection of the scene and that the scene
is illuminated by a single point light source located
at the optical center. This modeling corresponds ap-
proximately to the real situation encountered when we
use a camera equiped with a flash in a dark place. It
also corresponds nicely to the situation encountered in
some medical protocols like endoscopy in which the
(point) light source is located very close to the camera,
because of space constraints (Okatani and Deguchi,
1997). As in Section 2.2, f ≥ 0 represents the fo-
cal length. For mathematical convenience, we change
slightly the parameterization of the scene. According
to Fig. 3, we suppose that it is represented by a surface
S defined by

S =
{

f u(x)
√

|x |2 + f 2

(
x

− f

)

; x ∈ �̄

}

.
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Figure 3. The intensity of the “pixel”(x, − f ) is the intensity of
the point u(x)(x,− f ) f√

|x |2+ f 2
on the surface S.

For such a surface S, a normal vector n(x) at the point
S(x) is given by:

n(x) =
(

f ∇u − f u(x)
|x |2+ f 2 x

∇u · x + f u(x)
|x |2+ f 2 f

)

.

The single point light source is located at the optical
center, so the unit light vector L at point S(x) is the
vector

L(S(x)) = 1
√

|x |2 + f 2

(−x
f

)
.

The irradiance Eq. (1) then becomes:

I (x)

√
f 2|∇u(x)|2+(∇u(x) · x)2

Q(x)2
+u(x)2−u(x) = 0.

(9)

where Q(x) = f√
|x |2+ f 2

. Now, as in Section 2.2, we

suppose that the surface S is visible (according to
Fig. 3). So u verifies ∀x ∈ �̄, u(x) ≥ 0. Therefore,
Eq. (9) being homogeneous, we can rewrite it by using
the change of variables v = ln(u):

I (x)
√

f 2|∇v(x)|2+(∇v(x) · x)2+Q(x)2−Q(x) = 0.

(10)

Note: Okatani and Deguchi (1997) do not make ex-
plicit the PDE arising from the brightness equation .
They design their numerical algorithm by transforming
the static SFS equation as an evolution equation.

3. Shape from Shading and Viscosity Solutions

3.1. Why Using Viscosity Solutions to Solve SFS

The SFS PDEs (3), (6), (8) and (10) do not depend6

on u; so they are ill-posed. In particular, the solution
is not unique. In effect, if u is a solution, then for all
c ∈ R, u + c is also a solution. The ambiguities en-
countered with this kind of equations are nevertheless
not reduced to the translations. For example, for the
eikonal equation, the concave/convexe ambiguity has
been considerably studied in the SFS literature (Olien-
sis, 1991; Horn, 1975; Kerautret, 2004; Kozera, 1997;
Klette et al., 1998). To characterize a solution, we need
to impose some constraints. Let us impose Dirichlet
boundary conditions (DBC) for insuring uniqueness:

∀x ∈ ∂�, u(x) = ϕ(x), (11)

ϕ being a continuous real function defined on ∂�.
In other words, from the SFS point of view, we as-
sume that the “distance” from the camera to the scene
is known on the boundary of the image. Admitedly,
this hypothesis may appear restrictive. In a forthcom-
ing paper, we show how to remove these constraints.
Let us note that, the reader can yet find in the SFS
literature some PDEs methods computing numerical
solutions with only at part of these boundary data; see
for example work of Kimmel and Bruckstein (1995)
and the work of Dupuis and Oliensis (1991), Dupuis
and Oliensis (1994), and Oliensis and Dupuis (1993).7

The SFS Eqs. (3), (5), (6), (8), and (10) are Hamilton-
Jacobi equations. Generally, Hamilton-Jacobi equa-
tions with DBC do not have classical, i.e. differentiable,
solutions. For example, the equation

|∇u(x)| = 1 for all x in ]0,1[ (12)

with u(0) = u(1) = 0, does not have classical solutions
(Rolles theorem). The notion of viscosity solutions is a
very nice way of making quantitative and operational
the intuitive idea of weak solutions of first-order (and
for that matter, second-order) PDEs. Also, Eq. (12)
with the DBC u(0) = u(1) = 0, has a (unique) con-
tinuous viscosity solution (see Fig. 4a). The notion
of viscosity solutions has been introduced by Crandall
and Lions (1982) and Lions (1982), Crandall and Lions
(1983), and Crandall et al. (1992) in the 80s. Its the-
ory is now mature (see the book of Barles (1994) and
that of Bardi and Capuzzo-Dolcetta (1997)) and the
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numerical analysis of Hamilton-Jacobi equations has
progressed considerably (see Falcone and Makridakis
(2001)). In the shape from shading area, the first in-
terest of the notion of viscosity solutions of Hamilton-
Jacobi equations is theoretical: it allows to characterize
the solutions of the SFS problem, and makes the prob-
lem well-posed. But let us emphasize that this is not
the only application. In effect (Barles and Souganidis,
1991) have proved that the numerical solutions ob-
tained by using monotone schemes are generally ap-
proximations of the viscosity solutions. Thus, thanks
to the notion of the viscosity solutions, we can un-
derstand exactly the numerical properties of the SFS
algorithms.

In the following, we recall the definitions of viscos-
ity solutions of Hamilton-Jacobi equations and some
fundamental theorems. More details about these defini-
tions and all proofs can be found in Barles’s, Bardi and
Capuzzo Dolcetta’s or Lions’s books (Barles, 1994;
Bardi and Capuzzo-Dolcetta, 1997; Lions, 1982).

3.2. Viscosity Solutions of Hamilton-Jacobi
Equations

We start with the notion of continuous viscosity solu-
tions introduced by Crandall (1982), Lions (1982), and
Crandall and Lions (1983).

3.2.1. Continuous Viscosity Solutions. We consider
a Hamilton-Jacobi equation of the form:

H (x,∇u(x)) = 0, x ∈ �, (13)

where � is an open subset of R
2 and H is a continuous

real function defined by

H : � × R
2 −→ R .

(x, p) �−→ H (x, p)

H is called the Hamiltonian. The variable associated
to ∇u(x) is often noted p. Let BUC(�) be the set of
bounded and uniformly continuous functions on �.

Definition 1 (Continuous viscosity solution). u ∈
BUC(�) is a viscosity subsolution (respectively,
a viscosity supersolution) of Eq. (13) if: ∀φ ∈
C1(�) , ∀x0 ∈ � local maximum of (u − φ),

H (x0,∇φ(x0)) ≤ 0

(respectively, if: ∀φ ∈ C1(�),∀x0 ∈ � local
minimum of (u − φ),

H (x0,∇φ(x0)) ≥ 0.

u is a continuous viscosity solution of Eq. (13) if it is
both a subsolution and a supersolution of (13).

Viscosity solutions are weak solutions. They are not
differentiable! Nevertheless, this notion is consistent
with the notion of classical solutions, as shown by the
next.

Theorem 1. Let u be differentiable in �, a classical
solution of (13). If u ∈ BUC(�), then u is a continu-
ous viscosity solution. Let u be a continuous viscosity
solution of Eq. (13). If u is differentiable in �, then u
is a classical solution.

We specify for the inexperienced reader that the
definition of the viscosity solutions is associated to
the Hamiltonian and not to the equation. For example,
it is well known that the viscosity solutions of the
Hamiltonian H (x, p) are different from the viscosity
solutions of the Hamiltonian −H (x, p); see Prados
and Faugeras (2003) for an example.

One of the most important interests of the viscosity
solutions theory is that it provides a set of general exis-
tence and uniqueness theorems which only require very
weak hypotheses. Let us recall that the SFS Hamilto-
nians do not depend on u. Thus, to have uniqueness we
add boundary conditions. Our choice turns to Dirich-
let conditions. Thus for the SFS problems we consider
equations

{
H (x,∇u(x)) = 0 on �,

u = ϕ on ∂�,
(14)

where ϕ is a real function defined on ∂� and H the ad-
equate Hamiltonian. The following Theorem 2 applies
in the special case where the Hamiltonian H appearing
in Eq. (14) (hence with Dirichlet boundary conditions)
is convex with respect to ∇u. It ensures the existence
of continuous viscosity solutions of the PDE (14). We
note H∗ the Legendre transform8 of H:

H∗(x, q) = sup
p∈R2

{p.q − H (x, p)} ≤ +∞.

Let us define ∀x, y ∈ �̄,

L(x, y) = inf
ξ∈Cx,y ,T0>0

{ ∫ T0

0
H∗(ξ (s),−ξ ′(s)) ds

}
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where Cx,y is the set of ξ : [0, T0] → R
2 such that

ξ (0) = x, ξ (T0) = y, ∀t ∈ [0, T0], ξ (t) ∈ �̄ and ξ ′ ∈
L∞(0, T0) (We denote L∞(0, T0) the set of bounded
measurable functions defined on the interval (0, T0)
and taking their values in R

2.)

Theorem 2. (Existence of continuous solutions) If

(H1) [convexity] H is convex with respect to p (∀x ∈ �̄)
(H2) [uniform coercivity] H (x, p) → +∞ when

|p| → +∞ uniformly with respect to x ∈ �̄,
(H3) [subsolution] inf p∈R2 H (x, p) ≤ 0 in �̄,
(H4) [regularity] H ∈ C(�̄ × R

2),
(H5) [compatibility] ∀x, y ∈ ∂�, ϕ(x) − ϕ(y) ≤

L(x, y);

then the function u defined in �̄ by:

u(x) = inf

{∫ T0

0
H∗(ξ (s),−ξ ′(s))ds + ϕ(ξ (T0))

}

(15)

is a continuous viscosity solution of Eq. (14) (in par-
ticular u verifies u(x) = ϕ(x) for all x in ∂�).

Theorem 2 is a special case of Theorem 5.3 in Li-
ons (1982). It can be interpreted as giving compati-
bility constraints for the boundary conditions. Under
hypotheses (H1)–(H4), the hypothesis (H5) is a nec-
essary and sufficient condition for the existence of the
continuous viscosity solution. We will say that ϕ veri-
fies the compatibility condition if (H5) is verified.

Theorem 2 allows to prove the existence of con-
tinuous viscosity solutions of the SFS problems (see
Section 3.4). Nevertheless, let us point out that the ex-
istence of such a solution requires a constraint on the
variation of ϕ (the compatibility condition). Let us re-
member that in practice we can only have at best an
approximation of ϕ. So, if we make a large error on the
function ϕ when we compute a numerical solution of

Figure 4. (a) Continuous viscosity solution of (12) with u(0) =
u(1) = 0; (b) discontinuous viscosity solution of (12) with u(0) = 0
and u(1) = 1.5.

the SFS problems and if this error is too large then there
do not exist continuous viscosity solutions. For exam-
ple, Eq. (12) with u(0) = 0, u(1) = 1.5 does not have
continuous viscosity solutions, because the compati-
bility condition does not hold, see Fig. 4(b) and Prados
and Faugeras (2003). So what do the numerical algo-
rithms compute? In other words, how do we interpret
the numerical results? It appears that as soon as there
do not exist continuous viscosity solutions, we need
to introduce a weaker notion of solution. It turns out
that the idea of discontinuous viscosity solutions pro-
vides an answer to these problems. For instance, we can
prove that Eq. (12) with u(0) = 0, u(1) = 1.5 has a dis-
continuous viscosity solution (unique in ]0,1[) which
is shown in Fig. 4-b). The notion of discontinuous vis-
cosity solutions is due mostly to Ishii (1985, 1989)
and is covered in detail in the book of Barles (1994).
The recent book of Bardi and Capuzzo-Dolcetta (1997)
synthesizes some recent results.

3.2.2. Discontinuous Viscosity Solutions. Let us
consider the following equation on the closed subset
�̄:

F(x, u(x),∇u(x)) = 0, for x ∈ �̄, (16)

where F, defined on �̄ × R×R
2, is the locally bounded

function:

F(x, u, p) =
{

H (x, p) for x in �,

u − ϕ(x) for x in ∂�,
(17)

where H is a real continuous function on �̄ × R
2 and

ϕ is a real continuous function on ∂�.

Definition 2. Let u be a locally bounded function on a
set E. ∀x ∈ E , let us note:

u∗(x) = lim sup
y→x

u(y) and u∗(x) = lim inf
y→x

u(y)

We recall also that u : E → R is upper (respectively,
lower) semicontinuous (u.s.c, resp. l.s.c) if for any x ∈
E and ε > 0 there exists a δ such that for all y ∈ E ∩
B(x, δ) u(y) < u(x)+ε (respectively, u(y) > u(x)−ε).
Note that if u is a locally bounded function, then u∗ is
u.s.c and u∗ is l.s.c. To familiarize oneself with these
notions, the reader can refer to the Sections V-1 and
V-2.1 of Bardi Capuzzo-Dolcetta (1997).

Definition 3. (Discontinuous viscosity solutions). A
locally bounded function u, u.s.c (respectively, l.s.c)
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on �̄, is a discontinuous viscosity subsolution (re-
spectively, supersolution) of Eq. (16) if: ∀φ ∈
C1(�̄) , ∀x0 ∈ �̄ local maximum of (u − φ),

F∗(x, u(x),∇φ(x)) ≤ 0

(respectively, if: ∀φ ∈ C1(�̄),∀x0 ∈ �̄ local minimum
of (u − φ),

F∗(x, u(x),∇φ(x)) ≥ 0.

A locally bounded function u is a discontinuous vis-
cosity solution of (16) if u∗ is a subsolution and u∗ is
a supersolution of (16).

Note that

F∗(x, u(x),∇φ(x))

= F∗(x, u(x),∇φ(x))

= H (x,∇φ(x)) ifx ∈ �,

F∗(x, u(x),∇φ(x))

= min{H (x,∇φ(x)), u(x) − ϕ(x)} ifx ∈ ∂�,

F∗(x, u(x),∇φ(x))

= max{H (x,∇φ(x)), u(x) − ϕ(x)} ifx ∈ ∂�.

Here the idea is to include the boundary conditions
in the “viscosity inequalities”. Thus, we impose the
boundary conditions in a weak sense. In particular, at
point x ∈ ∂� where the solutions cannot be equal to
ϕ(x), we instead impose that the “viscosity inequal-
ities” still hold for H. Let us note that the notion of
discontinuous viscosity solutions extends the notion of
continuous viscosity solutions. In other words, a con-
tinuous viscosity solution is a discontinuous viscosity
solution. Moreover, note that a discontinuous viscosity
solution can have discontinuities. For more details, we
advise the reader to read chapter 4 of Barles’s book
(1994).

The following existence theorem can be found
in Bardi and Capuzzo Dolcetta’s book (Bardi and
Capuzzo-Dolcetta, 1997) (theorem V.4.13).

Theorem 3. Let H (x, p) = supa∈A{− f (x, a) · p −
l(x, a)} verifying the hypotheses (H6)–(H8) (described
below). Let ϕ ∈ BC(∂�). Then u defined by

u(x) = inf
ξ :R+→A

∫ tx (ξ )

0
l(yx (s), ξ (s))ds + ϕ(yx (tx (ξ ))),

where yx is the solution of the differential equation
y′(t) = f (y(t), ξ (t)), t > 0, and y(0) = x, and where
tx (ξ ) is the first time the trajectory yx (., ξ ) goes out of
�̄) is a discontinuous viscosity solution of

{
H (x,∇u) = 0 in �,

u = ϕ on ∂�.
(18)

The hypotheses (H6)–(H8) are:

(H6) A is a compact topological space and � is a
bounded open subset of R

2;
(H7) f : �̄ × A → R

2 is continuous,
l : �̄ × A → R is continuous and bounded;

(H8) f and l are Lipschitz continuous in x ∈ �̄ uni-
formly in a ∈ A.

As we will see below, all the SFS Hamiltonians can be
rewritten as supremums. The reader unfamiliar with
control theory can read appendix A of Prados and
Faugeras (2003) in which we detail the tools allow-
ing to make this transformation. Finally, let us em-
phasize that, as shown by Theorem 3 the existence of
the discontinuous viscosity solution (with DBC) does
not require anymore that ϕ verifies the “compatibility
condition.”

3.3. Hamiltonians for the SFS Problems
and Unification of the “Perspective”
and “Orthographic SFS”

3.3.1. Hamiltonians for SFS. In chapter 2, we have
presented several PDEs arising from various mathe-
matical formulations of the SFS problem. Let us recall
that the definition of the viscosity solutions is associ-
ated with the Hamiltonians and not with the equations.
Therefore for each SFS equation we have to specify a
Hamiltonian. With the Eikonal equation (6), we asso-
ciate the Hamiltonian H orth

Eiko:

H orth
Eiko(x, p) = |p| −

√
1

I (x)2
− 1. (19)

With Eq. (3), we associate the Hamiltonian H orth
R/T (in-

troduced by Rouy and Tourin (1992)):

H orth
R/T (x, p) = I (x)

√
1 + |p|2 + p · l − γ. (20)



A Generic and Provably Convergent Shape-from-Shading Method 105

With Eq. (5), we associate the Hamiltonian H orth
D/O (in-

troduced by Dupuis and Oliensis (1994)):

H orth
D/O (x, p) = I (x)

√
|p − l|2 + γ 2 + p · l − 1.

(21)

With Eq. (8) of the “perspective SFS” with a distant
light source, we associate the Hamiltonian H pers

P/F (in-
troduced by Prados and Faugeras (2001)):

H pers
P/F (x, p) = I (x)

√
f 2|p|2 + (x · p + 1)2

−( f l + γ x) · p − γ ; (22)

and with the “perspective SFS” with a single point light
source located at the optical center, we associate the
Hamiltonian H pers

F : (Q(x) = f/
√

|x |2 + f 2)

H pers
F (x, p)

= I (x)
√

f 2|p|2 + (p · x)2 + Q(x)2 − Q(x). (23)

3.3.2. A “generic” Hamiltonian for SFS. As we
have seen in the previous section, the SFS problem
leads to several Hamiltonians. Nevertheless we show
that all these SFS Hamiltonians are special cases of a
general one, thereby simplifying the formalization of
the problem.

Explicit Formulation of the “generic SFS” Hamilto-
nian. In Prados and Faugeras (2003), we show that
all the SFS Hamiltonians H orth

∗ and H pers
∗ are spe-

cial cases of the following “generic” Hamiltonian Hg

defined by:

Hg(x, p) = H̃g(x, Ax p + vx ) + wx · p + cx ,

with H̃g(x, q) = κx

√|q|2 + K 2
x and where

κ(x), K (x) ≥ 0, Ax = Dx Rx , Dx =(µx 0
0 νx

)
, Rx is

the rotation matrix 1
|x | (

x2 −x1
x1 x2

) if x �= 0, Rx = I d2 if

x = 0, µx , νx �= 0, vx , wx ∈ R
2 and cx ∈ R.

The associated functions vx , wx , cx , µx , νx , κx and
Kx , for the various SFS Hamiltonians are:

• for the “Rouy/Tourin Hamiltonian” H orth
R/T :

µx = 1, νx = 1, κx = I (x), Kx = 1,

wx = l, vx = 0, cx = −γ ;

• For the “Dupuis/Oliensis Hamiltonian” H orth
D/O :

µx = 1, νx = 1, κx = I (x), Kx = γ,

wx = l, vx = −RX l, cx = −1;

• For the “Eikonal Hamiltonian” H orth
Eiko:

µx = 1, νx = 1, κx = 1, Kx = 0,

wx = 0, vx = 0, cx = −
√

1

I (x)2
− 1;

• For the “Perspective SFS” with a point light source
at infinity H pers

P/F :

µx = f, νx =
√

f 2 + |x |2, κx = I (x),

Kx =
√

f 2

f 2 + |x |2 , wx = −( f l + γ x),

vx = D−1
x RX x =

(
0,

|x |
√

f 2 + |x |2
)

, cx = −γ.

• For the “Perspective SFS” with a point light source
located at the focal center H pers

F :

µx = f, νx =
√

f 2 + |x |2, κx = I (x),

Kx =
√

f 2

f 2 + |x |2 , wx = 0, vx = 0, cx = −Kx ;

For all the SFS Hamiltonians, we can remark that
(t Rx Ax )−1,t Rx Ax ,

t Rx vx , Kx , µx and νx are contin-
uous (therefore bounded if �̄ is compact), that wx is
Lipschitz continuous (therefore bounded if �̄ is com-
pact), that vx , κx are bounded and that κx = I (x) and
cx is Lipschitz continuous and bounded.9

We call “generic SFS” equation, equation associated
with the “generic SFS” Hamiltonian: ∀x ∈ �,

H̃g(x, Ax∇u(x) + vx ) + wx · ∇u(x) + cx = 0. (24)

This formulation considerably simplifies the analy-
sis of the problem. All theorems about the character-
ization and the approximation of the solutions can be
proved by using this generic SFS Hamiltonian. In par-
ticular, this formulation unifies the orthographic and
perspective10 SFS problems. Also, from a practical
point of view, a unique code can be used to numeri-
cally solve these various problems.
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Control Formulation of the “generic SFS” Hamilto-
nian. From a theoretical point of view as well as
from a practical one, it is very interesting to formu-
late the SFS Hamiltonians, and so the “generic SFS”
Hamiltonian, as a supremum:

Hg(x, p) = sup
a∈B̄2(0,1)

{− fg(x, a) · p − lg(x, a)} (25)

(B̄2(0, 1) is the closed unit ball of R
2). For example,

such a formulation allows to apply the existence Theo-
rem 3 to the SFS problem. Also, in Section 4, we show
that it allows to design approximations schemes and
numerical algorithms. Therefore it allows to compute
numerical approximations of the viscosity solutions of
the SFS PDEs. By using the Legendre transform and
differential calculus, we show in Prados and Faugeras
(2003) that we can rewrite the Hamiltonian Hg as the
supremum (25) with

fg(x, a) = −[κ t
x RX Dx RX .a + wx ],

lg(x, a) = −[Kxκx

√
1 − |a|2 + κx (t RX vx ) · a + cx ].

3.4. Existence of Viscosity Solutions
of the SFS Problems

3.4.1. Existence of Continuous Viscosity Solutions of
the SFS Problems. In this section, we apply Theo-
rem 2 to prove the existence of continuous viscosity
solutions of the SFS Hamiltonians. Let us remind the
reader that all the properties proved for the “generic
SFS” Hamiltonian are also available for all the SFS
Hamiltonians.

• At first, the “generic SFS” Hamiltonian Hg is convex
with respect to p: (H1) is true.

• About the uniform coercivity (hypothesis (H2) de-
scribed in Theorem 2), in Prados and Faugeras
(2003) we prove the

Proposition 1. Let us consider the Hamilto-
nian Hg (defined in Section 3.3.2). Assume that
κx , cx , (t RX Ax )−1, wx ,

t RX vx are continuous and
bounded on the compact set �̄. If ∀x ∈ �̄, |t A−1

x wx | <

κx then Hg(x, .) is coercive uniformly11 with respect to
x in �̄.

Geometrically, this last condition holds iff the ambigu-
ity cone (set of the unit vectors n verifying cos(n, L) =
I (x)) does not intersect the orthogonal plane to the pro-
jection line; see Fig. 5. Analytically, we obtain easily
the following statements:

• H orth
Eiko, H pers

F are uniformly coercive if I (x) > 0.

• H orth
R/T , H orth

D/O are uniformly coercive if I (x) > |l|.
• H pers

P/F is uniformly coercive if

I (x)2 >
1

f 2 + |x |2 [|γ x+ f l|2+(|x |2|l|2 − (x · l)2)].

Hence, subject to the adequate conditions,12 all SFS
Hamiltonians verify hypothesis (H2).

• Concerning hypothesis (H3), by taking the deriva-
tive, we verify that:

inf
p∈R2

Hg(x, p)

= Kx

√
κ2

x − |t A−1
x wx |2 − (t A−1

x wx ) · vx + cx ,

if κx ≤ |t A−1
x wx |. Otherwise, inf p∈R2 Hg(x, p) =

−∞. By substituting Kx , κx , vx , wx , Ax by their ad-

Figure 5. Ambiguity cone and plane orthogonal to the projection line.
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equate expressions, we prove that all the SFS Hamil-
tonians H orth

∗ and H pers
∗ verify (H3).

• Finally we prove that as soon as the intensity image
I is continuous13, all SFS Hamiltonians H pers

∗ and
H orth

∗ are continuous in �̄ × R
2.

Therefore, if the compatibility condition (H5) is satis-
fied on ∂� (if the intensity image is continuous and if
the coercivity conditions are verified), then all the SFS
problems (PDEs with DBC) have continuous viscosity
solutions.

3.4.2. Existence of Discontinuous Viscosity Solutions
of the SFS Problems. In Section 3.3.2 we have
rewritten the “generic SFS” Hamiltonian Hg as the
supremum:

Hg(x, p) = sup
a∈B̄2(0,1)

{− fg(x, a) · p − lg(x, a)}.

fg and lg being detailed in Section 3.3.2. In the report
(Prados and Faugeras, 2003), we prove that as soon as
the intensity image I is Lipschitz continuous, the hy-
potheses (H6)–(H8) hold for all SFS Hamiltonians14.
Therefore, Theorem 3 applies for each model of the
SFS problem. Thus, for all ϕ ∈ BC(∂�) there exists
a discontinuous viscosity solution of all our SFS equa-
tions (PDEs with DBC). The compatibility conditions
are no more required.15

3.5. Characterization of the Viscosity Solutions of
the SFS Problems

In the previous section we have proved the existence
of viscosity solutions of the Lambertian SFS prob-
lems. Nevertheless, as we will show in this section, the
SFS problem with DBC (on the boundary of the image
∂�) do not have a unique viscosity solution. For com-
puting a numerical solution of the SFS problems, we
need to choose one solution among all. To make this
choice, we must characterize the solutions. As Rouy
and Tourin have proposed in Rouy and Tourin (1992)
we achieve this goal by enlarging the DBC to the set
∂� ∪ {x |I (x) = 1}.

3.5.1. Uniqueness Results for the Continuous
Viscosity Solutions of the SFS Problem When I(x) <

1. The following theorem allows to prove the unique-
ness of the continuous viscosity solution of the SFS
equations when the intensity image I does not reach

the (maximal) value 1. This uniqueness result16 is due
to Ishii (1987) and has been proved later in a different
manner by Lions (1982).

Theorem 4 (uniqueness). Let � be a bounded open
subset of R

2. Let us consider the equation

H (x,∇u(x)) = 0 ∀x ∈ �. (26)

If H verifies the hypotheses (H1), (H9) and (H10) (de-
scribed below) then there exists at most one continuous
viscosity solution u of (26), continuous in �̄, such that

u(x) = ϕ(x), ∀x ∈ ∂�.

(H9) [space variable regularity] There exists a non-
decreasing function ω which goes to zero at zero,
such that ∀x, y ∈ �,∀p ∈ R

N , |H (x, p) −
H (y, p)| ≤ ω(|x − y|(1 + |p|)).

(H10) [strict subsolution] there exists a strict viscosity
subsolution u ∈ C1(�)∩C(�̄) of (26) (i.e. such that
H (x,∇u(x)) < 0 for all x in �);

When the intensity image verifies ∀x ∈ � I (x) < 1,
Theorem 4 applies to all the SFS equations. In effect:

• the convexity of Hg is clear: (H1) holds;
• for all the SFS Hamiltonians H orth

∗ and H pers
∗ , the

hypothesis (H9) is true as soon as the intensity image
I is Lipschitz continuous17;

• assuming that for all x in �, I (x) < 1, the reader can
verify that all constant functions are strict viscosity
subsolutions of the Hamiltonians H orth

Eiko, H orth
D/O and

H pers
F , that ũ : x �−→ − 1

γ
l · x is a strict viscosity

subsolution of the Hamiltonian H orth
R/T , and that ũ :

x �−→ − ln γ

f − ln (γ f − l · x) is a strict viscosity
subsolution of the Hamiltonian H pers

P/F (we need to
impose γ f − l · x > 0, ie. L · (x,− f ) < 0).

Thus, as soon as the intensity image I is Lipschitz
continuous and verifies

∀x ∈ �, I (x) < 1,

all the SFS equations (with DBC) have at most one
continuous viscosity solution.
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3.5.2. Characterization of the Continuous Viscosity
Solutions of the SFS Problem When {x|I(x) = 1} �=
∅. In practice, I can reach the value 1 in an arbitrary
compact set in �̄. This implies that there does not exist
a strict viscosity subsolution and we lose uniqueness.
In Rouy and Tourin (1992), Rouy and Tourin character-
ize the loss of uniqueness of the continuous viscosity
solution of the equation

{
H (x,∇u(x)) = 0 ∀x ∈ �

u = ϕ ∀x ∈ ∂�,
(27)

in the case where H is the Hamiltonian H orth
R/T . We gen-

eralize their result to the continuous viscosity solutions
of all our SFS Hamiltonians (H orth

∗ and H pers
∗ ). In par-

ticular, we extend their work to the “perspective SFS”
problem.

We denote S the set of singular points (also called
critical points):

S = {x ∈ � | I (x) = 1}.

In this work, we assume that S contains a finite number
of isolated points, S = {x1, . . . , xn}18. Let us fix n real
constants (ci )i=1..n . Thanks to the result presented in
the previous section, we can claim that, as soon as
the intensity image I is Lipschitz continuous, all SFS
equations (27) with DBC have at most one continuous
viscosity solution u such that for all i = 1..n, u(xi ) =
ci . To prove this last assertion, we just have to enlarge
the DBC to the set ∂� ∪ S and to apply Theorem 4.
Thus, for characterizing a SFS continuous viscosity
solution, we can ignore the set of singular points S
and work in the open set �′ = � − S. Therefore, we
consider the problem

{
H (x,∇u(x)) = 0 ∀x ∈ �′

u(x) = ϕ(x) ∀x ∈ ∂�′,
(28)

rather than (27). So, by using the existence result of
Section 3.4.1, we prove that, if the intensity image I is
Lipschitz continuous (and if the coercivity and compat-
ibility conditions are verified), then for all SFS equa-
tion (28), there exists a unique continuous viscosity
solution. Thus, all the continuous viscosity solutions
of (27) are then obtained from these by choosing almost
arbitrarily19 the constants ci (= ϕ(xi )).

In practice, for computing a numerical solution of
the SFS problem, we must characterize the solution we
want to compute, first. The characterization we propose

here is somewhat disappointing. In effect, it assumes
that we know the values of the solution at all the sin-
gular points and on the boundary of the image. But the
input data to a SFS problem consists only in general of
an image. We do not have at our disposal the values of
the solution at the singular points or on the boundary of
the image. Nevertheless, although this may appear a bit
restrictive, in this article we will assume that we know
these “boundary” data. In a forthcoming paper, we will
describe how to remove this constraint. Another pos-
sibility is to choose among all solutions one which
possesses an extra property, as in the work of Camilli
and Falcone (1996), Falcone and Sagona (1997), and
Falcone et al. (2001) where the uniqueness is obtained
by choosing the maximal solution. The work of Fal-
cone is based on the notion of “singular viscosity solu-
tions”. This notion pioneered by Ishii and Ramaswamy
(1995), has been recently upgraded by Camilli (Camilli
and Siconolfi, 1999; Camilli, 2001). Let us emphasize
that in his work Falcone assumes (as we do) that the
solution is known on the boundary ∂�.

3.5.3. Case of the Discontinuous Viscosity Solutions.
The uniqueness results for the discontinuous viscosity
solutions are almost the same as the uniqueness results
for the continuous viscosity solutions. Nevertheless,
they need stronger hypotheses; which is reasonable
because discontinuous viscosity solutions are weaker
solutions than continuous viscosity solutions (the set
of the discontinuous viscosity solutions of an equation
contains the set of the continuous viscosity solutions).
In particular, in the discontinuous case, in order to have
uniqueness we need a strong uniqueness property (see
Section 2.2.3 of Prados et al. (2002)). Let us remind
that, in the framework of the disconstinuous viscosity
solutions, we consider the PDE

F(x, u(x),∇u(x)) = 0, ∀x ∈ �̄; (29)

where F be a function (defined as in Section 3.2.2)
which takes into account the boundary data.

Definition 4. Let � be an open subset of R
2, let

E ⊂ �̄ and let F be a function defined as in Section
3.2.2. We say that the strong uniqueness property holds
on the set E for the Eq. (29) when we have: “for all
subsolution u, for all supersolution v and for all x in
E, u(x) ≤ v(x)”.

We have the following strong uniqueness result20:

Theorem 5. Let � be smooth enough, let H and ϕ be
two continuous functions defined as in Section 3.2.2.
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IfH satisfies the hypotheses (H1), (H9) and (H10′)21,
and ifH satisfies the boundary hypotheses (H11) and
(H12) which impose properties of H on ∂�, then the
strong uniqueness property holds on the set � for the
equation 29), where F is defined as in Section 3.2.2.

The hypothesis (H10′) is a hypothesis slightly
stronger than hypothesis (H10) of the Theorem 4:

(H10′) [strict subsolution] there exist u ∈ C1(�) ∩
C(�̄) and δ < 0 such that ∀x ∈ �, H (x,∇u(x)) <

δ.

The hypotheses (H11) and (H12) are the following:
there exist a neighborhood � of ∂� (ie. � is an open
subset of R

2 s.t. ∂� ⊂ �) such that

(H11) [p — regularity on ∂�] There exists a func-
tion ω which goes to zero at zero, such that ∀x ∈
�,∀p, q ∈ R

N , |H (x, p) − H (x, q)| ≤ ω(|p − q|);
(H12) [coercivity] H (x, p) coerciv in p uniformly with

respect to x in �.

Clearly the strong uniqueness property involves the
uniqueness of the discontinuous viscosity solution.
Therefore, thanks to Theorem 5, we can prove the
uniqueness of the discontinuous viscosity solution of
(29) in �. Note that generally we do not have unique-
ness in �̄.

Theorem 5 applies to the SFS problem. The three
hypotheses (H1), (H9) and (H10′) are almost the same
as the hypotheses of Theorem 4. As in the previous
Section we can prove that they are verified for the SFS
Hamiltonians H orth

∗ and H pers
∗ as soon as the inten-

sity image is Lipschitz continuous and verifies I < 1
in �̄. Concerning the hypothesis (H11), we can prove
that it holds for all SFS Hamiltonians H orth

∗ and H pers
∗ .

Moreover, let us remind that, in Section 3.4.1, we have
detailed the conditions involving the coercivity of all
the SFS Hamiltonians. Therefore, if the intensity im-
age I is Lipschitz continuous, if I verifies I < 1 on �̄

and if the values of I on the boundary of the image are
such that the coercivity hypothesis holds, then there
exists at most one discontinuous viscosity solution
in �.

Contrary to the continuous case, the above result (the
uniqueness of the discontinuous viscosity solution of
the SFS problem) does not apply on the set �′ = �−S
(when the set S of the singular points is not empty).
The reason of this lies on the difference between the
hypotheses (H10) and (H10′). The uniqueness of the

continuous viscosity solution only requires the hypoth-
esis (H10) (theorem 4), whereas the uniqueness of the
discontinuous viscosity solution requires the stronger
hypothesis (H10′) (theorem 5). In the first case, the hy-
pothesis (H10) holds even if there are singular points
on the boundary of �, whereas in the second case, the
hypothesis (H10′) imposes that ∀x ∈ �̄, I (x) < 1;
hence there cannot be any singular points in ∂�. Note
that the hypothesis (H10′) is optimal for obtaining the
uniqueness of the discontinuous viscosity solution, see
Prados and Faugeras (2003), for an illustration of this
fact by considering the particular case of the Eikonal
equation. As a matter of fact, this limitation is not re-
ally a problem. In effect, in the previous case we have
assumed that we knew the values of the solution at all
the singular points of the image. It is not more absurd
to assume that we know the values of the solution in
an arbitrarily small neighbourhood of the set the sin-
gular points. Thus, for characterizing a discontinuous
viscosity solution, we can specify its values on the
boundary of the image and in a neighbourhood of its
critical points.

3.6. Noise Robustness of the Viscosity Solutions
of SFS

In computer vision or more generally in image pro-
cessing, the images are always corrupted by noise. It is
therefore very important to design schemes and algo-
rithms robust to noise. That is to say we would like that
the result obtained by the algorithm from a noisy image
be close to the ideal result obtained from the perfect
image. This property is often difficult to guarantee. For
the “SFS” problem, the robustness is mathematically
expressed by the continuity of the application which,
given an image I, returns the associated surface u. In
other words, we would like that, for all sequences of
noisy images Iε uniformly converging toward an im-
age I, the sequence of recovered solutions uε uniformly
converges toward the solution u associated to I. In the
research report (Prados et al., 2002), Section 4.1.3, we
have proved that if the intensity image I verifies I (x) <

1 for all x in �̄, then the viscosity solutions of the
orthographic SFS problem (associated to the Hamilto-
nian H orth

R/T ) are robust to noise. This also applies to the
other SFS Hamiltonians H orth

∗ and H pers
∗ . In effect, the

reader will verify that the proof proposed for the ortho-
graphic case can be adapted to the generic Hamiltonian.

In the same idea, it is possible to prove that the
viscosity solutions of the SFS problems are robust with
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respect to inaccuracies in light and focal parameters.
Nevertheless, the proof of this statement requires much
more sophisticated tools and will be the concern of
another furthcoming paper.

4. Two Approximation Schemes for the “generic
SFS” Equation

In Section 3.3.2, we have shown that the various models
of the Lambertian SFS problems can be unified by
the “generic SFS” Hamiltonian Hg . In this section,
we present two schemes approximating the “generic
SFS” Eq. (24). These approximation schemes allow to
solve numerically this equation. Let us note that the
numerical method we present here can be generalized
to all Hamilton-Jacobi-Bellman equations, see Prados
and Faugeras (2003).

4.1. Approximation Schemes

In this section, we remind the reader of the definition of
an approximation scheme. An approximation scheme
is a functional equation of the form

T (ρ, x, uρ) = 0 ∀x ∈ �̄;

where T : M× �̄× B(�̄) → R, M = R
+ ×R

+, and
B(D) is the space of bounded functions defined on a set
D. ρ ∈ M defines the size of the mesh that is used in
the corresponding numerical algorithms, see Section 5,
uρ is a solution of the scheme T. For h1, h2 ∈ R

+, we
write ρ = (h1, h2). If h1 = h2, we let ρ = hi ∈ R

+.
Also, we (mis)use the notation “∀ρ > 0” which stands
for “∀ρ ∈ M such that h1 > 0 and h2 > 0”.

Following Barles and Souganidis (1991), we intro-
duce the representations S of a scheme T as

S(ρ, x, uρ(x), uρ) = 0 ∀x ∈ �̄,

where

S : M × �̄ × R × B(�̄) −→ R

(ρ, x, t, u) �−→ S(ρ, x, t, u).

Note that a representation of a scheme is also a scheme.
It is a way to simplify computations. In effect, the rep-
resentation of a scheme T (ρ, x, uρ) = 0 by a scheme
of the form S(ρ, x, uρ(x), uρ) = 0 suggests an iterative
algorithm for computing a numerical approximation of

the solution of the scheme. Given un (the approxima-
tion of uρ at step n), and a point x of �̄, the associated
algorithm consists in solving the equation

S(ρ, x, t, un) = 0 (30)

with respect to t. A solution of (30) is the updated value
of un at x (see Section 5). When this solution can be
obtained explicitely we talk about explicit schemes,
when it cannot, we talk about implicit schemes, see
next section.

In the SFS problem, the open set � is bounded.
In practice, we generally consider the rectangular do-
main ]0, X [×]0, Y [ of R

2. Since we are consider-
ing the “generic SFS” equation with Dirichlet bound-
ary conditions, we consider “schemes with Dirichlet
boundary conditions”. These schemes are defined by
S(ρ, x, uρ(x), uρ) = 0, where S is defined by

S(ρ, x, t, u) =
{

S̃(ρ, x, t, u) if x ∈ �̄ρ,

t − ϕ(x) if x ∈ ∂�ρ,
(31)

where �̄ρ = {x ∈ � | x ± h1 �e1 ∈ �̄ and x ± h2 �e2 ∈
�̄}, and ��ρ = �̄ − �̄ρ . Since ϕ is defined only on
∂�, we assume in (31) that we have extended it con-
tinuously to ��ρ . We now introduce the

Definition 5 (monotonicity). The scheme S(ρ, x, uρ

(x), uρ) = 0 defined in �̄ , is monotone if ∀ρ ∈
M,∀x ∈ �̄,∀t ∈ R and ∀u, v ∈ B(�̄),

u ≤ v =⇒ S(ρ, x, t, u) ≥ S(ρ, x, t, v)

(the scheme is nonincreasing with respect to u)

There exists essentially only one method for proving
the convergence of the solutions of schemes toward
viscosity solutions, i.e. the one presented by Barles
and Souganidis in Barles and Souganidis (1991). This
method requires the monotonicity of the scheme; this
is why we design monotone schemes in the sequel.

4.2. Two “generic SFS” Approximation Schemes

4.2.1. An “Implicit” Scheme. Let us remind the
reader that in Section 3.3.2, we have rewritten the
“generic SFS” equation as a supremum:

sup
a∈B(0,1)

{− fg(x, a) · ∇u(x) − lg(x, a)} = 0 ∀x ∈ �.

(32)
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For lighter notations, we denote f1(x, a) (respectively
f2(x, a)) the first (respectively, the second) compo-
nent of fg(x, a). In this section, we design an ap-
proximation scheme of (32) by using only the back-
ward and forward approximations of the partial deriva-
tives. Thus in order to guarantee the monotonicity of
the scheme, it appears natural to replace ∂�ei u(x) with
( t−u(x−hi �ei )

hi
) when − fi (x, a) ≥ 0 and by ( u(x+hi �ei )−t

hi
)

when − fi (x, a) ≤ 0. We therefore consider the scheme
S with S̃ (see Eq. (31)) defined as

S̃(ρ, x, t, u)

= sup
a∈B̄(0,1)

{
− f1(x, a)

(
t − u(x + s1(x, a)h1 �e1)

−s1(x, a)h1

)

− f2(x, a)

(
t − u(x + s2(x, a)h2 �e2

−s2(x, a)h2

)
− lg(x, a)

}

= sup
a∈B̄(0,1)

{− fg(x, a) · D(ρ, x, t, u, a) − lg(x, a)},

(33)

where si (x, a) is the sign of fi (x, a) and
D(ρ, x, t, u, a) is an approximation of the gradient:
D(ρ, x, t, u, a) = ( t−u(x+s1(x,a)h1 �e1)

−s1(x,a)h1
, t−u(x+s2(x,a)h2 �e2)

−s2(x,a)h2
).

The function S̃ defined by (33) is clearly nondecreas-
ing with respect to t and nonincreasing with respect to
u. Therefore the scheme S with S̃ defined by (33) is
monotone. In Section 4.3, we prove that this scheme
is stable. Since the variable t appears inside the sup
operator, the scheme is implicit.22

4.2.2. A “Semi Implicit” Scheme. A classical
method to deal with the implicit scheme (33) consists
in transforming the scheme into a fixed point problem.
We multiply S̃ by a fictitious time increment −�τ

(with �τ > 0) and we add uρ(x) to both sides of the
equation S̃ = 0. In other words, instead of considering
the scheme defined by S̃(ρ, x, t, u), we consider the
one defined by the function

S̃2(ρ, x, t, u) = t − u(x) + �τ S̃(ρ, x, u(x), u).

For the sake of simplicity, we write si for si (x, a) in
the sequel. Thus we obtain a new formulation of the
scheme S(ρ, x, uρ(x), uρ) = 0 by defining

S̃2(ρ, x, t, u) = t − u(x) + �τ

sup
a∈B̄(0,1)

{− fg(x, a) · D(ρ, x, u(x), u, a) − lg(x, a)},

= t + sup
a∈B̄(0,1)

{−[1 − �τ (�1 + �2)]u(x)

−�τ [�1u(x + s1h1 �e1) + �2u(x + s2h2 �e2)]

−�τ lg(x, a)
}

; (34)

where �i = | fi (x,a)|
hi

. Note that S̃2(ρ, x, t, u) is non-
decreasing with respect to t and nonincreasing with
respect to u as soon as the function ξ �→ −ξ +
�τ S̃(ρ, x, ξ, u) is nonincreasing. Also, we can ver-
ify easily that the scheme associated to (34) is mono-
tone iff �τ is small enough (�τ ≤ (�1 + �2)−1,
for all a in A and for all x such that f (x, a) �= 0.
If f (x, a) = 0, no constraints are required). In other
words, this formulation of the decentered schemes re-
quires that some conditions be satisfied in order to be
monotone. Despite this disadvantage, the formulation
(34) is interesting because it yields semi implicit algo-
rithms whereas the formulation (33) provides totally
implicit algorithms. We use the expression “semi im-
plicit” because the value of the sup has to be evaluated
at each point x, but it does not involve t. Nevertheless,
we will see that the algorithms resulting from the for-
mulation (33) can be made explicit through the use of
calculus.

Remark 1. Let us mention that the larger the “pa-
rameter” �τ , the faster the convergence. Therefore,
if f (x, a0) �= 0 (where a0 is the optimal control of
(34)), we can choose an optimal �τ :

�τopt = (�1 + �2)−1.

Let us remark that a0 and the optimal �τopt depend on
x, but that a0 does not depend on �τ . Thus, for all x
such that f (x, a0) �= 0, if we choose �τ = �τopt , the
scheme (34) becomes:

S̃opt
2 (ρ, x, t, u)

= t −
2∑

i=1

�i

�1 + �2
u(x + si hi �ei ) − lg(x, a0)

�1 + �2
,

where a0 is the optimal control of (34). The particular
case where fg(x, a0) = 0 is described in Prados and
Faugeras (2003).

Let us emphasize the fact that the schemes defined
by (34) have exactly the same solutions as those defined
by (33).



112 Prados and Faugeras

4.3. Stability of the “generic SFS” Approximation
Schemes

In this section, we show that the (implicit and semi-
implicit) “generic SFS” approximation schemes have
always solutions. Note that all the results we present in
this section are proved in Prados and Faugeras (2003)
and that we have generalized them to the Hamilton-
Jacobi-Bellman equations. We start with the definition
of the stability of a scheme (according to Barles and
Souganidis (Barles and Souganidis, 1991)).

Definition 6 (stability). The scheme T (ρ, x, uρ) = 0
defined on �̄, is stable if ∀ρ > 0, it has a bounded
solution uρ . It is uniformly stable if its solutions uρ are
bounded independently of ρ.

Note that the semi-implicit scheme (34) is stable (re-
spectively, uniformly stable) iff the implicit scheme
(33) is stable (respectively, uniformly stable). We prove
the stability of the implicit “generic SFS” approxima-
tion scheme, by using a result based on the notion of
the subsolutions of a scheme:

Definition 7 (Subsolution of an Approximation
Scheme). For a fixed ρ > 0, vρ : �̄ → R is a
subsolution of the scheme T (ρ, x, uρ) = 0 if ∀x ∈
�̄, T (ρ, x, vρ) ≤ 0.

This definition in hand, we can formulate Proposition
2.

Proposition 2. Suppose that ∀ρ > 0, there exists a
subsolution of the scheme and that there exists Mρ ∈ R

such that for all subsolutions vρ,∀x ∈ �̄, vρ(x) ≤
Mρ . If fg verifies the hypothesis (H13) (see below),
then the implicit “generic SFS” scheme is stable. More-
over, if Mρ ∈ R does not depend on ρ then the stability
is uniform.

(H13) For all x ∈ �, there exists ax ∈ B̄(0, 1) such
that fg(x, ax ) �= 0.

About the hypothesis (H13), we can remark that (x
being fixed):

∀a ∈ B̄(0, 1), fg(x, a) = 0 ⇐⇒ wx = 0 and κx = 0.

In practice, for H orth
Eiko and H pers

F , and for H pers
P/F , H orth

R/T

and H orth
D/O with l = 0, there are no shadows, therefore,

I (x) is (should be) never null. If l �= 0 then wx asso-
ciated with H orth

R/T and H orth
D/O is not null. For H pers

P/F , it
holds iff I (− f

γ
l) �= 0.

This shows that the difficulties for proving the sta-
bility of the implicit “generic SFS” scheme lies in the
proof of the existence of subsolutions and in the proof
that the subsolutions are bounded. In the case where the
Hamiltonian Hg verifies Hg(x, 0) ≤ 0, the following
proposition ensures the existence of a subsolution:

Proposition 3. Let ϕ be a bounded function defined
on a neighbourhood of ∂�. If for all x in �̄, Hg(x, 0) ≤
0 then all constant functions u on � such that u ≤
minxϕ(x), are subsolutions of the implicit “generic
SFS” equation.

Clearly, this last proposition applies to H orth
Eiko, H pers

F
and H orth

D/O . It also applies to H orth
R/T and H pers

P/F when L =
(0, 0, 1). Concerning the general case of the Hamilto-
nian H orth

R/T , we prove that u0(x) := − 1
γ

l · x +C (where
C is chosen such that ∀x ∈ �̄, u0(x) ≤ minx ϕ(x)) is
a subsolution. We have not found subsolutions associ-
ated with the Hamiltonian H pers

P/F
23

Finally, for proving that all the subsolutions of
the “generic SFS” approximation scheme are upper
bounded, we can use Proposition 4.

Notation 1. Let us remind the reader that for i = 1, 2,
we note fi (x, a) the i th component of fg(x, a).

Proposition 4. Suppose that for all x in the bounded
subset �̄, there exists a control ax ∈ B(0, 1) such
that for all i = 1, 2, the sign of fi (x, ax ) does not
depend on x. For i = 1, 2, let us denote si the sign of
fi (x, ax ). Also, let us suppose that there exists ε > 0
and j in {1, 2} such that ∀x ∈ �̄, s j f j (x, ax ) ≥ ε. If
lg and ϕ are upper bounded then all the subsolutions
of the implicit “generic SFS” approximation scheme
are upper bounded. Also, there exists B > 0 such that
∀ρ ∈ R, for all subsolution vρ of the implicit “generic
SFS” approximation scheme, we have vρ ≤ B.

For all x in �̄, let us consider24 ax = Dil−1
x

[( 1
1
) −

wx
]
, then we have fg(x, ax ) = −(1, 1). Therefore

proposition 4 applies as soon as lg is bounded (which
holds for all SFS Hamiltonians because �̄ is bounded).

Therefore, proposition 2 applies to all SFS Hamilto-
nians25 implying that the implicit (and therefore semi-
implicit) schemes are uniformly stable (for ρ in R).
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Remark 2. Propositions 2, 3 and 4 do not require
regularity with respect to the space variable x. In other
words, the continuity of the intensity image I is not re-
quired for obtaining the stability of our SFS schemes.
They are still relevant when the intensity image is dis-
continuous and when there are black shadows.

4.4. Convergence Toward the Viscosity Solutions
of the “generic SFS” Equation

For proving the convergence of the solutions of an
approximation scheme toward the viscosity solution
of a Hamilton-Jacobi equation, we use the method
(based on the notion of weak limits) due to Barles
and Souganidis (1991). Remember that in the frame-
work of discontinuous viscosity solutions, the PDE
with Dirichlet boundary conditions is rewritten as:

F(x, u(x),∇u(x)) = 0, ∀x ∈ �̄; (35)

where F is defined on �̄ × R × R
N by

F(x, u, p) =
{

H (x, p) if x in �,

u − ϕ(x) if x on ∂�.

We now give the definition of the consistency of an ap-
proximation scheme according to Barles and Sougani-
dis (1991) (in this section, we assume that ρ ∈ R).

Definition 8 (consistency). The scheme S(ρ, x, uρ(x),
uρ) = 0 is consistent with Eq. (35) if ∀x ∈ �̄ and ∀φ ∈
C∞

b (�̄)

limsup
S(ρ, y, φ(y) + ξ, φ + ξ )

ρ
≤ F∗(x, φ(x),∇φ(x))

and

liminf
S(ρ, y, φ(y) + ξ, φ + ξ )

ρ
≥ F∗(x, φ(x),∇φ(x))

(where the lim sup and lim inf are taken when ρ →
0, y → x and ξ → 0).

We recall that F∗ and F∗ are defined in Section 3.2.2.
In Prados and Faugeras (2003), we formulate a suffi-
cient condition involving the consistency of the implicit
“generic SFS” approximation scheme (with DBC) with
the “generic SFS” equation (24) with DBC:

Proposition 5. If fg and lg verify the hypotheses
(H6)–(H8), then the implicit “generic SFS” approx-
imation scheme (with DBC) is consistent with the
“generic SFS” equation with DBC (Eq. (35) with
H = Hg).

In the report (Prados and Faugeras, 2003), we show
that the hypotheses (H6)–(H8) hold for all SFS Hamil-
tonians as soon as the intensity image I is Lipschitz
continuous26. Moreover, we also prove there the fol-
lowing theorem:

Theorem 6 (convergence toward the viscosity solu-
tion). Let S be a monotone, uniformly stable and con-
sistent (with Eq. (35)) approximation scheme. Let us
suppose that the strong uniqueness property is verified
on a subset D of �̄. Then the solutions uρ of the scheme
S converge on D toward the discontinuous viscosity so-
lution of (35) when ρ → 0.

By construction, the implicit “generic SFS” approxi-
mation scheme is monotone. In the previous section,
we have proved that for all SFS Hamiltonians the as-
sociated scheme is uniformly stable (Proposition 4 and
2). Also, they are consistent as soon as the intensity
image I is Lipschitz continuous (Proposition 5). Fi-
nally, we have shown in Section 3.5.3 that the strong
uniqueness property holds as soon as27 the Hamiltonian
is coercive with respect to p (uniformly with respect
to x) in a neighborhood of ∂� (see Section 3.4.1 for
a description of the coercivity condition for all SFS
Hamiltonians).

Therefore, subject to these last conditions, the solu-
tions of the implicit SFS schemes converge toward the
unique viscosity solution of the adequate SFS equation
when ρ → 0.

Remark 3. Since the solutions of the semi-implicit
scheme are the same as the solutions of the implicit
scheme, the convergence toward the viscosity solu-
tion also holds for the solutions of the semi-implicit
scheme.

5. Numerical Algorithms for the “generic SFS”
Problem

In Section 4, we have designed two monotone schemes
(an implicit and a semi-implicit one) approximating the
“generic SFS” Eq. (24). We have proved the stability
of these schemes. We have also described sufficient
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Figure 6. Alternating raster scans strategy (Danielsson, 1980;
Dupuis and Oliensis, 1991, 1994; Rouy and Tourin, 1992).

conditions ensuring the convergence of the solutions
of the schemes toward the unique viscosity solution of
the considered SFS equation. Let us remind the reader
that the solutions of the implicit “generic SFS” approx-
imation scheme are the same as the solutions of the
semi-implicit one. We are now going to describe two
iterative algorithms (an algorithm associated with the
implicit “generic SFS” approximation scheme and an-
other associated with the semi-implicit one) that com-
pute some numerical approximations of a solution uρ

of our schemes (for a fixed ρ > 0).
Let us fix ρ > 0; ρ = (h1, h2). Let us note

xk , for k in Z
2, the point of coordinates (k1h1, k2h2)

and Q = {k ∈ Z
2 such that xk ∈ �̄}. We call

“pixel” a point xk in �̄. From each “generic SFS”
approximation scheme (the implicit one and the semi-
implicit one), we can associate an algorithm that com-
putes for all k ∈ Q a sequence of approximations
U n

k of uρ(xk):

Algorithm

1. Initialisation (n = 0): ∀k ∈ Q, U 0
k = u0(xk).

Choose the first pixel xk .

2. Modification of U n (step n + 1): we set

U n+1
k = max{t |S(ρ, xk, t, U n) = 0}

and we do not change the other values: ∀l �=
k, U n+1

l = U n
l .

3. Choose the next pixel xk in such a way that all pixels
are regularly visited and go back to 2 (since �̄ is
bounded, the number of pixels is finite).

In this iterative algorithm, the initial surface u0 is
a subsolution or a supersolution of the considered
scheme. We have detailed in Section 4.3 the subsolu-
tions of the implicit approximation scheme (note that
the semi-implicit algorithm starting from a subsolu-
tion is really not efficient). In practice, when we start
from a supersolution, we do not actually compute it.
In effect a large constant function u0 with the appro-
priate boundary conditions is sufficient. Let us also
remark that the speed of convergence strongly depends
on the initial surface u0. Experimentally we found that
the speed of convergence is much higher when we
start from a supersolution; a quantitative comparison
is found in Section 6. The convergence speed also de-
pends on the particular path used to traverse the set
of pixels. In our implementation, we have chosen the
strategy which consists in following the path indicated
in Fig. 6. Similar alternating raster scans were yet pro-
posed by Danielsson (1980) in the 80’s and were used
by Rouy and Tourin (1992) and Dupuis and Oliensis,
(1994). Also, even if this strategy is not optimal in the
computational complexity sense (see Section 6.4 for
more details), in practice it is very effective (at least on
all the real images we have tested) and it is extremely
simple to implement.

We have designed two new “generic SFS” algo-
rithms with which we can compute numerical solutions

Figure 7. Results for a synthetic image of a paraboloidal surface sampled on a 32 × 32 grid with l = (0, 0) (θ ≡ 0◦): (a) original surface
(groundtruth), (b) original image, (c) surface reconstructed from (b) with the implicit algorithm starting from a subsolution: n = 18, ε1 =
0.0015, ε2 = 0.0018, ε∞ = 0.0021; (d) surface reconstructed from (b) with the semi-implicit algorithm starting from a supersolution:
n = 15, ε1 = 0.0014, ε2 = 0.0016, ε∞ = 0.0020; (e) surface reconstructed from (b) with the implicit algorithm starting from a supersolution:
n = 5, ε1 = 0.0015, ε2 = 0.0018, ε∞ = 0.0020.
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Figure 8. Results for a synthetic image of a sinusoidal surface sampled on a 200 × 200 grid with l = (0.1, 0.3) (θ ≡ 18.5◦): (a) original
surface, (b) original image, (c) surface reconstructed from (b) with the implicit algorithm starting from a subsolution: n � 700, ε1 =
0.003902, ε2 = 0.005762, ε∞ = 0.00740; (d) surface reconstructed from (b) with the semi-implicit algorithm starting from a supersolution:
n � 120, ε1 = 0.003900, ε2 = 0.005762, ε∞ = 0.00747; (e) surface reconstructed from (b) with the implicit algorithm starting from a
supersolution: n � 25, ε1 = 0.003905, ε2 = 0.005768, ε∞ = 0.00747;

Figure 9. Results for a synthetic image of a pyramidal surface sampled on a grid of size 200 × 200 with l = (0.5, 0.3) (θ ≡ 35.6◦): (a)
original surface, (b) original image, (c) surface reconstructed from (b) with the implicit algorithm starting from a subsolution: n � 1000, ε1 =
8.461e − 05, ε2 = 1.6116e − 04, ε∞ = 9.40e − 04; (d) surface reconstructed from (b) with the semi-implicit algorithm starting from a
supersolution: n � 110, ε1 = 8.461e − 05, ε2 = 1.6116e − 04, ε∞ = 9.40e − 04; (e) surface reconstructed from (b) with the implicit algorithm
starting from a supersolution: n � 50, ε1 = 8.461e − 05, ε2 = 1.6116e − 04, ε∞ = 9.40e − 04;

of each formulation of the SFS problem. Moreover, in
Prados and Faugeras (2003) we have proved that, when
u0 is a subsolution or a supersolution, the numerical
solutions (computed with either one of the two algo-
rithms) converge toward the solutions of the approxi-
mation schemes. Note that this holds for all intensity
images I: No regularity hypotheses are required. In
particular, the convergence holds for discontinuous im-
ages and images containing black shadows (i.e. zones
with 0 intensity). We have implemented the algorithms
associated with the implicit “generic SFS” approxima-
tion scheme and with the semi-implicit “generic SFS”
approximation scheme. The resulting code applies to
all the SFS Hamiltonians described in Section 3.3.1.
As mentioned before, the interest of the “generic” for-
mulation of the SFS problems lies in the fact that the
same code can be used to solve a variety of different
problems, e.g. the “perspective SFS” and the “ortho-
graphic SFS” problems. On the other hand, because of
this generality, we may lose optimality for a particular
case.

Finally, let us mention that the algorithm proposed
by Rouy and Tourin (1992) is the implicit algorithm
applied to the Eikonal Hamiltonian H orth

Eiko. The control-
based algorithm proposed by Dupuis and Oliensis

(1994) is the semi-implicit algorithm applied to the
Hamiltonian H orth

D/O . The algorithms we have proposed
in Prados et al. (2002), Prados and Faugeras (2003)
are the implicit algorithm applied to H orth

R/T and H pers
P/F ,

respectively. Therefore, from an algorithmic point of
view, our work can be interpreted as a generaliza-
tion and a unification of the work of Rouy and Tourin
(1992), the work of Prados et al. (2002), Prados and
Faugeras (2003) and the work of Dupuis and Oliensis
(1994).

As a final remark we note that in Rouy and
Tourin (1992), Prados et al. (2002) and Prados and
Faugeras (2003) the authors use subsolutions as initial
conditions, whereas in Dupuis and Oliensis (1994),
they use supersolutions.

6. Experimental Results

We have implemented the algorithms associated with
the implicit and (optimal) semi-implicit approximation
schemes for the “generic SFS” Hamiltonian Hg . In the
following subsections, we compare the results obtained
with our algorithms. This comparison is based on the
speed of convergence and the reconstruction error. We
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Figure 10. Experimental results obtained with the implicit/semi-implicit algorithms starting from a subsolution/supersolution, for a synthetic
image representing Mozart’s face: (a) Original surface of size � 150 × 150, (b) synthetic image generated from the original surface (a) with
l = (0.2, 0.1) (θ ≡ 13◦); (c-1) to (c-4) surface U n recontructed with the implicit algorithm starting from a subsolution at the nth iteration for
n = 30, n = 60, n = 120 and n = 150, respectively; (d-1) to (d-4) surface U n recontructed with the semi-implicit algorithm starting from a
supersolution at the nth iteration for n = 8, n = 16, n = 24 and n = 40, respectively; (e-1) to (e-4) surface U n recontructed with the implicit
algorithm starting from a supersolution at the nth iteration for n = 4, n = 8, n = 12 and n = 16, respectively. The corresponding reconstruction
errors are shown in Tables 1–3.

start with the algorithms associated with the ortho-
graphic SFS problem. In this context, we emphasize
the comparison of the implicit and semi-implicit algo-
rithms, and the influence of the initial surface u0 on the
speed of convergence. We have tested our algorithms
with synthetic images generated by shapes with several
degrees of regularity e.g. C∞ (a paraboloid, a sinusoid
and a smoothed vase, see Figs. 7, 8, and 14), or C0

(a pyramid, see Figs. 9 and 15), to demonstrate the
ability of our method to work with smooth and non-
smooth objects. We have also tested our algorithms
on more complicated images; for example, the classi-
cal Mozart’s face28; see Figs. 10 16 and 17. Next, we
deal with the perspective SFS algorithms. In particular
we compare the results obtained by the orthographic
SFS algorithms and the perspective SFS algorithms for
synthetic perspective image.

In all the examples, the parameters are n, the num-
ber of iterations, ε1, ε2 and ε∞ the mean absolute er-
rors between the reference and reconstructed surfaces
measured according to the L1, L2 and L∞ norms, re-
spectively, θ the angle of the direction of illumination

with the z-axis. We note L = (l, γ ) the light vector and
f the focal length.

According to the theory we have developed in this
article there exist in general several viscosity solutions.
In order to have uniqueness we need to impose Dirich-
let boundary conditions on ∂�′ = ∂� ∪ {x |I (x) = 1}
(see Section 3.5). This means that we must provide
the “height” of the solution at the boundary of the im-
age and at all singular points (i.e. the pixels xi j such

Table 1. Errors associated to Fig. 10 for the implicit algorithm
starting from a subsolution.

Iteration ε2 Error ε∞ Error

30 0.0379 0.1123

60 0.0244 0.0664

90 0.0178 0.0500

120 0.0128 0.0391

150 0.0086 0.0337

200 0.0032 0.0336
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Table 2. Errors associated to Fig. 10 for the semi-implicit algo-
rithm starting from a supersolution.

Iteration ε2 Error ε∞ Error

8 0.0358 0.0882

16 0.0157 0.0562

24 0.0086 0.0390

32 0.0058 0.0335

40 0.0042 0.0335

48 0.0033 0.0335

Table 3. Errors associated to Fig. 10 for the implicit algorithm
starting from a supersolution.

Iteration ε2 Error ε∞ Error

4 0.0046 0.0432

8 0.0034 0.0333

12 0.0032 0.0336

16 0.0032 0.0336

20 0.0032 0.0336

24 0.0032 0.0336

28 0.0032 0.0336

that I (xi j ) = 1). This is one of the reasons why we
present our results on synthetic images. Note that in
Prados et al. (2002), we have shown a reconstruction
of a Halloween mask from a real image.

6.1. Experimental Results in the Case
of “Orthographic SFS”

We tested the orthographic SFS algorithms with syn-
thetic images generated by an orthographic projection.
In all cases, we show the original object, the input im-

age and the reconstructed surface. First we show that
the accuracy of the implicit algorithm is approximately
the same as that of the semi-implicit algorithm. This
confirms the prediction of the theory that an implicit
scheme and its associated semi-implicit scheme have
the same solutions, and that the computed numerical
approximations converge towards the solution of these
schemes. Figures 7 and 8 show the reconstructions
of smooth surfaces obtained by the implicit algorithm
(associated with the Hamiltonian H orth

R/T ) and by the
semi-implicit algorithm, starting from a subsolution
and from a supersolution.

Since, in practice, the combination (semi-implicit
algorithm, subsolution) is not really effective, we
only show the results obtained with the other three
combinations. As shown in the figures we recover in
these three cases almost exactly the same surface. On
the other hand the numbers of iterations required for
converging are very different. Globally, the number of
iterations required for converging with a semi-implicit
algorithm is much larger than with an implicit
algorithm. For example, when u0 is a supersolution,
approximately 100 iterations are required for obtaining
the sinusoidal surface with the semi-implicit algorithm
(Fig. 8(d), when only 20 iterations are sufficient with
the implicit algorithm (Fig. 8(e). Furthermore, the
number of iterations required when the approximation
sequence starts from a subsolution is much larger than
when it starts from a supersolution. For the example of
the sinusoidal surface displayed in Fig. 8, the implicit
algorithm requires approximately 600 iterations for
converging when u0 is a subsolution; when only �20
iterations are required when u0 is a supersolution.

Figure 10 shows the speed of convergence of the
two algorithms for two different initial conditions, i.e.
a subsolution (except for the semi-implicit scheme,
as mentioned above) and a supersolution. Clearly, as

Figure 11. Results for a noisy image of a sinusoidal surface sampled on a 200 × 200 grid with l = (0.1, 0.3) (θ = 18.5◦). (a) Original
surface, (b) original image, (c) roisy image; (d) reconstructed surface from (b): n � 25, ε1 = 0.003905, ε2 = 0.005768, ε∞ = 0.00747; (e)
reconstructed surface from (c): n � 30, ε1 = 0.003905, ε2 = 0.005766, ε∞ = 0.00748.
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Figure 12. Results for a noisy image of a pyramidal surface sampled on a 200 × 200 grid with l = (0.5, 0.3) (θ = 35.6◦). (a) Original surface,
(b) original image, (c) noisy image; (d) surface reconstructed from (b): n � 50, ε1 = 8.461e − 05, ε2 = 1.6116e − 04, ε∞ = 9.4000e − 04;
(e) surface reconstructed from (c): n � 50, ε1 = 0.00467, ε2 = 0.00916, ε∞ = 0.044.

Figure 13. Sinusoidal (respectively pyramidal) surface of Fig. 8 (respectively of Fig. 9) reconstructed from the image Fig. 8(b) (respectively
from Fig. 9(b) with an error on the light parameter L. The light parameter used for obtaining the image fig. 8(b) was l = (0.1, 0.3) (respectively
l = (0.5, 0.3)). (a-1) sinusoidal surface reconstructed with l = (0.0, 0.3) (εθ � 9.3◦): n � 40, ε1 = 0.0171, ε2 = 0.0314, ε∞ = 0.0729; (a-2)
sinusoidal surface reconstructed with l = (0.3, 0.2) (εθ � 15.4◦): n � 35, ε1 = 0.0394, ε2 = 0.0684, ε∞ = 0.142. (b-1) pyramidal surface
reconstructed with l = (0.3, 0.2) (εθ ≡ 5.3◦): n � 40, ε1 = 0.0407, ε2 = 0.0556, ε∞ = 0.177; (b-2) pyramidal surface reconstructed with
l = (0.4, 0.4) (εθ � 8.8◦): n � 40, ε1 = 0.0251, ε2 = 0.0334, ε∞ = 0.103.

Figure 14. “Perspective SFS” results for an image of a smooth surface (computed by the implicit algorithm starting from a subsolution):
(a) original surface, (b) original image (l = (0.2, 0.2), r = 2.5, size=128 × 128), (c) surface reconstructed from (b) by the “perspective
algorithm”: n � 1000, ε1 = 0.0041, ε2 = 0.0048, ε∞ = 0.00814; (d) surface reconstructed from (b) by the “orthographic algorithm”:
n � 1000, ε1 = 0.0201, ε2 = 0.031, ε∞ = 0.035;

shown in Tables 1–3, the combination (implicit, super-
solution) is the best.

To demonstrate the ability of our method to
deal with nonsmooth objects, we have tested our
algorithms with a pyramidal surface, see Fig. 9.
The previous remarks about accuracy and speed
of convergence still hold for nonsmooth sur-
faces.

We also show the stability of our method with respect
to two types of errors. The first type is image intensity
errors due to noise. Uniformly distributed white noise
has been added to all pixels of the input images and
the corresponding reconstructed surfaces are shown,
see Fig. 11 for the sinusoidal surface and 12 for the
pyramidal surface. The Signal to Noise Ratio (SNR) is
equal to 3.2 in Fig. 11 and to 2.7 in Fig. 12. As seen
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Figure 15. “Perspective SFS” results for an image of a pyramidal surface (computed by the implicit algorithm starting from a subsolution):
(a) original surface, (b) original image (l = (0.2, 0.2), r = 2.1, size= 100 × 100), (c) surface reconstructed from (b) by the “perspective
algorithm”: n � 76, ε1 � 0.00015, ε2 � 0.0009, ε∞ � 0.00110; (d) surface reconstructed from (b) by the “orthographic algorithm”:
n =� 83, ε1 = 0.063, ε2 = 0.130, ε∞ = 0.135.

Figure 16. “Perspective SFS” results for an image of Mozart’s face (computed by the implicit algorithm starting from a subsolution):
(a) original surface, (b) original image (l = (0.1, 0.1), r ≈ 1.6, size= 128 × 128), (c) surface reconstructed from (b) by the “perspective
algorithm”: n � 4000, ε1 � 0.00255, ε2 � 0.004.14976, ε∞ � 0.012; (d) surface reconstructed from (b) by the “orthographic algorithm”:
n � 5000, ε1 = 0.0495, ε2 = 0.1187, ε∞ = 0.20;

from these figures, our algorithms are very robust to
intensity noise, as also observed in Rouy and Tourin
(1992) and Dupuis and Oliensis (1994). The second
type of error is due to an incorrect estimation of the
direction of the illumination L. Starting with the sinu-
soidal object of Fig. 8, we show in Fig. 13(a). that an
error of roughly 9◦ on the parameter L does not affect
much the reconstructed surface whereas for a larger
error of 15◦, the result is more distorted. We continue
with the pyramidal shape of Fig. 9; Fig. 13(b) shows
a similar trend: a small error of approximately 5◦ al-
ready affects the results and later we introduce a large
error of (9◦). Our algorithms seem to be fairly robust
to small inaccuracies in the estimation of the direction
of the light source L (Fig. 13(a-1) and Fig. 13(b-1)).
Nevertheless, when the error grows larger, the results
degrade rapidly because some undesirable edges are
created. Finally, let us remind that the robustness we
have demonstrated experimentally here confirms the
theoretical stability results proved in Section 3.6.

6.2. Experimental Results in the Case
of “Perspective SFS”

We have tested the perspective algorithms with syn-
thetic images generated by using a perspective pro-
jection. The previous remarks about the speed of con-
vergence of the orthographic SFS algorithms still hold
for the perspective SFS algorithms. In the following re-
sults, the solutions are computed with the implicit algo-
rithm associated with the Hamiltonian H pers

P/F starting
from a subsolution (Figs. 14–16) or from a superso-
lution (Figs. 17 and 18). In Figs. 14–16, we show
the original object, the input image, the surface recon-
structed by our “perspective algorithm” and the surface
reconstructed by the “orthographic algorithm”. We de-
note r the ratio of the focal length and object distance
(the object distance is the mean distance of the points
on the surface to the optical center). Notice that, as
soon as the ratio r grows larger than 1.5, the “ortho-
graphic algorithm” produces important errors whereas
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Figure 17. “Perspective SFS” results for an image of Mozart’s face corrupted by a uniformly distributed noise (Size of the grid � 200 × 200;
light parameter: l = (0.1, 0.3), θ = 18.4◦, focal length: f = 4). (a) Original surface, (b) original image, (c) noisy image; (d) surface
reconstructed from (b): n � 5, ε1 = 0.00197, ε2 = 0.00338, ε∞ = 0.00721; (e) surface reconstructed from (c): n � 7, ε1 = 0.00247,
ε2 = 0.00450, ε∞ = 0.0116.

Figure 18. “Perspective SFS” results for Mozart’s face of Fig. 17(a) reconstructed with an error on the light parameter l (respectively on the
focal length parameter (f): The light parameter l used for synthesizing image fig. 17(b) is l = (0.1, 0.3) and the focal length parameter f is equal
to 5. (a-1) Result obtained with the corrupted parameter l = (0.3, 0.3); n ≤ 10 (ε1 = 0.0131, ε2 = 0.0244, ε∞ = 0.0466). (a-2) Result obtained
with the corrupted parameter l = (0.1, 0.5); n ≤ 10 (ε1 = 0.0226, ε2 = 0.0396, ε∞ = 0.0547). (b-1) Result obtained with the corrupted focal
length f = 4; n � 6. (b-2) Result obtained with the corrupted focal length f = 6; n ≤ 6.

the quality of the results obtained by the “perspective
algorithm” are very good (see Figs. 14, 15 and16).
This shows the importance of taking into account the
perspective distortion in the SFS problem.

As for the orthographic algorithms, we demonstrate
the stability of the perspective SFS algorithms with re-
spect to various types of errors. The first type is due to
noise in the image intensity (see Fig. 17, SNR� 3.7).
The second type of error is due to an incorrect estima-
tion of the direction of illumination L (see Fig. 18(a)).
The third type of error is due to an incorrect estima-
tion of the focal length (see Fig. 18(b)). As seen from
these figures, the algorithms are quite robust to inten-
sity noise; they are also robust to small inaccuracies
in the light and focal parameters. But large errors on
these parameters create some spurious edges.

6.3. Cases of Degeneracy

By considering for example the Hamiltonian H orth
R/T ,

one can verify that, in a neighbourhood of a singular

point, the equation in t associated to the implicit SFS
scheme

S(ρ, xi j , t, U ) = 0 (36)

is almost degenerate, i.e. may not have any solutions
(see Prados and Faugeras (2003) for more details).
This is true of all schemes arising form the generic
Hamiltonian Hg and is due to the fact that we are
computing the zero-crossings of parabola-like curve;
when the intensity is equal to 1 this curve is almost
tangent to the horizontal axis and the roots become
unstable. The implication of this observation is that if
we are not careful when solving Eq. (36), it is possible
that numerically, we do not obtain any solutions 36)29

(even if theorically there exists a solution).
In order to combat this problem we have used three

strategies. First, instead of solving the Eq. (36), we can
compute the value t which minimizes S(ρ, xi j , t, U ).
Second, we can change slightly the values of the in-
tensity image, and introduce the image Iε such that
Iε(x) = I (x) if I (x) < 1 − ε and Iε(x) = 1 − ε oth-



A Generic and Provably Convergent Shape-from-Shading Method 121

erwise (for some small ε > 0). The idea consisting in
using Iε instead of I has been already used by Horn
and Brooks (1989), Kimmel and Bruckstein (1995),
and Camilli and Falcone (1996). Third, we can update
the values of U with the semi-implicit algorithm when
we have not found a solution during the updating with
the implicit algorithm.

Let us emphasize the fact that, even when we do not
use any of these three strategies (for example when we
do not find a solution of (36) we can simply not update
the current value), these rare and undesirable events do
not affect the overall quality of the reconstruction at the
other points. This shows again the very nice stability
properties of our algorithms.

6.4. What About Other Approaches?

The task of comparing our algorithms with already
published ones is way beyond the scope of this paper.
As shown in Figs. 10, 17 and 18 the (“generic SFS”)
implicit algorithm (starting from a supersolution) re-
turns, in most of our examples, quite good results after
only four iterations (very often, the solutions returned
after only two or three iterations are visually quite
good). This should not come as a surprise since, as
pointed out at the end of Section 5, our implicit algo-
rithms generalize that of Rouy and Tourin (1992) and
our semi-implicit algorithms generalize that of Dupuis
and Oliensis (1994). In the literature these algorithms
are often acknowledged as being one of the most effi-
cient and accurate of the SFS literature.

As pointed out in Section 5 our algorithms are it-
erative and their convergence speed strongly depends
on the chosen paths ordering the updates. In our im-
plementation we have used alternating raster scans
(Danielsson, 1980; Dupuis and Oliensis, 1994). These
scans are not optimal (because they are arbitrary with
respect to the characteristics of the solution) and the
method can be improved by tracing directly the charac-
teristics, as been done by Sethian (1996, Kimmel and
Sethian (2001) (this will be the concern of a furthcom-
ing paper). This techniques would allow to decrease
the computational complexity by one order of magni-
tude (O(n) instead of O(n2)). Let us remind that our
generic implicit scheme is an extension of the scheme
used by Sethian in the Fast Marching Method for the
eikonal equation (Sethian, 1996).

Figure 19. (a) Original surface u; (b) Solution computed by our
and Falcone’s algorithms (Falcone et al., 2001).

7. Pushing Things to the Limit: SFS with
Discontinuous Images and Black Shadows

Among the difficulties encountered when attempting
to solve the SFS problem, the intensity discontinuities
such as those caused by black shadows are among the
most difficult to deal with. Despite the fact that the
notion of viscosity solutions provides a natural frame-
work for dealing with non smooth surfaces30 (with
edges) this theory does not yet apply to discontinuous
images31 (and hence to black shadows). Technically,
when the Hamiltonian is discontinuous with respect to
the space variable x (which is the case in SFS when the
intensity image is discontinuous), the main difficulty
is the loss of uniqueness of the viscosity solution. Note
that, in the particular case of the black shadows, this
difficulty is increased by the loss of coercivity of the
Hamiltonian.

In order to deal with black shadows, Lions et al.
(1993) do not “recover” surfaces in the areas of 0 in-
tensity and pose the problem in terms of boundary
conditions. This is not necessary since, as noted in
(Falcone et al. 2001), in the black shadows areas the
surface formed by the rays of light grazing the solu-
tion surface, verify the irradiance equation, see Fig. 19.
Thus, for recovering a solution, we do not need, as in
Lions et al. (1993), to separate the “shading areas”
and the “shadow areas” and in general32 our generic
algorithm graciously computes approximations of the
exact solutions in shading areas and the grazing rays of
light in the black shadows areas (as does the algorithm
proposed by Falcone et al. (2001) for the “orthographic
SFS”), see Figs. 19 and 20.

Finally the stability of our approximation schemes
and the convergence of the numerical solutions com-
puted by our algorithms hold even when the image con-
tains discontinuities and black shadows, even though
the theory of viscosity solutions does not yet apply to
this case, see the remark at the end of Section 4.3. As
an illustration of this, the pyramid example displayed
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Figure 20. Example of a reconstruction from an image with black shadows: the case of a “Mexican hat” (Size of the image � 1000 × 1000,
result computed by the implicit algorithm starting from a supersolution: n < 90.). (a) Original surface (the direction of the visualisation light
is (0, 0, 1)) and is different from L; (b) Synthetic image computed from the surface (a) with L = (0.8, 0.0, 0.6) (the angle between the light
direction L and the camera axis is around 53◦); (c) Solution recovered by our algorithm from the image (b) (the direction of the visualisation
light is (0, 0, 1)); (d) Surface (c) illuminated by a light of direction (0.8, 0.0, 0.6).

Figure 21. a) Real face image [size � 450 × 600]; (b-c) surface recovered from (a) by our generic algorithm with the perspective model with
the light source located at the optical center with a one-point Dirichlet boundary condition.

in Figs. 9, and 12 and 15 shows the ability of our nu-
merical algorithms to deal with discontinuous images
while Fig. 20 shows their ability to deal with black
shadows.

8. Conclusion

We have presented a complete mathematical and algo-
rithmic study of the “orthographic” and “perspective
SFS” problems. In detail: (1) We have proposed new
formulations of the SFS problem by modeling the cam-
era as a pinhole (performing a perspective rather than
orthographic projection). The scene can be illuminated
by a single point light source located at infinity or at
the optical center of the camera. This extends the SFS
methods to more realistic image acquisition models.
These formulations lead to new PDEs which allow to

develop a complete mathematical study of the problem.
(2) By using the theory of viscosity solutions, we have
proved the existence and characterized the solutions of
the “orthographic” and “perspective SFS” problems.
In particular, this allows us to choose a particular so-
lution of interest before starting to produce numerical
results. (3) By introducing a “generic” Hamiltonian,
we have unified the “orthographic” and “perspective
SFS” problems, and simplified the formalism. We have
designed two “generic” approximation schemes which
approximate the “generic SFS” equation. From these
approximation schemes we have obtained two “generic
SFS” algorithms. Each “generic SFS” algorithm can be
used to solve numerically the various formulations of
the SFS problem. Moreover, we have proved the con-
vergence of the numerical solutions computed by our
algorithms toward the viscosity solutions of the con-
sidered SFS problem. (4) Our algorithms are robust to
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pixel noise and to the errors made on the parameters.
(5) They can deal with discontinuous images and im-
ages containing black shadows. We have proved the
stability of our SFS approximation schemes and the
convergence of our SFS algorithms with such images.
We are extending our approach to be able to remove
the requirement for the knowledge of the boundary
data (Dirichlet conditions at the singular points and
on the boundary of the image) and for recovering non
Lambertian surfaces. To give a flavor of what could
be achievable Fig. 21 shows the surface recovered by
our generic algorithm (after 5 iterations) with the per-
spective model with a point light source at the optical
center. In this example, we have sent to infinity all the
points on the boundary of the image and all the singu-
lar points except the one on the nose at which we have
specified a “reasonable” depth.

Notes

1. Yet formulated by Prados and Faugeras (2001, 2003) and Tankus
et al. (2003).

2. Okatani and Deguchi (1996, 1997) does not make explicit the
static SFS PDE. They transform the brightness equation into an
evolutive equation.

3. Note: instead of considering equations, it would be more correct
to consider “Hamiltonians”; see Section 3.2.1.

4. The two columns of the Jacobian DS(x) are tangent vectors to
S at the point S(x). Their cross product is a normal vector.

5. Also used in Prados and Faugeras (2001, 2003b), Tankus et al.
2003).

6. In the sequel, concerning equations 8) and 10), we misuse the
notation of u, writing u instead of v.

7. It’s worth to remark that all SFS methods which require not any
boundary data need strong regularity properties on the solutions.
In particular, in Kimmel and Bruckstein (1995), Dupuis and
Oliensis (1991), Oliensis and Dupuis (1993), the global methods
work only if the solution is in C2(�).

8. See appendix A of Prados and Faugeras (2003).
9. Except for Horth

Eiko.
10. Including our new model with the light source located at the

optical center.
11. The uniform coercivity property is the hypothesis (H2) described

in Theorem 2.
12. Let us note that, when the direction of the light is not too far from

vertical and the brightness is not too dark (i.e. the ambiguity cone
is relatively tight) this assumption generally holds in practice.

13. For the Hamiltonian Horth
Eiko, I must also verify I > 0 on �̄.

14. For the Hamiltonian Horth
Eiko, we also need to impose I > 0 on

�̄.
15. Let us note that, also, the coercivity condition (H2) is no more

required.
16. For more general conditions, see Lions et al. (1993). A proof

can be found in Section II.5.3 of Bardi and Capuzzo-Dolcetta ’s
book (Bardi and Capuzzo-Dolcetta, 1997).

17. For the Eikonal Hamiltonian Horth
Eiko, we also need to impose

∀x ∈ �, I (x) > 0.
18. The situations where S

◦
(the interior of the set S) is not empty, are

non generic. In effect, for a given experimental setup (surface,
light, camera) such that S

◦ �= ∅, an arbitrarily small change in the
experimental parameters (for example, when the light moves)
will make S

◦ = ∅. An image such that S
◦ �= ∅ is highly unlikely.

19. Let us recall that for ensuring the existence of a continu-
ous viscosity solution, the compatibility condition must be
verified.

20. See Theorem 4.5 (and more exactly its corollary 4.1) of Bar-
les’book (Barles, 1994) in the particular case where the Hamil-
tonian H does not depend on u.

21. Note that these hypotheses are very close to the hypotheses of
the uniqueness Theorem 4.

22. Let us note that by using (differential and algebric) calculus,
we can express explicitly the solution of the equation in t,
S̃(ρ, x, t, u) = 0. This step is necessary for implementing the
associated algorithm.

23. As mentioned in Prados and Faugeras(2003), we can design
another Hamiltonian (denoted H pers

2 ) associated with the “per-
spective” Eq. (8) and verifying H pers

2 (x, 0) ≤ 0.
24. We assume that ∀x ∈ �̄, κx �= 0.
25. Except for H pers

P/F , because we have not found subsolutions of
the associated scheme.

26. For the Hamiltonian Horth
Eiko, we also need to impose I > 0 on

�̄.
27. Let us recall that we assume that �̄ does not have critical points;

see the end of Section 3.5.3.
28. The synthetic surfaces of the vase and of Mozart’s face are

associated to the paper by Zhang et al. (1999) (Computer Vision
Lab. of the university of Central Florida).

29. Let us note that, in practice, we have been rarely confronted to
this situation.

30. Viscosity solutions are weak (i.e. non differentiable) solutions.
31. Leaning on some recent work (Ostrov, 2000; Kain and Ostrov,

2001; Soravia, 2000; Camilli and Siconolfi, 2003) on the Eikonal
equation we are working on the removing of this limitation.

32. If we assume that the singular points and the boundary of the
image are not covered by the shadows.

References

Bardi, M. and Capuzzo-Dolcetta, I. 1997. Optimal Control
and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations.
Birkhauser.

Barles, G. 1994 Solutions de Viscosité des Equations de Hamilton–
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