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Abstract. The problem of projective reconstruction by minimization of the 2D reprojection error in multiple im-
ages is considered. Although bundle adjustment techniques can be used to minimize the 2D reprojection error, these
methods being based on nonlinear optimization algorithms require a good starting point. Quasi-linear algorithms
with better global convergence properties can be used to generate an initial solution before submitting it to bundle
adjustment for refinement. In this paper, we propose a factorization-based method to integrate the initial search as
well as the bundle adjustment into a single algorithm consisting of a sequence of weighted least-squares problems,
in which a control parameter is initially set to a relaxed state to allow the search of a good initial solution, and
subsequently tightened up to force the final solution to approach a minimum point of the 2D reprojection error. The
proposed algorithm is guaranteed to converge. Our method readily handles images with missing points.

Keywords: multiple views, projective reconstruction, structure and motion, sub-space method, factorization
method, projective bundle adjustment

1. Introduction

There are many existing approaches for reconstruct-
ing 3D Euclidean structure from multiple 2D images
(Hartley, 1993; Faugeras, 1995; Pollefeys and Gool,
1999; Han and Kanade, 2000, 2001; Triggs et al., 2000;
Chen and Medioni, 2002). Often, a projective recon-
struction is a necessary step in the process whereby
matched correspondences between 2D planar images
are used to recover the 3D motion and structure in a
projective space. There has been considerable inter-
est in the factorization approach (for affine, Tomasi
and Kanade, 1992) to projective reconstruction pro-
posed by Sturm and Triggs (1996). The factorization
approach has the advantage that it is a multi-view ap-
proach that handles all of images uniformly without
preferential treatment for any image.

Suppose a set of 3D points with homogeneous co-
ordinates X j = [x j y j z j 1]T ( j = 1, . . . , n) are pro-
jected onto m cameras with projection matrices Pi (i =
1, . . . , m). Let xi j = [ui j vi j 1]T be the projection of
the jth point on the ith view, i.e.,

λi j xi j = Pi X j (1)

where λi j represents the depth of Xj measured along the
optical axis of ith camera. Then, the projection of all
the 3D points onto all the cameras can be represented
as




λ11x11 · · · λ1n x1n

· · · · · · · · · · · · · · ·
λm1xm1 · · · λmn xmn


 = P X ∈ �3m×n (2)
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where

P = [
PT

1 , PT
2 , . . . , PT

m

]T ∈ �3m×4

is the joint projection matrix and

X = [X1, X2, . . . , Xn] ∈ �4×n

is the projective shape. Since P and X are at most
rank 4, the scaled measurement matrix [λi j xij] is at
most rank 4 too. In general, the depths {λi j} are un-
known. In the factorization approach, a consistent set
of projective depths need to be estimated such that the
scaled measurement matrix is of rank 4 and factoriz-
able in the form of (2). Many different methods have
been proposed for estimating λi j . Sturm and Triggs
(1996) proposed to recover the projective depths by
means of the epipolar constraints between two views,
which has the advantage of being non-iterative, but the
method is indirect requiring the estimation of the fun-
damental matrix between pairs of views. Triggs (1996)
extended the method by refining projective depths and
factorizing (2) iteratively until the projective depths
converge. Most of the other approaches use iterative
methods for estimating the unknown λi j in (2). Sparr
(1996) proposed an iterative factorization algorithm for
simultaneous scene and motion reconstruction. Chen
and Medioni (1999, 2002) developed an iterative eigen
algorithm which minimizes a weighted version of the
algebraic error in Eq. (2) by repeatedly performing in-
tersection for the points followed by resection for the
cameras. Heyden et al. (1999) proposed a subspace
method for estimating the projective depths with the
advantage that the result is independent of the coor-
dinate representation of image points. Mahamud and
Herbert (2000) applied a subspace constraint to the
columns of the scaled measurement matrix to estimate
the projective depths by an iterative factorization al-
gorithm. Since the solutions in these works are iter-
ative, convergence of the algorithms is an important
issue, which however is not always addressed in ex-
isting methods. Discussions of the convergence of fac-
torization algorithms are given in Oliensis (1996) and
Mahamud et al. (2001). Most of the above iterative
methods are based on quasi-linear algorithms where
P and X are estimated alternately (together with λi j )
using linear least-squares techniques.

Although the 2D reprojection error is the most sen-
sible measure for minimization in a projective recon-
struction, existing methods are mostly based on mini-
mization of some algebraic error or subspace proximity

measure whose relationship with the 2D reprojection
error is not clear. Bundle adjustment can be applied
subsequently to minimize the 2D reprojection error.
Bundle adjustment (e.g. Hartley, 1993; Morris et al.,
1999; Shum et al., 1999; Triggs et al., 2000; Bartoli
and Sturm, 2001) is a method for refining the 3D struc-
ture and camera motions simultaneously by minimiz-
ing the sum of squared distances between the repro-
jected points and measured points. In practice, bundle
adjustment is accomplished by non-linear optimization
algorithms. The reconstruction result relies on the ini-
tial estimate since most existing algorithms are based
on local descent methods. Shum et al. (1999) used a
hierarchical approach to perform bundle adjustment as
proposed in Hartley (1993) on small sub-sequences and
then merge the results into a complete reconstruction so
that faster convergence is achieved over conventional
bundle adjustment methods. Bartoli and Sturm (2001)
developed three different bundle adjustment methods
in a projective frame for simpler implementation and
minimal parametrization but they are applicable to two-
view cases only. Chen and Medioni (2002) proposed to
solve a sequence of iterative eigen problems instead of
using standard optimization techniques for bundle ad-
justment in a projective frame. However, convergence
is not guaranteed.

In general, existing factorization methods suffer
from one or more of the following drawbacks:

(i) requires a quasi-linear algorithm to generate a
good initial solution before submitting it to bundle
adjustment;

(ii) convergence of quasi-linear algorithms not guar-
anteed;

(iii) a lack of provision for missing points.

In this paper, we propose a factorization-based
method which integrates the initial search and the pro-
jective bundle adjustment into a single algorithm that
addresses all the above problems. Our approach aims
at minimizing the 2D reprojection error by solving a
sequence of relaxed problems each of which approxi-
mately minimizes the 2D reprojection error. A control
parameter is used in the sequence of problems to force
the solutions of the relaxed problems to approach a
minimum of the 2D reprojection error. A key feature
in our solution is that the inverse depth rather than the
depth is estimated. Theoretical results are provided to
ensure convergence of the algorithmic solution. The
problem of missing points is readily handled in our
method. Compared with existing bundle adjustment
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methods, our method does not rely on the provision of
a good initial estimate.

The paper is organized as follows. The factoriza-
tion problem for projective reconstruction is discussed
in Section 2 where a relaxed version of the problem
of minimizing 2D reprojection errors is introduced. In
Section 3, a discussion of how the solution to the re-
laxed problem is related to the 2D reprojection error
is given and an iterative procedure is developed for
minimizing the 2D reprojection error. A discussion of
how missing points are handled is given in Section 4.
Simulation results using synthetic data and experimen-
tal results based on real images are given in Section 5
to illustrate the performance of our algorithm in com-
parison with existing factorization methods. Section 6
contains some concluding remarks.

Notation: The Hadamard product of two matrices
A = [

ai j
]

and B = [
bi j

]
of the same size is denoted

A ∗ B = [
ai j bi j

]
.

2. Problem Formulation

Given image coordinates xi j ( i = 1, . . . , m; j =
1, . . . , n ), the factorization problem is to determine
projective depths λi j so that the scaled measurement
matrix can be factorized into two rank-4 matrices as
in (2). If the image coordinates contain noise, the fac-
torization can only be approximate and the results will
depend on the criterion used in the factorization. An
obvious quantity to minimize is the algebraic error:

min
λi j , Pi , X j

∑
i, j

‖λi j xi j − Pi X j‖2. (3)

where the summation is taken over 1 ≤ i ≤ m and
1 ≤ j ≤ n. For (3) to be a meaningful minimization
problem, constraints need to be imposed on the size of
λi j , Pi or X to avoid the trivial solution λi j = 0, P =
0 and X = 0.

The algebraic error has the advantage of being linear
in λi j and bilinear in Pi and Xj enabling various iterative
schemes for minimizing (3). However, the algebraic er-
ror does not have a geometric meaning and so the min-
imization problem (3) does not have a clear physical
interpretation. Other criteria (Heyden et al., 1999; Ma-
hamud and Hebert, 2000; Mahamud et al., 2001) have
been proposed based on measures of closeness of col-
umn or row space of [λi j Xi j ] to the subspaces spanned
by the columns of Pi or the rows of X j , respectively.

These methods provide some geometric meanings of
the error being minimized in terms distance between
subspaces. However, the most appropriate quantity for
minimization is the 2D reprojection error. Let Pk

j de-
note the kth row of Pj (k = 1, 2, 3). The problem of
minimizing the 2D reprojection error can be stated as

min
λi j , Pi , X j

∑
i, j

[(
ui j − 1

λi j
P1

i X j

)2

+
(

vi j − 1

λi j
P2

i X j

)2
]

(4)

subject to

λi j = P3
i X j . (5)

The difficulty of the optimization problem (4) is that it
is a constrained problem with a nonlinear cost function.
To overcome this difficulty, we propose to replace the
depth λi j by the inverse depth:

βi j = 1

λi j
(6)

so that (4) can be written equivalently as

min
βi j , Pi , X j

∑
i, j

[(
ui j − βi j P1

i X j
)2

+(
vi j − βi j P2

i X j
)2

]
(7)

subject to

βi j P3
i X j = 1. (8)

The 2D reprojection error in (7) is now trilinear in β ij,
Pi and X j , which is amenable to an iterative solution.
Although one may enforce the constraint βi j P3

i X j = 1
in an iterative solution to the minimization problem
(7), the constrained problem is stiff making the speed
of convergence very slow. This difficulty can be allevi-
ated by relaxing the hard constraint and replacing it by
means of a penalty term in the cost function. A relaxed
version of (7) is:

min
βi j , Pi , X j

∑
i, j

[(
ui j − βi j P1

i X j
)2 + (

vi j − βi j P2
i X j

)2

+ γ 2γ 2
i j

(
1 − βi j P3

i X j
)2]

(9)
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where γi j �= 0 (i = 1, . . . , m; j = 1, . . . , n) are con-
stant weighting factors for individual image points, and
γ is an overall weighting factor for adjusting the de-
gree to which the constraint βi j P3

i X j = 1 is to be
enforced. In (9), γ ij is used to scale (1 −βi j P3

i X j ) to a
magnitude compatible with the 2D reprojection error,
e.g., γi j = max(|ui j |, |vi j |).

Let

β =



β11 · · · β1n

· · · · · · · · ·
βm1 · · · βmn


 ∈ �m×n and

γ̄i j =



1
1

γ γi j


 . (10)

We shall denote the cost function in (9) as

Fγ (P, X, β) =
∑
i, j

‖ γ̄i j ∗ (xi j − βi j Pi X j )‖2.

(11)

The minimization problem (9) can be expressed more
succinctly as

min
P, X,β

Fγ (P, X, β). (12)

Given γ> 0, denote an optimal solution to (12) by
(P(γ ), X(γ ), β(γ )). (i.e., P, X and β written with an
argument γ mean that they minimize Fγ (P, X, β) for
that γ ). The corresponding minimum will be denoted

F∗(γ ) = Fγ (P(γ ), X (γ ), β(γ ))

= min
P, X, β

Fγ (P, X, β). (13)

For a fixed γ , we may use the following iterative
algorithm to solve for (P(γ ), X(γ ), β(γ )). In each iter-
ation, we alternately solve for one of the three variables
P, X and β as a free parameter while fixing the other
two variables. Since Fγ (P, X, β) is trilinear in P, X
and β, the minimization with respect to each variable
is a weighted linear least-squares problem solvable by
standard techniques.

2.1. Algorithm 1

1. Put k = 0 and assign initial values to β
◦

(e.g. set
β◦

i j = 1 ∀ i, j ; perform an SVD of [ 1
β◦

i j
xi j ] and

obtain P
◦

and X
◦

from a rank-4 approximation re-
taining only the largest four singular values).

2. Put k = k+1.
Fix Xk−1 and βk−1 and determine Pk by solving

ε′
k = min

Pk ∈�3m×4
Fγ (Pk, Xk−1, βk−1). (14)

3. Fix βk−1 and Pk and determine Xk by solving

ε′′
k = min

Xk ∈�4×n
Fγ (Pk, Xk, βk−1). (15)

4. Fix Pk and Xk and determine βk by solving

εk = min
βk ∈�m×n

Fγ (Pk, Xk, βk). (16)

5. Repeat steps 2, 3 and 4 until εk converges.
6. Output β(γ ) = βk, P(γ ) = Pk , X(γ ) = Xk and stop.

Clearly, the cost εk in the above algorithm is mono-
tonic decreasing satisfying

ε′
k ≥ ε′′

k ≥ εk ≥ · · · ≥ εk+1 ≥ 0.

Hence, the algorithm is guaranteed to converge. Since
the constraint βi j P3

i X j = 1 has been relaxed, the so-
lution to (12) does not minimize the 2D reprojection
error, but provides only an approximate solution to (7)
and (8). How good the approximation is depends on the
weighting factor γ . We may force the unconstrained
problem (12) to approach the constrained problem (7)
by letting γ→ ∞. However, using a large value of γ

to start with in the above algorithm will bring about
the same difficulties as the constrained problem (7).
Instead, we propose to solve a series of problems of
the form (12) with increasing values of γ taken from a
monotonic increasing sequence {γ k}. A recommended
strategy is to choose γk = αk , where α>1 is a constant
(e.g. α = 1.1 is used in the examples of Section 5).
As the initial values in Step 1 of Algorithm 1 are com-
puted under the explicit assumption that all β ij = 1 and
the implicit assumption that γ = 1, it is appropriate
to start the iterative solution for the problem with an
initial value of γ o = 1. To enforce the constraint (8), γ

is progressively increased by taking successive values
of {γ k} and the solution to the previous problem is
used as the starting point for re-solving (12) with the
increased γ . As γ increases, the solution to the series
of problems (12) will approach a minimum point for
the 2D reprojection error. In the next section, we will
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develop some theoretical results to justify the proposed
approach.

3. Minimization of 2D Reprojection Error

To consider how the solution to the unconstrained prob-
lem (9) is related to the 2D reprojection error, we denote
the 2D reprojection error for any solution pair (P, X)
by

E(P, X ) =
∑
i , j

[(
ui j − P1

i X j

P3
i X j

)2

+
(

vi j − P2
i X j

P3
i X j

)2]
.

From (11), we have

Fγ (P, X, β) =
∑
i, j

[(
ui j − βi j P1

i X j
)2

+ (
vi j − βi j P2

i X j
)2

+ γ 2γ 2
i j

(
1 − βi j P3

i X j
)2

]
.

Note that Fγ (P, X, β) can always be reduced to the
2D reprojection error by setting β ij equal to the inverse
depths, i.e.,

E(P, X ) = Fγ (P, X, β)
∣∣
βi j = 1

P3
i X j

∀ i, j . (17)

Suppose E(P, X) achieves the minimum 2D reprojec-
tion error at (P∗, X∗). Denote

E∗ = E(P∗, X∗) = min
P,X

E(P, X ). (18)

Some properties of F∗(γ ) are given in the next theorem.

Theorem 1.

(a) F∗(γ ) is a monotonic increasing function of γ .
(b) ∀γ > 0, F∗(γ ) ≤ E∗ ≤ E(P(γ ), X (γ ))
(c)

∑
i, j γ 2

i j (1 − βi j (γ )λi j (γ ))2 is a monotonic de-
creasing function of γ , where β ij(γ ) is the (i, j)th
entry of β(γ ) and λi j (γ ) is the (3i, j)th entry of
[P(γ )X(γ )].

(d) For any (i, j) such that γ ij �= 0, limγ→∞
βi j (γ ) λi j (γ ) = 1.

A proof of Theorem 1 is given in the
Appendix.

Remark 1.

(1) By Theorem 1 (a) and (b), since F∗(γ ) is monotonic
increasing with γ and is bounded above by E∗, it
follows that F∗(γ ) will converge as γ→ ∞ to a
solution also bounded above by E∗, i.e.,

lim
γ → ∞ F∗(γ ) ≤ E∗. (19)

(2) Part (d) of the Theorem 1 shows that as γ → ∞,
β ij(γ ) will converge to the inverse depth of the im-
age point xij as long as the weighting factor γ ij is
non-trivial.

We can in fact go further than (19) and show that
F∗(γ ) converges to the 2D reprojection error E∗ as γ →
∞. This will be established in Theorem 2 below. First,
we note that the expression in (11) can be decomposed
as

xi j −βi j Pi X j =
(

xi j − 1

λi j
Pi X j

)

+
(

1

λi j
− βi j

)
Pi X j (20)

where λi j is given by (5). The first component on the
right hand side of (20) represents 2D reprojection error
whereas the second component is called the truncation
error in Triggs (1998). For any (P, X, β), we will denote
the weighted total truncation error by

Tγ (P, X, β)=
∑
i, j

∥∥∥∥
(

1

λi j
− βi j

)
(γ̄i j ∗ Pi X j )

∥∥∥∥
2

.

(21)

Theorem 2.

(a) Let (P(γ ), X(γ ), β (γ )) be an optimal solution to
(12). Then,

E(P(γ ), X (γ ))= F∗(γ ) + Tγ (P(γ ), X (γ ), β(γ ))

(22)

(b) limγ→∞ Tγ (P(γ ), X (γ ), β(γ )) = 0
(c) limγ→∞ F∗(γ ) = E∗
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A proof of Theorem 2 can be found in the Appendix.
Suppose the problem (12) is solved for values

of γ taken from a monotonic increasing sequence
{γ k}. By Theorem 1(a) and Theorem 2(c), F∗(γ k) is
a monotonic increasing sequence converging to E∗.
Furthermore, F∗(γ k) is bounded above by the se-
quence E(P(γk), X (γk)). Note that E(P(γk), X (γk))
overbounds E∗ and is also convergent to E∗. Hence,
as k increases, the two sequences {F∗(γ k)} and
{E(P(γk), X (γk))} should approach E∗ from opposite
sides, squeezing an interval containing E∗. The differ-
ence [E(P(γk), X (γk))− F∗(γk)] can therefore be used
as a measure for indicating convergence. The following
algorithm provides an iterative procedure for obtaining
a solution (P∗, X∗, β ∗) where the 2D reprojection error
is a minimum.

3.1. Algorithm 2

1. Put k = 1.
2. Use Algorithm 1 to solve for (P(γ k), X(γ k),β (γ k))

from

F∗(γk) = min
P,X,β

Fγk (P, X, β)

where (P(γk−1), X (γk−1), β(γk−1)) is used as the
starting point for the minimization if k > 1.

3. Evaluate E(P(γ k), X(γ k)).
If E(P(γk), X (γk)) − F∗(γk) > ε (a prescribed

threshold),
put k = k+1 and return to Step 2;

else
output (P∗, X∗, β∗) = (P(γk), X (γk), β(γk))

and stop.

Theorems 1 and 2 provide the basis for deducing the
asymptotic behavior of F∗(γ ). If the global minimum
to the trilinear problem in Step 2 of Algorithm 2 can
be obtained for each γ k, then asymptotically F∗(γ k)
will approach the global minimum of the 2D reprojec-
tion error as γ k → ∞. However, while Algorithms 1
and 2 are proven to converge, there is no guarantee that
they converge to the global minimum. As Algorithm 1
may converge to a local minimum of the trilinear prob-
lem, Algorithm 2 will at best converge to a local min-
imum of the 2D reprojection error. Our experience
suggests that Algorithm 2 is often able to find a solu-
tion which for practical purposes is (very close to) the
global minimum. There are, however, instances where

the algorithm converges to a local minimum of the geo-
metric reprojection error. In this case, the property that
F∗(γ k) and E(P(γ k), X(γ k)) bracket the local minimum
of the geometric reprojection error remains valid, and
the size of the bracket will still approach 0 as γ k →
∞.

4. Missing Data

The ability to handle missing points is essential for any
multi-view techniques, as there are bound to be miss-
ing data in real images due to occlusion. Missing data
results in ‘holes’ in the measurement matrix (2) and
therefore creates difficulties for methods that operate
on (2) as a matrix. Let the set of indices of available
image points be

A = {(i, j) | xi j is observed as point j on view i}.
(23)

Various methods are available for handling missing
data in projective reconstruction, such as the sequential
updating method of Beardsley (1997), the linear fitting
method of Jacobs (2001), and the parametric approach
of Shum et al. (1995). As far as missing points are con-
cerned, our method is similar to the approach of Shum
et al. (1995) in that the cost function for minimization
is defined over available data only and so there is no
need to pay special attention to the missing data as they
simply do not feature in the minimization problem.

Since our algorithms do not rely on any matrix
operation on (2) (except for an initialization step in
Algorithm 1), the algorithms can be readily applied
despite missing data. If there are missing points, then
in Step 1 of Algorithm 1, the matrix [ 1

β◦
i j

xi j ] is formed
by setting all missing entries xij to the centroids of the
visible 2D points in each image. All the results and The-
orems 1 and 2 remain valid if we replace the summation
over all (i, j) by a summation over available measure-
ments with indices in the set A. Once the joint projec-
tion matrix P∗ and the shape matrix X∗ are estimated us-
ing available data, missing points xij can be filled in by
projecting Xj

∗ onto view i by means of Pi
∗ if required.

5. Experimental Results

In this section, the proposed method is first evaluated
by means of synthetic images for which ground truth
is known. Corresponding results using two other
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Figure 1. A synthetic scene with a virtual box.

established methods, namely Sturm-Triggs’ algorithm
(Sturm and Triggs, 1996) and Heyden’s subspace
method (Heyden et al., 1999), are given for the sake
of comparison. We note here that the Sturm-Triggs’
algorithm is one of the very first factorization methods
proposed and is not expected to perform well on the
criteria used in later works. The results of Sturm-
Triggs’ algorithm are nevertheless given below as a
reference for comparison. Finally, an example using
real images will be provided.

5.1. Synthetic Example

A synthetic scene is made up consisting of a virtual
box as shown in Fig. 1. The box has size 60 × 60 ×
60 cm and contains a total of 25 feature points including
corners of the box and patterns on its sides. Twelve
images of the box are synthesized for cameras placed
around two sides of the box at distances in the range
of 70 cm to 100 cm from the centre of the box. All
cameras have the same intrinsic parameters and the
size of each image is 1080 × 720. The cameras are
oriented with their optical axes pointing towards the
centre of the box. The location of the cameras are
otherwise selected in a random manner.

Gaussian noise of different noise levels (with stan-
dard deviation ranging from 0 to 4 pixels in 0.5 pixel
increments) are introduced independently to the x and
y coordinates of each 2D image point. The algorithms
are run repeatedly for 30 trials using different randomly
generated noise and the graphs to be given show the
mean values of the simulation results.

5.1.1. Performance on 2D Reprojection Error. The
2D reprojection errors (relative to the noisy data)
are plotted in Fig. 2. We have also applied the

Figure 2. 2D reprojection error.

Sturm-Triggs’ algorithm (Sturm and Triggs, 1996) and
Heyden’s subspace method (Heyden et al., 1999) to
the same data set. For Sturm-Triggs’ method, we have
taken the 1st camera (leftmost in Fig. 1) as the refer-
ence for the estimation of fundamental matrices. Since
neither of the above methods minimizes the 2D repro-
jection error, it is expected that our method produces
a smaller 2D reprojection error. On average, the 2D
reprojection error increases almost linearly with the
noise level and has magnitude roughly matching (in
fact lower than) the noise level.

5.1.2. Performance on Estimating Projective Depths.
Since the projective depths cannot be uniquely recov-
ered in a projective reconstruction, in order to compare
how good the estimated projective depths are, we make
use of the cross ratio of projective depths defined as:

ĉi j = λ̂i j λ̂i+1, j+1

λ̂i, j+1λ̂i+1, j
,

(i = 1, . . . , m − 1; j = 1, . . . , n − 1) (24)

where λ̂i j represents the estimated projective depths.
The mean-squared cross-ratio error (MSCRE) is then
defined as

1

(m − 1) (n − 1)

∑
i, j

(
ci j − ĉi j

)2
(25)

where ci j are the cross ratios computed using the
ground truth depths. The MSCRE of the results of
our method as well as Sturm-Triggs’ and Heyden’s
methods are shown in Fig. 3.



312 Hung and Tang

Figure 3. Projective-depth cross-ratio error.

Figure 4. 3D error.

5.1.3. Performance on 3D Error. The evaluation on
3D error is performed by upgrading the reconstructed
3D points X̂ j in the projective space to a Euclidean
space by means of a collineation T ∈ �4×4 obtained
by minimizing

e3D =
√√√√min

T

1

n

∑
j

‖ X j − α j T X̂ j‖2 (26)

where X represents the ground truth 3D points and α j

is a scaling factor for normalizing the 4th component
of T X̂ j to 1. The RMS 3D error e3D plotted against
different noise levels are shown in Fig. 4. In general, 3D
points for reconstructions with smaller 2D reprojection
error are closer to the ground truth.

Figure 5. 2D reprojection error when there are missing data.

5.1.4. Performance on Missing Data. To simulated
missing data, 17 image points are randomly selected
and removed from the measurement matrix and these
are regarded as missing data. Only our method is used
to perform a projective reconstruction, as the issue of
missing points is not dealt with explicitly in Sturm
and Triggs (1996) or Heyden et al. (1999). The root-
mean-squared 2D reprojection errors for both visible
points and missing points are shown in Fig. 5. The
RMS 2D reprojection error for the visible points are
measured relative to the noisy data whereas the error for
the missing points are measured relative to the ground
truth as noisy data for these points supposedly do not
exist. The errors of the estimated missing points are
comparable with the noise level corrupting the visible
points.

Figure 6 shows the performance of our method in
terms of 3D error for varying percentages of missing
data from 0 to 40% with 5% increments. The data
set is contaminated by Gaussian noise with standard
deviation σ = 2 pixels. There are 30 trials for each
percentage of missing data with 2D points randomly
marked as missing data. We additionally restrict that
there are at least 7 points visible to every 3 consecutive
views for each trial. This condition becomes increas-
ingly hard to satisfy when the percentage of missing
points exceeds 40% as the scene contains only 25 fea-
ture points. The 3D error is computed as in (26) and the
average RMS and MAX 3D errors are shown in Fig. 6.
The RMS 3D errors are reasonably small compared
with the size of the box.
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Figure 6. 3D error versus percentage of missing data (noise level
σ = 2 pixels).

Figure 7. Convergence of algorithm.

5.1.5. Convergence of Algorithm. As far as conver-
gence is concerned, our method compares favourably
with existing methods. In Algorithm 2, we set γk =
(1.1)k and Algorithm 1 is run for each γk until con-
vergence is attained. To illustrate the use of Theorem
2, a plot of the cost function F∗(γk) being minimized
and the 2D reprojection error E(P(γk), X (γk)) versus
γk (in log scale) is shown in Fig. 7. By the results of
Section 3, F∗(γk) is monotonic increasing and should
converge to a minimum point E∗ of the 2D reprojec-
tion error. As E(P(γk), X (γk)) converges towards E∗

from above, F∗(γk) should increase towards the same
value, thereby squeezing E∗ in between. The close-
ness of F∗(γk) to E(P(γk), X (γk)) can be used to judge
whether convergence has been attained. This is in con-
trast to existing algorithms which does not provide any

Table 1. Comparisons of algorithms.

No. of
iterations

Run-time
(sec)

RMS 2D
reprojection
error (pixel)

RMS 3D
error
(mm)

Our method 72 0.87 3.236 3.881

Heyden’s
method

17 0.44 3.837 4.850

Bundle
adjustment
(BA) only

18 67.6 3.446 4.639

(Heyden +) BA (17+)5 14.3 3.250 3.888

means of determining convergence other than changes
in the cost function being minimized.

A comparison of our method with Heyden’s method
and standard bundle adjustment in terms of conver-
gence, the accuracy of solution and run-times is given
in Table 1, which contains results obtained by averag-
ing 30 trials on data sets with a noise level of 4 pixels.
All algorithms are run on a 2.4 GHz Pentium PC. In
the case of the proposed method, all iterations within
Algorithm 1 have been counted. Heyden’s method
converges in fewer iterations and is faster but both the
2D and 3D errors are larger. The bundle adjustment
used here is based on Powell’s dog-leg method
(Powell, 1970) and is implemented using the Mat-
lab Optimization Toolbox. The bundle adjustment
started from the same initial condition as our method
converges to a solution which is slightly worse than
but close to the solution from our method. Despite
the apparently small number of iterations, bundle
adjustment requires a much longer run-time because
the algorithm contains a nested iterative process

Figure 8. The second image of the image sequence ‘Arc de
Triomphe’.
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Figure 9. The distribution of available and missing data in the measurement matrix of the Arc de Triomphe sequence. The i th row represents
the i th image and the j th column represents the j th 3D point.

Figure 10. A scene of the reconstructed wire-frame of ‘Arc de Triomphe’.

Figure 11. A view of ‘Arc de Triomphe’ with texture.

where each outer-loop iteration requires several tens
of inner-loop iterations. We have also used the result
from Heyden’s method as the initial solution for bundle
adjustment, which produces a solution preforming
equally well as our method, but requires a run-time
more than 10 times that of our method. We have
also run the bundle adjustment with an initialization
provided by our method, which shows that no further
improvement can be made, and therefore confirms
that our method indeed reaches a local minimum.

5.2. 3D Reconstruction Using Real Images

Five photographs are captured by a camera which
was moved a complete revolution around the Arc de

Triomphe so that each of its four facades is visible in
at least one image. The photographs are digitized by a
film scanner to give images of size 1850 × 1205 pixels.
Figure 8 shows the second image of the sequence. A
total of 68 feature points are matched across the five
images. Figure 9 shows a map of the available and
missing points in the measurement matrix. There are a
total of 133 missing points in the 5 images. Due to the
high percentage (39.1%) of missing data, it requires
a total of about 5,000 iterations for our algorithm to
converge, which takes about 1 minute for our imple-
mentation of the algorithm in Matlab 6.5 running on a
2.4 GHz Pentium PC. The maximum 2D reprojection
error among all views is 2.129 pixels while the RMS
2D reprojection error is 0.769 pixels. For comparison,
standard bundle adjustment requires about 60 minutes
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to converge to a solution with RMS 2D reprojection
error of 1.97 pixels.

To see whether our projective reconstruction is rea-
sonable, we upgrade the projective reconstruction to a
Euclidean space by means of the normalization method
of Han and Kanade (2000, 2001). Assuming that princi-
pal points of the cameras are fixed and the skew ratios
are zero, a scene of the wire-frame reconstruction is
shown in Fig. 10, and a synthesized scene with some
of the surfaces textured is given in Fig. 11.

6. Conclusion

In this paper, a projective reconstruction method for
multiple views is developed to estimate the (inverse)
projective depths while minimizing the 2D reprojec-
tion error. It is shown that the algorithm is guaranteed to
converge to a minimum E∗ of the 2D reprojection error.
An indicator for the attainment of convergence is pro-
vided in terms of two different qualities, namely F∗(γk)
and E(P(γk), X (γk)), both of which can be monitored
during the algorithm, squeezing towards E∗. Further-
more, missing data can be readily handled by the pro-
posed method. Simulations show that the method is
robust to image noise, giving solutions with mean 2D
reprojection error matching the level of noise corrupt-
ing the image points. The projective reconstruction ob-
tained using the method of this paper can be used as a
basis for a Euclidean reconstruction.

Appendix

Proof of Theorem 1: Consider 0 < γ1 < γ2 < ∞.

(a) Noting that each of the triple (P(γk), X (γk), β(γk))
(k = 1, 2) achieves the minimum of its own ob-
jective function Fγk (P, X, β), we have

F∗(γ1) = Fγ1 (P(γ1), X (γ1), β(γ1))

≤ Fγ1 (P(γ2), X (γ2), β(γ2))

≤ Fγ2 (P(γ2), X (γ2), β(γ2))

≤ Fγ2 (P(γ1), X (γ1), β(γ1))

= F∗(γ2)

where the second inequality follows from the fact
that Fγ (P, X, β) is monotonic increasing in γ by
definition (11). It follows that F∗(γ ) is a mono-
tonic increasing function of γ .

(b) For any γ > 0, we have

F∗(γ ) = min
P, X, β

Fγ (P, X, β)

≤ min
P, X

Fγ (P, X, β)
∣∣
βi j = 1

P3
i X j

∀ i, j

= min
P, X

E(P, X ) = E∗.

Clearly, E∗ ≤ E(P(γ ), X (γ )) for any γ .
(c) From the inequalities given in (a), we have

Fγ2 (P(γ2), X (γ2), β(γ2)) − Fγ1 (P(γ2),

X (γ2), β(γ2)) ≤ Fγ2 (P(γ1), X (γ1), β(γ1))

−Fγ1 (P(γ1), X (γ1), β(γ1))

⇒ (
γ 2

2 − γ 2
1

) ∑
i, j

γ 2
i j (1 − βi j (γ2)λi j (γ2))2

≤ (
γ 2

2 − γ 2
1

)∑
i, j

γ 2
i j (1 − βi j (γ1)λi j (γ1))2

⇒
∑
i, j

γ 2
i j (1 − βi j (γ2)λi j (γ2))2

≤
∑
i, j

γ 2
i j (1 − βi j (γ1)λi j (γ1))

which shows that
∑

i, j γ 2
i j (1 − βi j (γ )λi j (γ ))2 is a

monotonic non-increasing function of γ .
(d) From (b), we have

lim
γ →∞ F∗(γ ) ≤ E∗

⇒ lim
γ → ∞

∑
i, j

γ 2γ 2
i j (1−βi j (γ )P3

i (γ )X j (γ ))2 ≤ E∗.

(27)

Hence, provided γi j �= 0, we must have

lim
γ → ∞

(
1 − βi j (γ )P3

i (γ )X j (γ )
) = 0

which completes the proof of Theorem 1.
�

Proof of Theorem 2:

(a) Since (P(γ ), X (γ ), β(γ )) is a minimum solution
for Fγ (P, X, β), at β = β(γ ), we have

∂ Fγ (P, X, β)

∂βi j
= −2

[(
ui j − βi j P1

i X j
)
P1

i X j
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+(vi j − βi j P2
i X j )P2

i X j + γ 2γ 2
i j

(
1 − βi j P3

i X j
)
P3

i X j

]
=0

(28)

From (20),

γ̄i j ∗
(

xi j − 1

λi j
Pi X j

)
= γ̄i j ∗ (xi j − βi j Pi X j )

−
(

1

λi j
− βi j

)
(γ̄i j ∗ Pi X j )

Hence,



ui j − 1
λi j

P1
i X j

vi j − 1
λi j

P2
i X j

0


 =




ui j − βi j P1
i X j

vi j − βi j P2
i X j

γ γi j
(
1 − βi j P3

i X j
)




−
(

1

λi j
− βi j

) 


P1
i X j

P2
i X j

γ γi j P3
i X j


 . (29)

By (28), the two vectors on the right hand
side of (29) are orthogonal when (P, X, β) =
(P(γ ), X (γ ), β(γ )). Hence, taking the norm of
both side of (29) and summing over (i, j) yields
(22).

(b) Substituting λi j = P3
i X j into (21), the truncation

error can be written

Tγ (P, X, β) =
∑
i, j

∥∥∥∥∥∥
(1 − βi jλi j )




ûi j

v̂i j

γ γi j




∥∥∥∥∥∥

2

(30)

where

( ûi j , v̂i j ) = 1

λi j

(
P1

i X j , P2
i X j

)
.

By Theorem 1(b), F∗(γ ) ≤ E∗. Applying
Theorem 1(d) and (27) to (30) shows that

lim
γ → ∞ Tγ (P(γ ), X (γ ), β(γ )) ≤ E∗.

Hence, by 22, limγ→∞ E(P(γ ), X (γ )) ≤
2E∗. This implies that when (P, X, β) =
(P(γ ), X (γ ), β(γ )) and for a sufficiently large
γ, (ui j − ûi j , vi j − v̂i j ) and hence also ( ûi j , v̂i j )
are bounded.

From (28), we have

βi j = ui j P1
i X j + vi j P2

i X j + γ 2γ 2
i j P3

i X j(
P1

i X j

)2
+

(
P2

i X j

)2
+ γ 2γ 2

i j

(
P3

i X j

)2 (31)

Substituting (31) into (30), the third component of
Tγ (P, X, β) can be written

(1 − βi jλi j ) γ γi j

= − (ui j − ûi j )ûi j + (vi j − v̂i j ) v̂i j

û2
i j + v̂2

i j + γ 2γ 2
i j

γ γi j

(32)

which implies

lim
γ→∞(1 − βi jλi j ) γ γi j = 0. (33)

Letting γ → ∞ in (30) and making use of
Theorem 1(d) and (33) yields

lim
γ → ∞ T γ (P(γ ), X (γ ), β(γ )) = 0. (34)

(c) Note that for any γ > 0, E(P(γ ), X (γ )) ≥ E∗.
Making use of (34) and taking limit in (22) gives

lim
γ → ∞ F∗(γ ) = lim

γ → ∞ E(P(γ ), X (γ )) ≥ E∗

which together with (19) imply that

lim
γ → ∞ F∗(γ ) = E∗.

This completes the proof of Theorem 2.
�
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