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Abstract. This article introduces a novel representation for three-dimensional (3D) objects in terms of local
affine-invariant descriptors of their images and the spatial relationships between the corresponding surface patches.
Geometric constraints associated with different views of the same patches under affine projection are combined with
a normalized representation of their appearance to guide matching and reconstruction, allowing the acquisition of
true 3D affine and Euclidean models from multiple unregistered images, as well as their recognition in photographs
taken from arbitrary viewpoints. The proposed approach does not require a separate segmentation stage, and it is
applicable to highly cluttered scenes. Modeling and recognition results are presented.
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1. Introduction

This article addresses the problem of recognizing
three-dimensional (3D) objects in photographs. Tra-
ditional feature-based geometric approaches to this
problem—such as alignment (Ayache and Faugeras,

∗A preliminary version of this article has appeared in Rothganger
et al. (2003).

1986; Faugeras and Hebert, 1986; Grimson and
Lozano-Pérez, 1987; Huttenlocher and Ullman, 1987;
Lowe, 1987) or geometric hashing (Thompson and
Mundy, 1987; Lamdan and Wolfson, 1988, 1991)—
enumerate various subsets of geometric image fea-
tures before using pose consistency constraints to con-
firm or discard competing match hypotheses, but they
largely ignore the rich source of information contained
in the image brightness and/or color pattern, and thus
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typically lack an effective mechanism for selecting
promising matches. Appearance-based methods—as
originally proposed in the context of face recognition
(Turk and Pentland, 1991; Pentland et al., 1994; Bel-
humeur et al., 1997) and 3D object recognition (Murase
and Nayar, 1995; Selinger and Nelson, 1999)—take
the opposite view, and prefer to explicit geometric
reasoning a classical pattern recognition framework
(Duda et al., 2001) that exploits the discriminatory
power of (relatively) low-dimensional, empirical mod-
els of global object appearance in classification tasks.
However, they typically deemphasize the combinato-
rial aspects of the search involved in any matching
task, which limits their ability to handle occlusion and
clutter.

Viewpoint and/or illumination invariants (or invari-
ants for short) provide a natural indexing mechanism
for object recognition tasks. Unfortunately, although
planar objects and certain simple shapes—such as bi-
lateral symmetries (Nalwa, 1988) or various types of
generalized cylinders (Ponce et al., 1989; Liu et al.,
1993)—admit invariants, general 3D shapes do not
(Burns et al., 1993), which is the main reason why in-
variants have fallen out of favor after an intense flurry
of activity in the early 1990s (Mundy and Zisserman,
1992; Mundy et al., 1994). We propose in this article to
revisit invariants as a local description of truly three-
dimensional objects: Indeed, although smooth surfaces
are almost never planar in the large, they are always
planar in the small—that is, sufficiently small patches
can be treated as being comprised of coplanar points.1

The surface of a solid can thus be represented by a
collection of small patches, their geometric and pho-
tometric invariants and a description of their 3D spa-
tial relationships. The invariants provide an effective
appearance filter for selecting promising match candi-
dates in modeling and recognition tasks, and the spa-
tial relationships afford efficient matching algorithms
for discarding geometrically inconsistent candidate
matches.

Concretely, we propose using local image descrip-
tors that are invariant under affine transformations
of the spatial domain (Gårding and Lindeberg, 1996;
Lindeberg, 1998; Baumberg, 2000; Schaffalitzky and
Zisserman, 2002; Mikolajczyk and Schmid, 2002)
and of the brightness/color signal (Lowe, 2004) to
capture the appearance of salient surface patches, and
a set of multi-view geometric constraints related to
those studied in the structure from motion literature
(Tomasi and Kanade, 1992) to capture their spatial

relationship. Our approach is directly related to a
number of recent techniques that combine local mod-
els of image appearance in the neighborhood of salient
features—or “interest points” (Harris and Stephens,
1988)—with local and/or global geometric constraints
in wide-baseline stereo matching (Tell and Carlsson,
2000; Tuytelaars and Van Gool, 2004), image retrieval
(Schmid and Mohr, 1997; Pope and Lowe, 2000), and
object recognition tasks (Weber et al., 2000; Fergus
et al., 2003; Mahamud and Hebert, 2003; Lowe, 2004).
These methods normally either require storing a large
number of views for each object (Schmid and Mohr,
1997; Pope and Lowe, 2000; Mahamud and Hebert,
2003; Lowe, 2004), or limiting the range of admissible
viewpoints (Schneiderman and Kanade, 2000; Weber
et al., 2000; Fergus et al., 2003). In contrast, our
approach supports the automatic acquisition of explicit
3D affine and Euclidean object models from multiple
unregistered images, and their recognition in heavily-
cluttered pictures taken from arbitrary viewpoints.

The rest of this presentation is organized as follows:
Section 2 presents the main elements of our approach.
Its applications to 3D object modeling and recognition
are discussed in Sections 3 and 4. In practice, object
models are constructed in controlled situations with
little or no clutter, and the stronger consistency con-
straints associated with 3D models make up for the
presence of significant clutter and occlusion in recog-
nition tasks, avoiding the need for a separate segmen-
tation stage. Modeling and recognition examples can
be found in Figs. 1, 15–16, 20 and 26, and a detailed
description of our experiments, including quantitative
recognition results, can be found in Sections 3.3 and
4.5. We conclude in Section 5 with a brief discus-
sion of the promise and limitations of the proposed
approach.

2. Approach

This section presents the three main components of
our approach to object modeling and recognition: (1)
the affine regions that provide us with a normalized,
viewpoint-independent description of local image ap-
pearance; (2) the geometric multi-view constraints
associated with the corresponding surface patches;
and (3) the algorithms that enforce both photometric
and geometric consistency constraints while matching
groups of affine regions in modeling and recognition
tasks.
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Figure 1. Results of a recognition experiment. Left: A test image. Right: Instances of five models (a teddy bear, a doll stand, a salt can,
a toy truck and a vase) have been recognized, and the models are rendered in the poses estimated by our program. Bounding boxes for the
reprojections are shown as black rectangles.

Figure 2. Affine-adapted patches found by Harris-Laplacian (left) and DoG (right) detectors.

2.1. Affine Regions

The construction of local invariant models of ob-
ject appearance involves two steps, the detection of
salient image regions, and their description. Ideally,
the regions found in two images of the same object

should be the projections of the same surface patches.
Therefore, they must be covariant, with regions de-
tected in the first picture mapping onto those found
in the second one via the geometric and photometric
transformations induced by the corresponding view-
point and illumination changes. In turn, detection must
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be followed by a description stage that constructs a
region representation invariant under these changes.
For small patches of smooth Lambertian surfaces, the
transformations are (to first order) affine, and this
section presents the approach to detection and de-
scription of affine regions (Gårding and Lindeberg,
1996; Mikolajczyk and Schmid, 2002) used in our
implementation.

2.1.1. Detection. Several approaches to finding
perceptually-salient blob-like image primitives in natu-
ral images were proposed in the mid-eighties (Crowley
and Parker, 1984; Voorhees and Poggio, 87). Blostein
and Ahuja (1989) took a first step toward building some
invariance in this process with a multi-scale region de-
tector based on maxima of the Laplacian. Lindeberg
(1998) has extended this detector in the framework of
automatic scale selection, where a “blob” is defined by
a scale-space location where a normalized Laplacian
measure attains a local maximum. Gårding and
Lindeberg (1996) have also proposed an affine adap-
tation process based on the second moment matrix for
finding affine image blobs. Recently, Mikolajczyk and

Schmid (2002) have combined these ideas into an inte-
grated affine region detector.2 Briefly, their algorithm
iterates over steps where (1) an elliptical image re-
gion is deformed to maximize the isotropy of the cor-
responding brightness pattern (shape adaptation, see
Gårding and Lindeberg, 1996); (2) its characteristic
scale is determined as a local extremum of the nor-
malized Laplacian in scale space (scale selection, see
Lindeberg, 1998); and (3) the Harris (1988) opera-
tor is used to refine the position of the ellipse’s cen-
ter (localization, see Mikolajczyk and Schmid, 2002).
The scale-invariant interest point detector proposed in
(Mikolajczyk and Schmid, 2001) provides an initial
guess for this procedure, and the elliptical region ob-
tained at convergence can be shown to be covariant un-
der affine transformations (see Gårding and Lindeberg,
1996; Lindeberg, 1998; Mikolajczyk and Schmid, 2002
for additional details).

The affine region detection process used in this
article implements both this algorithm and a simple
variant where a difference-of-Gaussians (DoG)
operator (Crowley and Parker, 1984; Voorhees and
Poggio, 1987; Lowe, 2004) replaces the Harris interest

Figure 3. Normalizing patches. The left two columns show a patch from image 1 of Krystian Mikolajczyk’s graffiti dataset (available from the
INRIA LEAR Group’s web page: http://lear.inrialpes.fr/software). The right two columns show the matching patch from image 4. The first row
shows a portion of the original image. The second row shows the ellipse determined by affine adaptation. This normalizes the shape, but leaves
a rotation ambiguity, as illustrated by the normalized circles in the center. The last row shows the same patches with orientation determined by
the gradient at about twice the characteristic scale.
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Figure 4. Affine regions. Left: A sample of the regions found in an image of a teddy bear (most of the patches actually detected in this image
are omitted for clarity). Top right: A rectified patch and the original image region. Bottom right: Geometric interpretation of the rectification
matrix R and its inverse S (see Section 2.2 for details).

point detector. Note that this operator tends to find
corners and points where significant intensity changes
occur, while the DoG detector is (in general) attracted
to the centers of roughly uniform regions (blobs).
Intuitively, the two operators provide complementary
kinds of information: The Harris detector responds to
regions of “high information content” (Mikolajczyk
and Schmid, 2002), while the DoG detector pro-
duces a perceptually plausible decomposition of the
image into a set of blob-like primitives. Figure 2
shows examples of the outputs of these two
detectors.

2.1.2. Description. As mentioned above, the affine
regions output by our detection process have an ellip-
tical shape. It is easy to show that any ellipse can be
mapped onto a unit circle centered at the origin using
a one-parameter family of affine transformations sep-
arated from each other by arbitrary orthogonal trans-
formations (intuitively, this follows from the fact that
circles are unchanged by rotations and reflections about
their centers). This ambiguity can be resolved by deter-
mining the dominant gradient orientation of the image
region (Lowe, 2004), turning the corresponding ellipse
into a parallelogram and the unit circle into a square
(Fig. 3). Thus, the output of the detection process is a
set of image regions in the shape of parallelograms, to-
gether with affine rectifying transformations that map
each parallelogram onto a “unit” square centered at the
origin (Fig. 4).

A rectified affine region is a normalized represen-
tation of the local surface appearance, invariant under
planar affine transformations. Under affine—that is,
orthographic, weak-perspective, or para-perspective—
projection models, this representation is invariant
under arbitrary viewpoint changes. For Lambertian
patches and distant light sources, it can also be made
invariant to changes in illumination (ignoring shadows)
by subtractingthe mean patch intensity from each pixel
value and normalizing the Frobenius norm of the corre-
sponding image array to one. Equivalently, normalized
correlation can be used to compare rectified patches,
irrespective of viewpoint and (affine) illumination
changes. Maximizing correlation is equivalent to min-
imizing the squared distance between feature vectors
formed by mapping every pixel value onto a separate
vector coordinate. Other feature spaces may of course
be used as well. In particular, the SIFT descriptor intro-
duced by Lowe (2004) has been shown to provide supe-
rior performance in image retrieval tasks (Mikolajczyk
and Schmid, 2003). Briefly, the SIFT description of
an image region is a three-dimensional histogram over
the spatial image dimensions and the gradient orien-
tations, with the original rectangular area broken into
16 smaller ones, and the gradient directions quantized
into 8 bins (Fig. 5), and it can thus be represented by a
128-dimensional feature vector (Lowe, 2004).

In practice, our experiments have shown that com-
bining the SIFT descriptor with a 10 × 10 color his-
togram drawn from the UV portion of YUV space
improves the recognition rate in difficult cases with
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Figure 5. Two (rectified) matching patches found in two images of a teddy bear, along with the corresponding SIFT and color descriptors.
Here (as in Fig. 17 later), the orientation histogram values associated with each spatial bin are depicted by lines of different lengths for each
one of the 8 quantized gradient orientations. As recommended in Lowe (2004), we scale the feature vectors associated with SIFT descriptors
to unit norm, and compare them using the Euclidean distance. In this example, the distance is 0.28. The (monochrome) correlation of the two
rectified patches is 0.9, and the χ2 distance between the color histograms (as defined in Section 4.1) is 0.28. Each histogram appears as a grid
of colored blocks, where the brightness of a block indicates the weight on that color. If a bin has zero weight, it appears as neutral gray.

low-contrast patches. We will come back to this issue
in Section 4.

2.2. Geometric Constraints

2.2.1. Geometric Interpretation of the Rectification
Process. Let us denote by R and S = R−1 the rec-
tifying transformation associated with an affine region
and its inverse. The 3 × 3 matrix S enjoys a simple
geometric interpretation, illustrated by Fig. 4 (bottom
right), that will prove extremely useful in the sequel. It
has the form

S =
[

h v c

0 0 1

]

The matrix R is an affine transformation from the im-
age patch to its rectified form, and thus S is an affine
transformation from the rectified form back to the im-
age patch. Since the center of the rectified patch has
homogeneous coordinates [0, 0, 1]T , the third column
of S gives the homogeneous coordinates of the center
c of the corresponding image parallelogram. Likewise,
it is easy to see that h and v are the vectors joining c to
the mid-points of the parallelogram’s sides (Fig. 4).

The matrix S effectively contains the locations
of three points in the image, so a match between
m ≥ 2 images of the same patch contains exactly
the same information as a match between m triples
of points. It is thus clear that all the machinery of
structure from motion (Tomasi and Kanade, 1992)
and pose estimation (Huttenlocher and Ullman, 1987;
Lowe, 1987) from point matches can be exploited in
modeling and object recognition tasks. Reasoning in
terms of multi-view constraints associated with the
matrix S will provide in the next section a unified
and convenient representation for all stages of both
tasks, but one should always keep in mind the simple
geometric interpretation of the matrix S and the
deeply rooted relationship between these constraints
and those used in motion analysis and pose estimation.

2.2.2. Multi-View Constraints. Let us assume for the
time being that we are given n patches observed in m
images, together with the (inverse) rectifying trans-
formations S ij defined as in the previous section for
i = 1, . . . , m and j = 1, . . . , n (i and j serving re-
spectively as image and patch indices). We use these
matrices to derive in this section a set of geometric and
algebraic constraints that must be satisfied by matching
image regions.
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Figure 6. Geometric interpretation of the decomposition of the mapping Si j into the product of a projection matrix Mi and an inverse
projection matrix N j .

A rectified patch can be thought of as a fictitious
view of the original surface patch (Fig. 6), and the
mapping Si j can thus be decomposed into an inverse
projection N j (Faugeras et al., 2001) that maps the
rectified patch onto the corresponding surface patch,
followed by a projection Mi that maps that patch onto
its projection in image number i. In particular, we can
writeSi j = MiN j for i = 1, . . . , m and j = 1, . . . , n,
or, in a more compact form:

Ŝ def=



S11 . . . S1n

...
. . .

...

Sm1 . . . Smn


 =



M1

...

Mm


 [N1 . . . Nn],

and it follows that the 3m × 3n matrix Ŝ has at most
rank 4.

As shown in Appendix A, the inverse projection
matrix can be written as

N j =
[

H j V j C j

0 0 1

]
,

and it satisfies the constraint N T
j � j = 0, where � j

is the coordinate vector of the plane � j that contains
the patch. In addition, the columns of the matrix N j

admit in our case a geometric interpretation related to
that of the matrix Si j : Namely, the first two contain the

“horizontal” and “vertical” axes of the surface patch,
and the third one is the homogeneous coordinate vector
of its center.

To account for the form of N j , we construct a
reduced factorization of Ŝ by picking, as in Tomasi and
Kanade (1992), the center of mass of the observed pat-
ches’ centers as the origin of the world coordinate sys-
tem, and the center of mass of these points’ projections
as the origin of every image coordinate system. In
this case, the projection equation Si j =MiN j

becomes[
Di j

0 0 1

]
=

[
Ai 0

0T 1

] [
B j

0 0 1

]
, or Di j = AiB j ,

where Ai is a 2 × 3 matrix, Di j = [hi j vi j ci j ] is a
2 × 3 matrix, and B j = [H j V j C j ] is a 3 × 3
matrix. It follows that the reduced 2m × 3n matrix

D̂ = ÂB̂, where D̂ def=



D11 . . . D1n

...
. . .

...

Dm1 . . . Dmn


 ,

Â def=

 A1

...
Am


 , B̂ def= [B1 . . . Bn ] , (1)

has at most rank 3.
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2.2.3. Matching Constraints. The rank deficiency of
the matrix D̂ can be used as a geometric consistency
constraint when at least two potential matches are vis-
ible in at least two views. Alternatively, singular value
decomposition can be used, as in Tomasi and Kanade
(1992), to factorize D̂ and compute estimates of the
matrices Â and B̂ that minimize the squared Frobenius
norm of the matrix D̂ − ÂB̂. Geometrically, the (nor-
malized) Frobenius norm d = |D̂−ÂB̂|/√3mn of the
residual can be interpreted as the root-mean-squared
distance (in pixels) between the center and normalized
side points of the patches observed in the image and
those predicted from the recovered matrices Â and B̂.
Given n matches established across m images (a match
is an m-tuple of image patches), the residual error d can
thus be used as a measure of inconsistency between the
matches.

Together with the normalized models of local shape
and appearance proposed in Section 2.1.2, this mea-
sure will prove an essential ingredient of the approach
to (pairwise) image matching presented in the next
section. It will also prove useful in modeling tasks
where the projection matrices are known but the 3D
configuration B of a single patch is unknown, and in
recognition tasks when the patches’ configurations are
known but a single projection matrix A is unknown.
In general, Eq. (1) provides an over-constrained set
of linear equations on the unknown parameters of the
matrix B (B̂ with n = 1) in the former case, and an
over-constrained set of linear constraints on the un-
known parameters of the matrix A (Â with m = 1) in
the latter one. Both are easily solved using linear least-
squares, and they determine the corresponding value
of the residual error.

2.3. Matching

The core computational components of model acqui-
sition and object recognition are matching procedures:
In image-based modeling, we seek groups of matches
between the affine regions found in two pictures that
are consistent with both the local appearance models
introduced in Section 2.1.2 and the geometric con-
straints expressed by Eq. (1). In object recognition,
one image is replaced by an object model consist-
ing of a collection of 3D patches, but the matching
task and the underlying constraints are essentially the
same. Both tasks can be understood in the constrained-
search model proposed by Grimson (1990), who has

shown that finding an optimal solution—maximizing,
say, the number of matches such that photometric and
geometric discrepancies are bounded by some thresh-
old, or some other reasonable criterion—is in general
intractable (i.e., exponential in the number of matched
features) in the presence of uncertainty, clutter, and
occlusion.

Various approaches to finding a reasonable set of
geometrically-consistent matches have been proposed
in the past, including interpretation tree (or alignment)
techniques (Ayache and Faugeras, 1986; Faugeras
and Hebert, 1986; Grimson and Lozano-Pérez, 1987;
Huttenlocher and Ullman, 1987; Lowe, 1987), and
geometric hashing (Lamdan and Wolfson, 1988;
Lamdan and Wolfson, 1991). An alternative is offered
by robust estimation algorithms, such as RANSAC
(Fischler and Bolles, 1981), and its variants (Torr
and Zisserman, 2000), and median least-squares, that
consider candidate correspondences consistent with
a small set of seed matches as inliers to be retained
in a fitting process, while matches exceeding some
inconsistency threshold are considered as outliers and
rejected. Although, like all other heuristic approaches
to constrained search, RANSAC and its variants are not
guaranteed to output an optimal set of matches, they
often offer a good compromise between the number
of feature combinations that have to be examined and
the pruning capabilities afforded by appearance-and
geometry-based constraints: In particular, the number
of samples necessary to achieve a desired performance
with high probability can easily be computed from
estimates of the percentage of inliers in the dataset,
and it is independent of the actual size of the dataset
(Fischler and Bolles, 1981).

Briefly, RANSAC iterates over two steps: In the sam-
pling stage, a (usually, but not always) minimal set of
seed matches is chosen randomly, and it is used to esti-
mate the geometric parameters of the fitting problem at
hand. The consensus stage then adds to the initial seed
all the candidate matches that are consistent with the
estimated geometry. The process iterates until a suffi-
ciently large consensus set is found, and the geometric
parameters are finally re-estimated. Despite its attrac-
tive features, pure RANSAC only achieves moderate
performance in the challenging object recognition ex-
periments presented in Section 4, where clutter may
contribute 90% or more of the detected regions. As
will be shown in that section, the simple variant out-
lined in Algorithm 1 below achieves better results. This
algorithm uses the idea of consensus from RANSAC
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while it seeks the maximal set of consistent matches
between two sets of patches. It operates in three key
steps, explained below.

Step 1 of the algorithm takes advantage of appear-
ance constraints to reduce the practical cost of the
search. It focuses the matching process on the por-
tion of the space of all matches (A × B) which is a
priori most likely to be correct. Here we are using ap-
pearance similarity as a heuristic, since it cannot be
a perfect indicator of correct matches. Noise present
in actual image measurements lowers the appearance
scores for some true matches. Furthermore, nothing
prevents incorrect matches from appearing the same.

Step 2 applies RANSAC to the limited set of match
hypotheses to find a geometrically consistent subset.
Our assumption is that the largest such consistent set
will contain mostly true matches. This establishes the
geometric relationship between the two sets of patches.
Proceeding to Step 3 is optional but useful, since it
maximizes the number of resulting matches.

Step 3 explores the remainder of the space of all
matches, seeking other matches which are consistent
with the established geometric relationship between
the two sets of patches. Obtaining a (nearly) maximal
set of matches is useful for recognition (where the
number of matches acts as a confidence measure) and
for modeling (where they provide more coverage of
the object).

The same overall matching procedure is used in
both our modeling and recognition experiments. In

practice, object models are constructed in controlled
situations with little or no clutter. Algorithm 1 has
proven extremely reliable in this case, irrespective of
the RANSAC variant used in its second step (Sec-
tion 3). The heavily cluttered images used in our
recognition experiments are much more challenging,
with different variants giving significantly different
performances. An extensive experimental comparison
between several reasonable choices is presented in
Section 4.

3. 3D Object Modeling from Images

This section presents our approach to the automated
acquisition of affine and Euclidean 3D object models
from collections of unregistered photographs. These
models consist of collections of 3D surface patches
in the shape of parallelograms, along with the corre-
sponding appearance models, defined in terms of tex-
ture patterns. We will use the teddy bear shown in Fig. 7
to illustrate some of the steps of the modeling process.
Additional modeling experiments will be presented in
Section 3.3.

3.1. Constructing Partial Models from Image Pairs

As shown in Section 2.2, two images of two surface
patches are sufficient to estimate the corresponding
(affine) projection matrices and 3D patch configu-
rations. Thus, object models can be constructed by
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Figure 7. The 20 images used to construct the teddy bear model. There are 16 images roughly located in an equatorial ring, and 4 overhead
images. This setup (with some variation in the number of input images) is typical of our modeling experiments.

matching pairs of overlapping images—a process akin
to wide-baseline stereo (Baumberg, 2000; Matas et al.,
2002; Mikolajczyk and Schmid, 2002; Pritchett and
Zisserman, 1998; Schaffalitzky and Zisserman, 2002;
Tell and Carlsson, 2000; Tuytelaars and Van Gool,
2004) and (robust) structure from motion (Tomasi and
Kanade, 1992; Weinshall and Tomasi, 1995; Poelman
and Kanade, 1997)—before stitching the correspond-
ing partial models into a complete one. While it is
possible to select these pairs automatically (Schaffal-
itzky and Zisserman, 2002), we have chosen to specify
them manually using prior knowledge of the modeling

setup: Typically, we acquire a number of views roughly
located in an equatorial ring around the modeled
object, as well as a couple of top and/or bottom views.
Accordingly, we match pairs of successive equatorial
images, plus some additional pairs where a top or bot-
tom view has enough overlap with one of those from the
ring.

After processing through point detectors and affine
adaptation, an image can be viewed as simply a collec-
tion of affine regions. For each pair of images, we apply
Algorithm 1 to match the two sets of regions. The
remainder of this section gives implementation
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specifics for the algorithm in the context of image
matching.

3.1.1. Appearance-Based Selection of Potential
Matches. We do not use color information in model-
ing tasks, and rely exclusively on SIFT feature vectors
to characterize local image appearance. A match is an
ordered pair of patches, one from the first image and
one from the second image. The initial list of potential
matches is found by selecting for each patch in the first
image the top K patches in the second image as ranked
by SIFT. In our experiments, K is typically set to 5,
which is sufficient to model any of the objects. For ob-
jects with less distinctive texture (specifically the apple
and truck shown in Fig. 16) it is useful to increase K
to 10, which gives a richer set of matches. The cost
of our (naive) implementation is O(n2 log n), where n
is the number of affine regions found in the two im-
ages. Using efficient (and possibly approximate) algo-
rithms for finding the K nearest neighbors of a feature
vector would obviously lower this cost, but this turns
out to be negligible compared to the overall cost of
Algorithm 1.

Candidate matches whose SIFT feature vectors are
separated by a Euclidean distance greater than 0.5 are
rejected. The remaining ones are used in the sampling
stage of the matching procedure to estimate the projec-
tion matrices and seed its consensus step. For that pro-
cess to be reliable, matching rectified regions should
line up as well as possible despite the unavoidable
imperfections of affine adaptation in real images. It
is therefore desirable to adjust the parameters of one
of the rectified regions to maximize correlation with
its match. Appendix B presents a simple non-linear
least-squares solution to this problem (see Fig. 8 for an
example).

Once potential matches have been refined, we com-
pare the paired patches by normalized correlation, and
those that fall below a threshold of 0.9 are rejected. A
simple neighborhood constraint is then used to further
prune inconsistent ones: For a primary correspondence
between image regions Rm and Rt to be retained, a
sufficient fraction of the 10 nearest neighbors of Rm

should also match neighbors of Rt. Call the number
of these secondary matches the score of the primary
correspondence they support. Since every affine region
has roughly K potential matches, the score is bounded

Figure 8. Adjusting the parameters of matched affine regions. Image patches are shown in the top part of the figure, and the corresponding
rectified patches are shown in the bottom one. From left to right: The (constant) reference patch, and the variable patch before and after
refinement. As expected, the rectified image patches are much closer to each other after refinement.
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Figure 9. Parameters for the two robust estimation strategies used
to match pairs of images in our experiments, along with their com-
binatorial cost. Here |P| denotes the size of the set P of match hy-
potheses, K is the number of best matches kept per model patch, M
is the number of samples drawn, and N is the size of one seed. The
value of M for RANSAC is based on an inlier rate of w = 5%, M
being chosen in this case as E(M) + 2S(M), where E(M) = w−N

is the expected value of the number of draws required to get one
good sample and S(M) = √

1 − wN /wN is its standard deviation.
See (Forsyth and Ponce, 2002, p. 347) for details.

by 10K. We retain correspondences whose score is
at least two standard deviations above average. In a
typical case (matching the first two bear images), the
mean score is 1.2, with a standard deviation of 3.1. The
threshold for retaining matches is thus 7.4, and 1,150
of the initial 16,800 correspondences are retained in
this case.

3.1.2. Robust Estimation. The sampling and consen-
sus parts of this procedure follow the steps described
in Section 2.3. During sampling, factorization is used
to solve Eq. (1) for the two projection matrices and the
3D configurations of the two sample patches. During
consensus, the projection matrices are held constant,
and the configuration of every patch added to the con-
sensus set is estimated from Eq. (1) using linear least
squares.

Similar approaches have of course been used before
in the context of wide-baseline stereo, although the
geometric constraints exploited in that case are usually
related to the distance between matching points and the
corresponding epipolar lines (Pritchett and Zisserman,
1998; Schaffalitzky and Zisserman, 2002; Baumberg,
2000; Tell and Carlsson, 2000; Matas et al., 2002;
Tuytelaars and Van Gool, 2004). The reprojection
error is a more natural metric in our context where
two matching patches determine both the projection

matrices and the 3D patch configurations, and it yields
excellent results in practice. In our experiments, we
have used both plain RANSAC and a variant where
the samples are chosen in a deterministic, greedy
fashion. Concretely, the greedy variant uses each
potential match as a seed for a group, iteratively adding
the match minimizing the mean reprojection error
until this error exceeds 0.1 pixels, or the group’s size
exceeds 20. In practice, both methods give almost iden-
tical results, RANSAC being slightly more efficient,
and its greedy variant being slightly more reliable.
The parameters used in our experiments are given in
Fig. 9, along with the computational costs for the two
variants.

We use a second neighborhood constraint to remove
outliers at the end of this stage. It involves finding
the five closest neighbors of a point in one image and
the five closest neighbors of its putative match in the
other image. If the match is consistent, the neighbors
should also be matched with each other (barring oc-
clusion). We test for this by comparing the barycentric
coordinates3of the centers of matched regions relative
to all

(5
3

) = 10 triples of their neighbors (Fig. 10).
The test is done symmetrically for the two images, and
it examines 20 triples of neighbors. Two vectors of
barycentric coordinates x and y are judged consistent
if their relative distance |x − y|/max(|x|, | y|) is less
than 0.5, and matches consistent with fewer than 8 of
the 20 possible triples are rejected.

3.1.3. Geometry-Based Addition of Matches. The
set of consistent matches found by the estimation step
typically provide a good estimate of the epipolar ge-
ometry of the image pair. For each patch in the first
image, we search for all patches in the second im-
age whose “epipolar distance” is less than 2.5 pixels,
and add up to K new matches. Specifically, we de-
fine the epipolar distance as d(c1,F c2)+d(c2,FT c1),
where d( p, l) gives the perpendicular distance between
a point p and a line l in pixels, c1 and c2 are the patch
centers in the two images, and F is the fundamental
matrix.

Figure 10. The barycentric neighborhood constraint. Left: Consistent matches. Right: Inconsistent ones.
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Figure 11. Matches between two images of the bear. For clarity, only 20 are shown.

Figure 12. A (subsampled) patch-view matrix for the teddy bear. The full patch-view matrix has 4,212 columns. Each black square indicates
the presence of a given patch in a given image.

3.2. Merging Partial Models into Composite Ones

The result of the image matching process is a collec-
tion of matches between neighboring training images
(Fig. 11). There are several combinatorial and geomet-
ric problems to solve in order to convert this informa-
tion into a 3D model. The overall process is divided
into four steps: (1) chaining: link matches across mul-
tiple images; (2) stitching: solve for the affine structure
and motion while coping with missing data; (3) bun-
dle adjustment: refine the model using non-linear least
squares; and (4) Euclidean upgrade: use constraints
associated with (partially) known intrinsic parameters
of the camera to turn the affine reconstruction into a
Euclidean one. The following sections describe each
of these steps in detail.

3.2.1. Chaining. The matching process described in
the previous section outputs affine regions matched
across pairs of views. These matches can be repre-
sented in a single match graph structure, where each

vertex corresponds to an affine region, labeled by the
image where it was found, and arcs link matched pairs
of regions. Intuitively, the set of views of the same sur-
face patch forms a connected component of the match
graph, which can in turn be used to form a sparse patch-
view matrix whose columns represent surface patches,
and rows represent the images in which they appear
(Fig. 12).

In practice, the construction of the patch-view ma-
trix is complicated by the fact that different paths may
link a vertex of the match graph to more than one ver-
tex associated with a single view. We have chosen a
simple heuristic to solve this problem: First, we as-
sociate with each connected component of the graph
a root vertex corresponding to the affine region with
maximum scale. Second, we refine the parameters of
the region associated with every vertex in the con-
nected component to maximize its correlation with the
root, in much the same way as during image-to-image
matching. This is necessary because some drift may be
introduced in the parameters when chaining multiple
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Figure 13. Refining patch parameters across multiple views: Rectified patches associated with a match in four views before (top) and after
(bottom) applying the refinement process. The patch in the rightmost column is the “root,” and is used as a reference for the other three patches.
The errors shown in the top row are exaggerated for the sake of illustration: The regions shown there are the unprocessed output of the affine
region detector. In actual experiments, the refined parameters found during image matching are propagated along the edges of the match graph
to provide better initial conditions.

views (Fig. 13). Third, we enumerate all the vertices
associated with each image in the dataset, retain the
representative vertex closest in feature space to the
root vertex, and discard all others. This ensures that
every image is represented by at most one vertex in
each connected component, and affords a straightfor-
ward method for constructing the patch-view matrix.

3.2.2. Stitching. The patch-view matrix is compara-
ble to the data matrix used in factorization approaches
to affine structure from motion (Tomasi and Kanade,
1992). If all patches appeared in all views, we could
indeed factorize the matrix directly to recover the
patches’ 3D configurations as well as the camera posi-
tions. In general, however, the matrix is sparse, and we
must find dense blocks (submatrices) to factorize and
stitch. The problem of finding maximal dense blocks
of views and patches within the matrix reduces to the
NP-complete problem of finding maximal cliques in a
graph. In our implementation, we use a simple heuris-
tic strategy which, while not guaranteed to be optimal
or complete, generally produces an adequate solution:
Briefly, we find a dense block for each patch—that is,
for each column in the patch-view matrix—by search-
ing for all other patches that are visible in at least the
same views. In practice, this strategy provides both a
good coverage of the data by dense blocks, and an
adequate overlap between blocks. Typically, patches

appear in at least three or four views, depending on the
separation between successive views in the sequence,
and there are in general two orders of magnitude more
patches than views.

The factorization technique described in Section
2.2.2 can of course be applied to each dense block
to estimate the corresponding projection matrices and
patch configurations in some local affine coordinate
system (Fig. 14). The next step is to combine the in-
dividual reconstructions into a coherent global model,
or equivalently register them in a single coordinate
system. With a proper set of constraints on the affine
registration parameters, this can easily be expressed as
an eigenvalue problem. In our experiments, however,
we have found this linear approach to be numerically
ill behaved (this is related to the inherent affine gauge
ambiguity of our problem, see (Triggs et al., 1999) for
a discussion of this issue. Thus, in practice, we pick an
arbitrary block as root, and iteratively register all others
with this one using linear least squares, before using
a non-linear method to refine the global registration
parameters.

We use the stitch graph to assist in this process. Its
vertices are the blocks, and an edge between two ver-
tices indicates that the corresponding blocks overlap.
We choose the largest block as root node and use its
coordinate system as the global frame. We then find
the best path from the root to every other node using
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Figure 14. Sample partial models of the bear estimated from dense blocks. The blocks in this illustration were found by taking adjacent
modeling views and selecting all patches they have in common. The partial models are all presented in a common coordinate frame, rather than
in their local frames determined by factorization.
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a measure that maximizes the number of points shared
by adjacent blocks, the rationale being that large over-
laps will give reliable estimates of the corresponding
(local) registration parameters. Specifically, we assign
to each edge a capacity (number of points common
to the blocks associated with the incident vertices),
and use a form of Dijkstra’s algorithm to find for each
vertex the path maximizing the capacity reaching the
root.

The local registration parameters are concatenated
along these paths, and they provide an estimate of the
root-to-target affine transformation. Non-linear least-
squares are finally used to minimize the mean-squared
Euclidean distance between the centers of every pair
of overlapping patches. After registering the blocks as
described above, we combine all the camera and patch
matrices into a single model. Since several blocks may
provide a value for a given camera or patch, we give
preference to those closer to the root.

3.2.3. Bundle Adjustment. Once all blocks are reg-
istered, the initial estimates of the variables Mi and
N j are refined by minimizing

E =
n∑

j=1

∑
i∈I j

|Si j − MiN j |2, (2)

where I j denotes the set of images where patch num-
ber j is visible. Given the reasonable guesses avail-

able from the initial registration, this non-linear least-
squares process only takes (in general) a few iterations
to converge.

We have implemented two non-linear methods for
minimizing the error E in Eq. (2). One is a sparse ver-
sion of the Levenberg-Marquardt (LM) algorithm. The
other uses a bilinear alternation strategy, that works
by first holding the patches constant while solving for
the cameras, then holding the cameras constant while
solving for the patches, and iterating until convergence
(see Mahamud et al., 2001 for a related approach to
projective structure from motion). Note that the alter-
nation strategy has first-order convergence properties,
while LM has second-order convergence (Triggs et al.,
1999). In general, LM requires fewer iterations than
bilinear alternation, but its cost per iteration is much
higher. For the size and density of the matrices typi-
cal of our modeling problems, we prefer the bilinear
method, since in practice it finishes much sooner and
produces essentially the same results as sparse LM.

The completed 3D model (Fig. 15) consists of the
matricesMi and a description of each 3D surface patch
j: the matrix N j and the corresponding rectified tex-
ture patch. This patch can be constructed in a num-
ber of ways. One possibility is to combine the texture
information from each measured image patch into a
single high-quality copy using super-resolution tech-
niques (Cheeseman et al., 1994; Capel and Zisserman,

Figure 15. The bear model, along with the recovered affine camera configurations. These cameras are shown at an arbitrary constant distance
from the origin.
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Figure 16. Object gallery. Left column: One of several input pictures for each object. Right column: Renderings of each model, not necessarily
in same pose as input picture. Top to bottom: An apple, rubble (Spiderman base), a salt can, a shoe, Spidey, a toy truck, and a vase.

2001; Baker and Kanade, 2002), provided the patches
satisfy our assumption of planarity and that they are
well registered. Currently, we simply choose the im-
age patch with the largest characteristic scale and copy
its texture into the model. This is sufficient for the
purpose of matching the model to novel images.

3.2.4. Euclidean Upgrade. It is not possible to go
from affine to Euclidean structure and motion from two
views only (Koenderink and van Doorn, 1991). When
three or more views are available, on the other hand,
it is a simple matter to compute the corresponding Eu-
clidean weak-perspective projection matrices (assum-
ing zero skew and known aspect-ratios) and recover the

Euclidean structure (Tomasi and Kanade, 1992; Ponce,
2000): Briefly, we find the 3×3 matrixQ such thatAiQ
is part of a (scaled) rotation matrix for i = 1, . . . , m.
This provides linear constraints on QQT , and allows
the estimation of this symmetric matrix via linear least-
squares. The matrix Q can then be computed via
Cholesky decomposition for example (Poelman and
Kanade, 1997; Weinshall and Tomasi, 1995).

3.3. Experimental Results

The current implementation of our modeling approach
is quite reliable, but rather slow: The teddy bear shown
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in Fig. 15 is our largest model, with 4014 model patches
computed from 20 images (24 image pairs). Image
matching takes about 75 minutes per pair using pure
RANSAC, for a total of 29.9 hours.4Image matching
using the greedy algorithm takes 88 min per pair for a
total of 35.2 h. The final model is assembled from the
partial ones in 1.5 h. The greatest single expense in our
modeling procedure is patch refinement. By selecting
less stringent convergence criteria for this process and
using a fixed 16 × 16 resolution for the image regions
used to drive the LM procedure, it is possible to reduce
the matching time to 6.6 min per image pair and as-
semble the model in 42 min, at the cost of getting 4%
fewer 3D patches. Since modeling speed is not a pri-
ority in the context of this presentation, we have used
the original refinement parameters in the rest of our
experiments.

We have applied the modeling approach presented
in this section to seven other objects, namely, an apple,
the rubble-covered stand for a Spiderman action figure
(called simply “rubble” from now on), a salt can, a
shoe, Spidey himself, a toy truck, and a vase (Fig. 16).
For each object, the figure shows one sample from the
set of input pictures. Each object model has been con-
structed using 16 to 20 input images, except for the ap-
ple which is modeled from 29 images to attain complete
surface coverage. Beside each sample input image, the
figure shows two renderings of the recovered Euclidean
model. The models are rather sparse, but one should
keep in mind that they are intended for object recogni-
tion, not for image-based rendering applications.

4. 3D Object Recognition

We now assume that the modeling approach presented
in Section 3 has been used to create a library of 3D
object models, and address the problem of identify-
ing instances of these models in a test image. In many
respects, this process is analogous to the method de-
scribed in Section 3.1 for pairwise image matching.
As before, Algorithm 1 outlines the overall process.
Further details are given in the rest of this section.

4.1. Appearance-Based Selection of Potential
Matches

Since matching is much more challenging in the recog-
nition context where images may be heavily cluttered
than in modeling tasks where there is essentially no

clutter, we exploit both the SIFT descriptors and color
histograms to select initial matches. More specifically,
we use (1) a measure of the contrast (average squared
gradient norm) in the patch, (2) a 10 × 10 color his-
togram drawn from the UV portion of YUV space, and
(3) SIFT. To match feature vectors, we rely on color to
filter out unpromising matches before comparing the
remaining ones with SIFT. The level of contrast deter-
mines whether to use a tight or relaxed threshold on
color.

We compare color histograms with the χ2 metric,
defined as

∑
i

(ai − bi )2

ai + bi
,

where ai and bi are bins corresponding to each other in
the respective histograms, and i iterates over the bins.
The resulting value is in the [0, 2] range, with 0 being
a perfect match and 2 a complete mismatch.

Figure 17 illustrates the usefulness of multiple local
image descriptors in matching tasks, particularly when
the patches have low contrast. This example is taken
from a test image for the apple. The model patch is
in the center, the correct match is on the left, and an
incorrect match is on the right. By human perception,
all three patches appear almost identical, except that the
incorrect patch has a different color. By SIFT distance,
the incorrect match is actually closer than the correct
one. The use of a color descriptor enables us to select
the correct one.

We use as before non-linear least squares to re-
fine the parameters of the matched image regions
to maximize their correlation with the correspond-
ing model patches. Since this process is computation-
ally expensive, we first apply a neighborhood con-
straint similar to that used in image matching to
discard obviously inconsistent matches, as described
next.

4.1.1. Euclidean Neighborhood Constraints. We
saw earlier that affine models constructed from multi-
ple views can be upgraded into Euclidean ones. In turn,
a Euclidean model can be used to impose neighborhood
constraints on individual matches: It is well known that
three point matches—or in our case, a single match
between the corners and center of a model patch and
those of an affine image region—are sufficient to de-
termine the pose of a 3D object for calibrated cameras
(Huttenlocher and Ullman, 1987). Thus, we recover
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Figure 17. Comparing SIFT and color descriptors on low-contrast patches. The center column is the model patch. The left column is the
correct match in the image. The right column is the match in the image ranked first by SIFT (but that is in fact an incorrect match). The top row
shows the patch, the middle row shows the color histogram, and the bottom row shows the SIFT descriptor. The incorrect match has a Euclidean
distance of 0.52 between SIFT descriptors and a χ2 distance of 1.99 between the corresponding color histograms; and the correct match has a
SIFT distance of 0.67 and a color distance of 0.03. The two patches on the left are red-green colored, while the patch on the right is aqua.

the object pose associated with each potential match,
and use it to reproject all other model patches into
the image. Any patch whose reprojection falls close
enough to a compatible affine region casts a vote for the
match. Match candidates with above-average support
are retained, and passed on to the refinement step.

In our implementation, the weight w of each vote de-
pends on three factors, namely the characteristic scale
σ 0 of the primary image region associated with the
match candidate, the distance d between the projection
of the voting patch and the corresponding secondary
image region, and the distance d0 between the primary
and secondary regions. In practice, we set w = Gσ (d),
where Gσ is a Gaussian distribution with standard de-
viation σ = 10 + d0/4σ0 (Fig. 18). With this choice,
small values of d correspond to large votes, and the
contribution of each secondary patch is modulated so
the Gaussian sharply peaks for large primary regions

likely to yield accurate pose estimates, and for sec-
ondary regions more likely to be accurately localized
because they are close to the primary ones.

4.2. Robust Estimation

As noted in Section 2, various methods for finding
matching features consistent with a given set of
geometric constraints have been proposed in the
past, including interpretation tree—or alignment—
techniques (Ayache and Faugeras, 1986; Faugeras
and Hebert, 1986; Grimson and Lozano-Pérez,
1987; Huttenlocher and Ullman, 1987; Lowe, 1987),
geometric hashing (Lamdan and Wolfson, 1988;
Lamdan and Wolfson, 1991), and robust statistical
methods such as RANSAC (Fischler and Bolles, 1981)
and its variants (Torr and Zisserman, 2000). Both
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Figure 18. An illustration of the proposed voting scheme: The
primary match that determines the pose appears as a heavy parallel-
ogram, and all the forward facing patches projected from the model
appear as light parallelograms. The projected center of the support-
ing match appears as an “ × ” surrounded by a circle. The actual
image position of the supporting match appears as another “ × ”. The
radius of the circle is equal to the standard deviation of the Gaussian
distribution deciding the weight of the corresponding vote.

alignment and RANSAC can easily be implemented
in the context of Algorithm 1. We have experimented
with several alternatives: The first one is a recursive
implementation of alignment where an interpretation
tree is visited in a depth-first manner (null matches
between model patches and “empty” image regions
being used to handle occlusion and faulty detection)
until a maximum depth N is reached (N = 20 in our
experiments), or the mean reprojection error exceeds 1
pixel in all branches up to that depth (see Ayache and
Faugeras, 1986; Faugeras and Hebert, 1986 for more
details on this approach). We have also implemented
plain RANSAC and two variants: a “greedy” version
where, as before, M groups of matches of size lesser
than or equal to N are chosen in a deterministic, greedy
manner to minimize the mean projection error, and
used instead of random samples; and an “exhaustive”
version where all pairs of candidate matches are
examined. The computational costs of the RANSAC
variants are easy to estimate, and they are given in
Fig. 19. The cost of alignment is more difficult to as-
sess, but can be shown to be a low-order polynomial in
the size n of the model when there is little or no clutter,
and exponential in n in the presence of clutter when no
limit on the depth of the tree search is imposed (Grim-
son, 1990). The worst-case computational complexity
of our bounded tree search is O(nN ), but determining
its expected cost is beyond the scope of this paper. As
will be shown in Section 4.5, the “greedy” version of
RANSAC has performed best in our experiments.

Figure 19. Parameters for the different geometric estimation meth-
ods for Algorithm 1 used in our recognition experiments, along with
their combinatorial cost. Here, L denotes a preset number of poten-
tial matches to be examined (L = 12,000 in our experiments), and
n is the number of patches per object model.

4.3. Geometry-Based Addition of Matches

The matches found by the estimation step provide a
projection matrix that places the model into the image.
All forward facing patches in the model could poten-
tially be present in the image. Therefore, we project
each such model patch and select the K closest image
patches as new match hypotheses.

4.4. Object Detection

Once an object model has been matched to an im-
age, some criterion is needed to decide whether it is
present or not. After experimenting with a few reason-
able choices, we have settled on the following crite-
rion:

(number of matches ≥ m

OR matched area / total area ≥ a)

AND distortion ≤ d,

where nominal values for the parameters are m = 10,
a = 0.1, and d = 0.15. Here, the measure of distortion
is

aT
1 a2

|a1||a2| +
(

1 − min(|a1|, |a2|)
max(|a1|, |a2|)

)
,

where aT
i is the ith row of the leftmost 2 × 3 por-

tion A of the projection matrix, and it reflects how
close to the top part of a scaled rotation this matrix
is. The matched surface area of the model is measured
in terms of the patches whose normalized correlation
is above the usual thresholds, and it is compared to
the total surface area actually visible from the pre-
dicted viewpoint. The influence of the three parame-
ters on recognition performance is studied in the next
section.
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Figure 20. The dataset (51 images) used in our recognition experiments: 50 of the images are shown here. The last one is shown in Fig. 1.
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4.5. Experimental Results

Our recognition experiments match all eight of our
object models against a set of 51 images (the photo-
graph from Fig. 1 and the 50 pictures shown in Fig.
20). Each image contains instances of up to five ob-
ject models, even though most of them only contain
one or two. Figure 21 gives quantitative recognition
results for the different monochrome variants of our
algorithm, where color information is not used. The
parameters for these tests are fixed to their nominal
values of m = 10, a = 0.1, and d = 0.15. With
these settings, none of the methods tested gives false
positives, and the “greedy” version of RANSAC with
N = 20 gives the best performance, with a recognition
rate (averaged over the eight object models) of 88%.
The time costs given in the table are per image-object
combination, in minutes.

Since it has consistently performed best in our
experiments, we will from now on focus on the
greedy variant of RANSAC with N = 20. It is
interesting to compare different image descriptors
and to test whether the use of color information may
boost recognition performance. Figure 22 shows
the results of a quantitative experiment: It can be
seen that the combination of color and SIFT gives
the best performance, with a mean recognition rate
of 94%. (This rate is for the nominal settings of the
detection parameters. The effect of these parameters
is discussed below.) Using color together with plain

patch correlation results in performance similar to that
of SIFT descriptors without color information.

As is always the case in object recognition, many
implementation parameters can be varied in our pro-
gram: For example, Fig. 23 shows the trade-off be-
tween computing cost and recognition accuracy that
can be achieved by changing the patch size used to re-
fine the alignment between matched affine regions. As
shown by this figure, selecting a fixed 16×16 resolu-
tion instead of the original resolution of the test patch
used in the previous experiments halves the computing
time with essentially no effect on recognition accuracy.
Lowering the resolution too much, on the other hand,
clearly affects recognition performance.

The recognition rates reported so far are for fixed,
nominal values of the detection parameters m, a, and d.
A better understanding of our algorithm’s performance
can be gained by plotting the overall rates of true pos-
itives (instances where an object is correctly identified
in an image) and true negatives (instances where an
object is correctly determined to be absent) against a
range of parameter values. Figure 24 shows the corre-
sponding plots for the color version of our algorithm,
where we vary one of the three parameters while hold-
ing the other two constant at their nominal values.

As shown by Fig. 24, the recognition performance
is quite stable over a reasonable range of detection
parameters. The equal-error-rate parameter values
correspond to the point (if any) where the true positive
and true negative curves cross, which occurs in the

Figure 21. Comparison of recognition rates for different monochrome variants of our method. See text for details. The row of numbers
immediately under the object names gives the true number of instances present in the test images.

Figure 22. Comparison of recognition rates for different descriptors using the greedy RANSAC variant with N = 20.
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Figure 23. Effect of region sampling during patch refinement on computation cost and recognition accuracy.

Figure 24. Dependency of the recognition rate on the detection parameters: The true positive (TP) and true negative (TN) rates are plotted
by holding two of the detection parameters constant at their nominal values and varying, from left to right, the number of matched patches, the
ratio of matched to visible area, and the distortion.

Figure 25. True positive rate plotted against number of false positives for several different recognition methods. For our curve, the three
recognition parameters m, a, and d assume their best values for each level of false positives.

94–96% range in these graphs. The best recognition
rate that we have been able to obtain by tuning the
detection parameters is 95% with no false positives.

In order to obtain a quantitative comparison of our
method with other state-of-the-art object recognition
systems, we have provided our dataset5to several other

research groups. The algorithms proposed by Ferrari
et al. (2004), Lowe (2004), Mahamud and Hebert
(2003), and Moreels et al. (2004) have been tested by
their authors in this comparative study. As shown by
Fig. 25, all the algorithms perform well on our data set,
achieving recognition rates of 90% and above for false
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Figure 26. Some challenging but successful recognition results. As in Fig. 1, the recognized models are rendered in the poses estimated by
our program, and bounding boxes for the reprojections are shown as rectangles.
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Figure 27. Images where recognition fails.

detection rates below 10%. In this experiment, the color
version of our algorithm and Lowe’s algorithm (Lowe,
2004) perform best for very low false detection rates,
followed by the black-and-white version of our algo-
rithm. The technique proposed by Ferrari et al. (2004)
achieves an extremely high recognition rate at the cost
of a somewhat higher false detection rate. Although
all five algorithms use multiple views to form object
models, only Lowe’s algorithm and ours actually com-
bine the information associated with multiple views in
the recognition process.6 The other methods consider
all training pictures independently, which essentially
reduces object recognition to image matching. The five
algorithms use different geometric constraints to reject
inconsistent matches: We exploit the global 3D (affine
and Euclidean) rigidity of our object models. Ferrari
et al. (2004) use instead a set of local 2D affine rigidity
constraints, which are somewhat weaker but allow the
recognition of deformable objects such as magazines,
and the remaining authors exploit global 2D (affine or
Euclidean) rigidity constraints, best suited to situations
where the training and test views are close to each
other, or the relief of the scene is small compared to
the distance separating it from the observer. To test
the power of these constraints, we have included in
our comparative study a baseline recognition method
where the pairwise image matching part of our
modeling algorithm is used as a simple recognition
engine, an object being declared as recognized when a
sufficient percentage of the patches found in a training
view are matched to the test image. The geometric con-
straints used in this case are quite weak, and amount
to exploiting the epipolar geometry conventionally
used in wide-baseline stereo. As shown by Fig. 25,
although this simple method gives reasonable results
(over 50% true positive rate with no false positives),
it gives the worse recognition rates of all methods
tested.

These results should not be interpreted as a conclu-
sive ranking of the tested algorithms, since our test
dataset is quite small, and it is probably biased in fa-
vor of our method. However, they provide some evi-
dence (and this should not be particularly surprising)
that combining multiple views improves recognition
performance, and so does the inclusion of geometric
constraints in the matching process. Of course, there
is a price to pay for the integration of multiple images
into a single model: First, this makes modeling more
costly and complicated. Second, this requires the use of
training views with sufficient overlap, as confirmed by
our experiments with the data of Ferrari et al. (2004),
where the input images have too few patches in com-
mon to allow us to construct any meaningful model.

Let us conclude with some qualitative experimental
results, using as before the color/SIFT greedy variant of
RANSAC with N = 20. Figure 26 shows sample results
of some challenging—yet successful—recognition ex-
periments, with a large degree of occlusion and clutter.
Figure 27 shows the images where recognition fails.
Very little of the apple is visible in the two images
where our program fails to recognize it. Maybe more
surprisingly, the shoe occupies a large portion of the
two images where it escapes detection. The reason is
simply that we did not include overhead views of the
shoe in the training set.7 The shoe images shown in
Fig. 27 are separated by about 60◦ from the views
used during modeling, with very few of the model
patches appearing in the test pictures, which explains
our program’s failure and illustrates its limitations.

5. Discussion

We have proposed in this article to revisit invariants
as a local object description that exploits the fact that
smooth surfaces are always planar in the small. Com-
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bining this idea with the affine regions of Mikolajczyk
and Schmid (2002) has allowed us to construct a
normalized representation of local surface appearance
that can be used to select promising matches in 3D
object modeling and recognition tasks. We have used
multi-view geometric constraints to represent the
larger 3D surface structure, retain groups of consistent
matches, and reject incorrect ones. Our experiments
demonstrate the promise of the proposed approach to
3D object recognition.

Our current implementation is limited to affine view-
ing conditions. As noted in Section 2.2, a match be-
tween m ≥2 affine regions is equivalent to a match be-
tween m triples of points, thus the machinery developed
in the structure from motion (Faugeras et al., 2001;
Hartley and Zisserman, 2000; Tomasi and Kanade,
1992) and pose estimation (Huttenlocher and Ullman,
1987; Lowe, 1987) literature can in principle be used to
extend our approach to the perspective case. This is par-
ticularly relevant in the context of scene interpretation
(as opposed to individual object recognition), where
the relief of each surface patch may be small compared
to the overall depth of the scene, so that an affine pro-
jection model is appropriate for each patch, yet a global
affine projection model is inappropriate (think of street
scenes, for example, that exhibit significant perspective
distortions). As a first step toward tackling this prob-
lem, we have recently introduced a local affine viewing
model obtained by linearizing the perspective projec-
tion equations in the neighborhood of each patch, and
used it to extend the approach proposed in this article
to the problems of motion segmentation, scene model-
ing, and scene recognition in video clips (Rothganger
et al., 2004).

Admittedly, our current implementation is slow, es-
pecially compared to the systems proposed by Lowe
(2004), and Mahamud and Hebert (2003), that achieve
frame-rate object detection in cluttered scenes. Speed
was never our priority (despite some efforts at opti-
mizing our code), and we believe that our approach
can (and should) be sped up by at least an or-
der of magnitude using a more careful implemen-
tation. Two key changes would be to use a voting
scheme rather than a full comparison of each object
with each image, and to avoid patch refinement if
possible.

An obvious limitation of our approach is its reliance
on texture: Some objects (e.g., statues, cars, many kinds
of fruit and vegetables) are essentially textureless, yet
easily recognizable (for humans). Alternatively, many

objects are heavily textured, but the corresponding pat-
terns may be more distracting than characteristic (e.g.,
a cat’s fur may look like a patchwork of different col-
ors, it may sport stripes, or just be plain black or white,
yet a person will still recognize the cat in the pic-
ture). Handling such objects will require new image
descriptors that better convey shape (as opposed to ap-
pearance) information, yet capture an appropriate level
of viewpoint invariance. Developing these descriptors
and the corresponding recognition strategies is next on
our agenda.

Appendix A: Inverse Projection Matrices

Let us introduce more formally the inverse pro-
jection matrix associated with a plane under affine
projection.

Consider a plane � with coordinate vector � in the
world coordinate system. For any point in this plane
we can write the affine projection in some image plane
as p = MP and �T P = 0. These two equations
determine the homogeneous coordinate vector P up
to scale. To completely determine it, we can impose
that its fourth coordinate be 1, and the corresponding
equations become

M� P =
[ M

�T

0 0 0 1

]
P =

[ p
0
1

]

Not surprisingly, M� is an affine transformation
matrix. So is its inverse, and if

M−1
� =

[
c1 c2 c3 c4

0 0 0 1

]
,

we can write

P = M−1
�




p

0

1


 = M†

�

[
p

1

]
, where

M†
�

def=
[

c1 c2 c4

0 0 1

]
.

The 4 × 3 matrix M†
� is the inverse projection

matrix (Faugeras et al., 2001) associated with the plane
� . Note that, for any point p, in the image plane, the



3D Object Modeling and Recognition 257

point

P = M†
�

[
p
1

]

lies in the plane �, thus �T P = 0. Since this must be
true for all points p, we must have �TM†

� = 0T .
The matrix N j used in this paper is simply M( j)†

� j

whereM( j) is the matrix associated with the projection
into the (fictitious) rectified image plane. Note that
M( j) maps the center C j of patch number j onto the
origin of the rectified image plane. It follows that the
coordinate vector of this point is

[
C j

1

]
= N j

[ 0
0
1

]
,

or, equivalently, that [ C j
1

] is the third column of the
matrix N j . Similar reasoning shows that the “horizon-
tal” and “vertical” axes of the patch are respectively
the first and second columns of N j . Finally, we write
the inverse projection matrix as

N j =
[

H j V j C j

0 0 1

]
=

[ B j

0 0 1

]
,

where B j is a 3 × 3 matrix.

Appendix B: Patch Refinement

We use the Levenberg-Marquardt (LM) non-linear
least squares algorithm to do the alignment. Here we
give the error function being minimized and show how
to compute its Jacobian analytically. Let P(x) be pixel
values from the image containing the variable patch,
and let R(u) be pixel values from the normalized form
of the fixed (“reference”) patch, where x and u are
homogeneous coordinates with scale fixed at 1. Let
S be the inverse rectification matrix associated with
the variable patch. The mapping function between the
patches is

x = Su =




u1S11 + u2S12 + S13

u1S21 + u2S22 + S23

1


 (3)

We want to minimize the error

E =
∑
u∈R

|P(Su) − R(u)|2,

with respect to S. The error function for one pixel po-
sition u is then e(u)=P(Su)−R(u). The error function
given to LM is the vector of e(u) values produced by
iterating u over all the discrete pixel positions in the
reference patch. The parameters that LM modifies are
the six elements Skl. We compute the elements of the
Jacobian as

∂e

∂Skl
(u) = ∂ P

∂x1

∂x1

∂Skl
+ ∂ P

∂x2

∂x2

∂Skl
.

Notice that the second term R(u) in the function e(u)
drops out because it is constant w.r.t. S. Also note that
due to the form of the matrix multiplication in (3), only
one of the two partial derivatives w.r.t. Skl on the right
is nonzero for any given subscript kl.

All that remains is to compute the partial derivatives
∂ P/∂x1 and ∂ P/∂x2 of P w.r.t. to the components of
x. A low cost way to approximate these is to take the
pixel values p00, p01, p10 and p11 from the four discrete
locations closest to x in P and compute the slope by
interpolation. For example, if d = x2 − �x2	, we have

∂ P

∂x1
= (1 − d)(p01 − p00) + d(p11 − p10).

The expression for ∂ P/∂x2 is similar.
LM will of course only find a local minimum of

the error function rather than its global minimum. In
practice, the initial guess from affine adaptation is gen-
erally close enough to the correct value for this method
to give quite good results.
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Notes

1. Physical solids are of course not bounded by ideal smooth sur-
faces. We assume in the rest of this presentation that all objects
of interest are observed from a relatively small range of dis-
tances, such that their surfaces appear geometrically smooth, and
patches projecting onto small image regions are indeed roughly
planar compared to the overall scene relief. This has proven rea-
sonable in our experiments, where the apparent size of a given
object never varies by a factor greater than five.

2. For related approaches to scale and affine region detection, see
Baumberg (2002), Kadir and Brady (2001), Schaffalitzky and
Zisserman (2002), Matas et al. (2002), Lowe (2004), Tuytelaars
and Van Gool (2002).

3. In a plane, the barycentric coordinates (α1, α2, α3) of a point P
in the basis formed by three other points A1, A2, and A3 are
uniquely defined by −→OP = α1

−→OA1 + α2
−→OA2 + α3

−→OA3 where O
is an arbitrary point in the plane, and α1 + α2 + α3 = 1. These
coordinates are independent of the choice of O, and invariant
under affine transformations.

4. All computing times in this presentation are given for C++ pro-
grams executed on a 3 GHz Pentium 4 running Linux.

5. The data is publicly available at http://www-cvr.ai.uiuc.edu/
ponce grp/data.

6. Lowe’s algorithm does not construct an explicit, 3D model, but it
allows multiple training views sharing common patches to vote
for the same object (Lowe, 2004).

7. The shoe, like the apple, is now long gone, preventing us from
adding any more training images.
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