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Abstract. Local image features or interest points provide compact and abstract representations of patterns in an
image. In this paper, we extend the notion of spatial interest points into the spatio-temporal domain and show how
the resulting features often reflect interesting events that can be used for a compact representation of video data as
well as for interpretation of spatio-temporal events.

To detect spatio-temporal events, we build on the idea of the Harris and Förstner interest point operators and detect
local structures in space-time where the image values have significant local variations in both space and time. We
estimate the spatio-temporal extents of the detected events by maximizing a normalized spatio-temporal Laplacian
operator over spatial and temporal scales. To represent the detected events, we then compute local, spatio-temporal,
scale-invariant N -jets and classify each event with respect to its jet descriptor. For the problem of human motion
analysis, we illustrate how a video representation in terms of local space-time features allows for detection of
walking people in scenes with occlusions and dynamic cluttered backgrounds.
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1. Introduction

Analyzing and interpreting video is a growing topic in
computer vision and its applications. Video data con-
tains information about changes in the environment and
is highly important for many visual tasks including nav-
igation, surveillance and video indexing.

Traditional approaches for motion analysis mainly
involve the computation of optic flow (Barron et al.,
1994) or feature tracking (Smith and Brady, 1995;
Blake and Isard, 1998). Although very effective for
many tasks, both of these techniques have limitations.
Optic flow approaches mostly capture first-order mo-
tion and may fail when the motion has sudden changes.
Interesting solutions to this problem have been pro-
posed (Niyogi, 1995; Fleet et al., 1998; Hoey and Little,
2000). Feature trackers often assume a constant ap-
pearance of image patches over time and may hence

fail when the appearance changes, for example, in sit-
uations when two objects in the image merge or split.
Model-based solutions for this problem have been pre-
sented by (Black and Jepson, 1998).

Image structures in video are not restricted to con-
stant velocity and/or constant appearance over time. On
the contrary, many interesting events in video are char-
acterized by strong variations in the data along both
the spatial and the temporal dimensions. For example,
consider a scene with a person entering a room, ap-
plauding hand gestures, a car crash or a water splash;
see also the illustrations in Fig. 1.

More generally, points with non-constant motion
correspond to accelerating local image structures
that may correspond to accelerating objects in the
world. Hence, such points can be expected to contain
information about the forces acting in the physical en-
vironment and changing its structure.
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Figure 1. Result of detecting the strongest spatio-temporal interest points in a football sequence with a player heading the ball (a) and in a
hand clapping sequence (b). From the temporal slices of space-time volumes shown here, it is evident that the detected events correspond to
neighborhoods with high spatio-temporal variation in the image data or “space-time corners”.

In the spatial domain, points with a significant lo-
cal variation of image intensities have been exten-
sively investigated in the past (Förstner and Gülch,
1987; Harris and Stephens, 1988; Lindeberg, 1998;
Schmid et al., 2000). Such image points are frequently
referred to as “interest points” and are attractive due
to their high information contents and relative sta-
bility with respect to perspective transformations of
the data. Highly successful applications of interest
points have been presented for image indexing (Schmid
and Mohr, 1997), stereo matching (Tuytelaars and
Van Gool, 2000; Mikolajczyk and Schmid, 2002; Tell
and Carlsson, 2002), optic flow estimation and track-
ing (Smith and Brady, 1995; Bretzner and Lindeberg,
1998), and object recognition (Lowe, 1999; Hall et al.,
2000; Fergus et al., 2003; Wallraven et al., 2003).

In this paper, we extend the notion of interest points
into the spatio-temporal domain and show that the re-
sulting local space-time features often correspond to
interesting events in video data (see Fig. 1). In par-
ticular, we aim at a direct scheme for event detection
and interpretation that does not require feature track-
ing, segmentation nor computation of optic flow. In the
considered sample application we show that the pro-
posed type of features can be used for sparse coding of
video information that in turn can be used for interpret-
ing video scenes such as human motion in situations
with complex and non-stationary background.

To detect spatio-temporal interest points, we build on
the idea of the Harris and Förstner interest point oper-
ators (Harris and Stephens, 1988; Förstner and Gülch,
1987) and describe the detection method in Section 2.

As events often have characteristic extents in both
space and time (Koenderink, 1988; Lindeberg and
Fagerström, 1996; Florack, 1997; Lindeberg, 1997;
Chomat et al., 2000b; Zelnik-Manor and Irani, 2001),
we investigate the behavior of interest points in spatio-
temporal scale-space and adapt both the spatial and the
temporal scales of the detected features in Section 3.
In Section 4, we show how the neighborhoods of inter-
est points can be described in terms of spatio-temporal
derivatives and then be used to distinguish different
events in video. In Section 5, we consider a video repre-
sentation in terms of classified spatio-temporal interest
points and demonstrate how this representation can be
efficient for the task of video registration. In particular,
we present an approach for detecting walking people
in complex scenes with occlusions and dynamic back-
ground. Finally, Section 6 concludes the paper with the
summary and discussion.

2. Spatio-Temporal Interest Point Detection

2.1. Interest Points in the Spatial Domain

In the spatial domain, we can model an image f sp :
R

2 �→ R by its linear scale-space representation
(Witkin, 1983; Koenderink and van Doorn, 1992;
Lindeberg, 1994; Florack, 1997) Lsp: R

2 × R+ �→ R

Lsp
(
x, y; σ 2

l

) = gsp
(
x, y; σ 2

l

) ∗ f sp(x, y), (1)
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defined by the convolution of f sp with Gaussian ker-
nels of variance σ 2

l

gsp
(
x, y; σ 2

l

) = 1

2πσ 2
l

exp
( − (x2 + y2)

/
2σ 2

l

)
. (2)

The idea of the Harris interest point detector is to find
spatial locations where f sp has significant changes in
both directions. For a given scale of observation σ 2

l ,
such points can be found using a second moment matrix
integrated over a Gaussian window with variance σ 2

i
(Förstner and Gülch, 1987; Bigün et al., 1991; Gårding
and Lindeberg, 1996):

µsp
(·; σ 2

l , σ 2
i

) = gsp
(·; σ 2

i

)

∗ ((∇L
(·; σ 2

l

))(∇L
(·; σ 2

l

))T )

= gsp
(·; σ 2

i

) ∗
((

Lsp
x

)2
Lsp

x Lsp
y

Lsp
x Lsp

y
(
Lsp

y
)2

)

(3)

where ‘∗’ denotes the convolution operator, and Lsp
x

and Lsp
y are Gaussian derivatives computed at local

scale σ 2
l according to Lsp

x = ∂x (gsp(·; σ 2
l ) ∗ f sp(·))

and Lsp
y = ∂y(gsp(·; σ 2

l ) ∗ f sp(·)). The second mo-
ment descriptor can be thought of as the covariance
matrix of a two-dimensional distribution of image ori-
entations in the local neighborhood of a point. Hence,
the eigenvalues λ1, λ2, (λ1 ≤ λ2) of µsp constitute
descriptors of variations in f sp along the two image
directions. Specifically, two significantly large values
of λ1, λ2 indicate the presence of an interest point.
To detect such points, Harris and Stephens (1988)
proposed to detect positive maxima of the corner
function

H sp = det(µsp) − k trace2(µsp)

= λ1λ2 − k(λ1 + λ2)2. (4)

At the positions of the interest points, the ratio of the
eigenvalues α = λ2/λ1 has to be high. From (4) it fol-
lows that for positive local maxima of H sp, the ratio α

has to satisfy k ≤ α/(1+α)2. Hence, if we set k = 0.25,
the positive maxima of H will only correspond to ide-
ally isotropic interest points with α = 1, i.e. λ1 = λ2.
Lower values of k allow us to detect interest points with
more elongated shape, corresponding to higher values
of α. A commonly used value of k in the literature is
k = 0.04 corresponding to the detection of points with
α < 23.

The result of detecting Harris interest points in an
outdoor image sequence of a walking person is pre-
sented at the bottom row of Fig. 8.

2.2. Interest Points in the Spatio-Temporal Domain

In this section, we develop an operator that responds
to events in temporal image sequences at specific lo-
cations and with specific extents in space-time. The
idea is to extend the notion of interest points in the
spatial domain by requiring the image values in local
spatio-temporal volumes to have large variations along
both the spatial and the temporal directions. Points with
such properties will correspond to spatial interest points
with distinct locations in time corresponding to lo-
cal spatio-temporal neighborhoods with non-constant
motion.

To model a spatio-temporal image sequence, we use
a function f : R

2 × R → R and construct its linear
scale-space representation L: R

2 × R × R
2
+ �→ R by

convolution of f with an anisotropic Gaussian kernel1

with independent spatial variance σ 2
l and temporal vari-

ance τ 2
l

L
(·; σ 2

l , τ 2
l

) = g
(·; σ 2

l , τ 2
l

) ∗ f (·), (5)

where the spatio-temporal separable Gaussian kernel
is defined as

g
(
x, y, t ; σ 2

l , τ 2
l

) = 1
√

(2π )3σ 4
l τ 2

l

× exp
( − (x2 + y2)

/
2σ 2

l − t2
/

2τ 2
l

)
. (6)

Using a separate scale parameter for the temporal do-
main is essential, since the spatial and the temporal ex-
tents of events are in general independent. Moreover,
as will be illustrated in Section 2.3, events detected us-
ing our interest point operator depend on both the spa-
tial and the temporal scales of observation and, hence,
require separate treatment of the corresponding scale
parameters σ 2

l and τ 2
l .

Similar to the spatial domain, we consider a spatio-
temporal second-moment matrix, which is a 3-by-3 ma-
trix composed of first order spatial and temporal deriva-
tives averaged using a Gaussian weighting function



110 Laptev

g(·; σ 2
i , τ 2

i )

µ = g
(·; σ 2

i , τ 2
i

) ∗






L2
x Lx L y Lx Lt

Lx L y L2
y L y Lt

Lx Lt L y Lt L2
t




 , (7)

where we here relate the integration scales σ 2
i and τ 2

i to
the local scales σ 2

l and τ 2
l according to σ 2

i = sσ 2
l and

τ 2
i = sτ 2

l . The first-order derivatives are defined as

Lx
(·; σ 2

l , τ 2
l

) = ∂x (g ∗ f ),

L y
(·; σ 2

l , τ 2
l

) = ∂y(g ∗ f ),

Lt
(·; σ 2

l , τ 2
l

) = ∂t (g ∗ f ).

To detect interest points, we search for regions in f
having significant eigenvalues λ1, λ2, λ3 of µ. Among
different approaches to find such regions, we propose
here to extend the Harris corner function (4) defined
for the spatial domain into the spatio-temporal domain
by combining the determinant and the trace of µ as
follows:

H = det(µ) − k trace3(µ)

= λ1λ2λ3 − k(λ1 + λ2 + λ3)3. (8)

To show how positive local maxima of H correspond to
points with high values of λ1, λ2, λ3 (λ1 ≤ λ2 ≤ λ3),
we define the ratios α = λ2/λ1 and β = λ3/λ1 and
re-write H as

H = λ3
1(αβ − k(1 + α + β)3).

From the requirement H ≥ 0, we get k ≤ αβ/(1+α+
β)3 and it follows that k assumes its maximum possi-
ble value k = 1/27 when α = β = 1. For sufficiently
large values of k, positive local maxima of H corre-
spond to points with high variation of the image values
along both the spatial and the temporal directions. In
particular, if we set the maximum value of α, β to 23 as
in the spatial domain, the value of k to be used in H (8)
will then be k ≈ 0.005. Thus, spatio-temporal interest
points of f can be found by detecting local positive
spatio-temporal maxima in H .

2.3. Experimental Results for Synthetic Data

In this section, we illustrate the detection of spatio-
temporal interest points on synthetic image sequences.

For clarity of presentation, we show the spatio-
temporal data as 3-D space-time plots, where the orig-
inal signal is represented by a threshold surface, while
the detected interest points are illustrated by ellipsoids
with positions corresponding to the space-time location
of the interest point and the length of the semi-axes pro-
portional to the local scale parameters σl and τl used in
the computation of H .

Figure 2(a) shows a sequence with a moving corner.
The interest point is detected at the moment in time
when the motion of the corner changes direction. This
type of event occurs frequently in natural sequences,
such as sequences of articulated motion. Note that ac-
cording to the definition of spatio-temporal interest
points, image structures with constant motion do not
give rise to responses of the detector. Other typical
types of events that can be detected by the proposed
method are splits and unifications of image structures.
In Fig. 2(b), the interest point is detected at the mo-
ment and the position corresponding to the collision of
a ball and a wall. Similarly, interest points are detected
at the moment of collision and bouncing of two balls
as shown in Fig. 2(c)–(d). Note, that different types of
events are detected depending on the scale of observa-
tion.

To further emphasize the importance of the spatial
and the temporal scales of observation, let us consider
an oscillating signal with different spatial and tem-
poral frequencies defined by f (x, y, t) = sgn(y −
sin(x4) sin(t4)), where sgn(u) = 1 for u > 0 and
sgn(u) = −1 for u < 0 (see Fig. 3). As can be
seen from the illustration, the result of detecting the
strongest interest points highly depends on the choice
of the scale parameters σ 2

l and τ 2
l . We can observe that

space-time structures with long temporal extents are
detected for large values of τ 2

l while short events are
preferred by the detector with small values of τ 2

l . Sim-
ilarly, the spatial extent of the events is related to the
value of the spatial scale parameter σ 2

l .
From the presented examples, we can conclude

that a correct selection of temporal and spatial scales
is crucial when capturing events with different spa-
tial and temporal extents. Moreover, estimating the
spatio-temporal extents of events is important for
their further interpretation. In the next section, we
will present a mechanism for simultaneous esti-
mation of spatio-temporal scales. This mechanism
will then be combined with the interest point de-
tector resulting in scale-adapted interest points in
Section 3.2.
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Figure 2. Results of detecting spatio-temporal interest points on synthetic image sequences. (a) A moving corner; (b) A merge of a ball and
a wall; (c) Collision of two balls with interest points detected at scales σ 2

l = 8 and τ 2
l = 8; (d) the same signal as in (c) but with the interest

points detected at coarser scales σ 2
l = 16 and τ 2

l = 16.

3. Spatio-Temporal Scale Adaptation

3.1. Scale Selection in Space-Time

During recent years, the problem of automatic scale
selection has been addressed in several different ways,
based on the maximization of normalized derivative
expressions over scale, or the behavior of entropy mea-
sures or error measures over scales (see Lindeberg and
Bretzner (2003) for a review). To estimate the spatio-
temporal extent of an event in space-time, we follow
works on local scale selection proposed in the spatial
domain by Lindeberg (1998) as well as in the temporal
domain (Lindeberg, 1997). The idea is to define a dif-
ferential operator that assumes simultaneous extrema
over spatial and temporal scales that are characteristic
for an event with a particular spatio-temporal location.

For the purpose of analysis, we will first study a pro-
totype event represented by a spatio-temporal Gaussian
blob

f
(
x, y, t ; σ 2

0 , τ 2
0

) = 1
√

(2π )3σ 4
l τ 2

l

× exp
(−(x2 + y2)

/
2σ 2

0 − t2
/

2τ 2
0

)

with spatial variance σ 2
0 and temporal variance τ 2

0
(see Fig. 4(a)). Using the semi-group property of the
Gaussian kernel, it follows that the scale-space repre-
sentation of f is

L(·; σ 2, τ 2) = g(·; σ 2, τ 2) ∗ f
(·; σ 2

0 , τ 2
0

)

= g
(·; σ 2

0 + σ 2, τ 2
0 + τ 2

)
.
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Figure 3. Results of detecting interest point at different spatial and temporal scales for a synthetic sequence with impulses having varying
extents in space and time. The extents of the detected events roughly corresponds to the scale parameters σ 2

l and τ 2
l used for computing H (8).

To recover the spatio-temporal extent (σ0, τ0) of f , we
consider second-order derivatives of L normalized by
the scale parameters as follows

Lxx,norm = σ 2aτ 2b Lxx ,

L yy,norm = σ 2aτ 2b L yy,

Ltt,norm = σ 2cτ 2d Ltt . (9)

All of these entities assume local extrema over space
and time at the center of the blob f . Moreover, depend-
ing on the parameters a, b and c, d , they also assume
local extrema over scales at certain spatial and temporal
scales, σ̃ 2 and τ̃ 2.

The idea of scale selection we follow here is to de-
termine the parameters a, b, c, d such that Lxx,norm ,
L yy,norm and Ltt,norm assume extrema at scales σ̃ 2 = σ 2

0
and τ̃ 2 = τ 2

0 . To find such extrema, we differentiate the
expressions in (9) with respect to the spatial and the
temporal scale parameters. For the spatial derivatives
we obtain the following expressions at the center of the
blob

∂

∂σ 2
[Lxx,norm(0, 0, 0; σ 2, τ 2)]

= − aσ 2 − 2σ 2 + aσ 2
0√

(2π )3
(
σ 2

0 + σ 2
)6(

τ 2
0 + τ 2

) σ 2(a−1)τ 2b

(10)
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Figure 4. (a) A Spatio-temporal Gaussian blob with spatial variance σ 2
0 = 4 and temporal variance τ 2

0 = 16; (b)–(c) derivatives of ∇2
norm L

with respect to scales. The zero-crossings of (∇2
norm L)′

σ 2 and (∇2
norm L)′

τ2 indicate extrema of ∇2
norm L at scales corresponding to the spatial and

the temporal extents of the blob.

∂

∂τ 2
[Lxx,norm(0, 0, 0; σ 2, τ 2)]

= − 2bτ 2
0 + 2bτ 2 − τ 2

√
25π3

(
σ 2

0 + σ 2
)4(

τ 2
0 + τ 2

)3
τ 2(b−1)σ 2a .

(11)

By setting these expressions to zero, we obtain the fol-
lowing simple relations for a and b

aσ 2 − 2σ 2 + aσ 2
0 = 0, 2bτ 2

0 + 2bτ 2 − τ 2 = 0

which after substituting σ 2 = σ 2
0 and τ 2 = τ 2

0 lead
to a = 1 and b = 1/4. Similarly, differentiating the
second-order temporal derivative

∂

∂σ 2
[Ltt,norm(0, 0, 0; σ 2, τ 2)]

= − cσ 2 − σ 2 + cσ 2
0√

(2π )3(σ 2
0 + σ 2)4(τ 2

0 + τ 2)3
σ 2(c−1)τ 2d

(12)

∂

∂τ 2
[Ltt,norm(0, 0, 0; σ 2, τ 2)]

= − 2dτ 2
0 + 2dτ 2 − 3τ 2

√
25π3

(
σ 2

0 + σ 2
)2(

τ 2
0 + τ 2

)5
τ 2(d−1)σ 2c

(13)

leads to the expressions

cσ 2 − 2σ 2 + cσ 2
0 = 0, 2dτ 2

0 + 2dτ 2 − τ 2 = 0

which after substituting σ 2 = σ 2
0 and τ 2 = τ 2

0 result in
c = 1/2 and d = 3/4.

The normalization of derivatives in (9) guarantees
that all these partial derivative expressions assume local
space-time-scale extrema at the center of the blob f and
at scales corresponding to the spatial and the temporal
extents of f , i.e. σ = σ0 and τ = τ0. From the sum of
these partial derivatives, we then define a normalized
spatio-temporal Laplace operator according to

∇2
norm L = Lxx,norm + L yy,norm + Ltt,norm

= σ 2τ 1/2(Lxx + L yy) + στ 3/2Ltt . (14)
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Figures 4(b) and (c) show derivatives of this opera-
tor with respect to the scale parameters evaluated at the
center of a spatio-temporal blob with spatial variance
σ 2

0 = 4 and temporal variance τ 2
0 = 16. The zero-

crossings of the curves verify that ∇2
norm L assumes ex-

trema at the scales σ 2 = σ 2
0 and τ 2 = τ 2

0 . Hence, the
spatio-temporal extent of the Gaussian prototype can be
estimated by finding the extrema of ∇2

norm L over both
spatial and temporal scales. In the following section,
we will use this operator for estimating the extents of
other spatio-temporal structures, in analogy with pre-
vious work of using the normalized Laplacian operator
as a general tool for estimating the spatial extent of
image structures in the spatial domain.

3.2. Scale-Adapted Space-Time Interest Points

Local scale estimation using the normalized Laplace
operator has shown to be very useful in the spatial
domain (Lindeberg, 1998; Almansa and Lindeberg,
2000; Chomat et al., 2000a). In particular, Mikolajczyk
and Schmid (2001) combined the Harris interest point
operator with the normalized Laplace operator and de-
rived a scale-invariant Harris-Laplace interest point de-
tector. The idea is to find points in scale-space that are
both spatial maxima of the Harris function H sp (4) and
extrema over scale of the scale-normalized Laplace op-
erator in space.

Figure 5. Algorithm for scale adaption of spatio-temporal interest points.

Here, we extend this idea and detect interest points
that are simultaneous maxima of the spatio-temporal
corner function H (8) over space and time (x, y, t)
as well as extrema of the normalized spatio-temporal
Laplace operator ∇2

norm L (14) over scales (σ 2, τ 2). One
way of detecting such points is to compute space-time
maxima of H for each spatio-temporal scale level and
then to select points that maximize (∇2

norm L)2 at the
corresponding scale. This approach, however, requires
dense sampling over the scale parameters and is there-
fore computationally expensive.

An alternative we follow here, is to detect interest
points for a set of sparsely distributed scale values and
then to track these points in the spatio-temporal scale-
time-space towards the extrema of ∇2

norm L . We do this
by iteratively updating the scale and the position of the
interest points by (i) selecting the neighboring spatio-
temporal scale that maximizes (∇2

norm L)2 and (ii) re-
detecting the space-time location of the interest point at
a new scale. Thus, instead of performing a simultaneous
maximization of H and ∇2

norm L over five dimensions
(x, y, t, σ 2, τ 2), we implement the detection of local
maxima by splitting the space-time dimensions (x, y, t)
and scale dimensions (σ 2, τ 2) and iteratively optimiz-
ing over the subspaces until the convergence has been
reached.2 The corresponding algorithm is presented in
Fig. 5.

The result of scale-adaptation of interest points for
the spatio-temporal pattern in Fig. 3 is shown in Fig. 6.
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Figure 6. The result of scale-adaptation of spatio-temporal interest
points computed from a space-time pattern of the form f (x, y, t) =
sgn(y − sin(x4) ∗ sin(t4)). The interest points are illustrated as el-
lipsoids showing the selected spatio-temporal scales overlayed on a
surface plot of the intensity landscape.

As can be seen, the chosen scales of the adapted in-
terest points match the spatio-temporal extents of the
corresponding structures in the pattern.

It should be noted, however, that the presented algo-
rithm has been developed for processing pre-recorded

Figure 7. Results of detecting spatio-temporal interest points from the motion of the legs of a walking person. (a) 3-D plot with a thresholded
level surface of a leg pattern (here shown upside down to simplify interpretation) and the detected interest points illustrated by ellipsoids; (b)
spatio-temporal interest points overlayed on single frames in the original sequence.

video sequences. In real-time situations, when us-
ing causal scale-space representation based on re-
cursive temporal filters (Lindeberg and Fagerström,
1996; Lindeberg, 2002), only a fixed set of discrete
temporal scales is available at any moment. In that
case an approximate estimate of temporal scale can
still be found by choosing interest points that maxi-
mize (∇2

norm L)2 in a local neighborhood of the spatio-
temporal scale-space; see also (Lindeberg, 1997) for a
treatment of automatic scale selection for time-causal
scale-spaces.

3.3. Experiments

In this section, we investigate the performance of the
proposed scale-adapted spatio-temporal interest point
detector applied to real image sequences. In the first
example, we consider a sequence of a walking person
with non-constant image velocities due to the oscil-
lating motion of the legs. As can be seen in Fig. 7,
the spatio-temporal image pattern gives rise to stable
interest points. Note that the detected interest points
reflect well-localized events in both space and time,
corresponding to specific space-time structures of the
leg. From the space-time plot in Fig. 7(a), we can
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Figure 8. Top: Results of spatio-temporal interest point detection for a zoom-in sequence of a walking person. The spatial scale of the detected
points (corresponding to the size of circles) matches the increasing spatial extent of the image structures and verifies the invariance of the interest
points with respect to changes in spatial scale. Bottom: Pure spatial interest point detector (here, Harris-Laplace, Mikolajczyk and Schmid, 2001)
selects both moving and stationary points in the image sequence.

also observe how the selected spatial and temporal
scales of the detected features roughly match the spatio-
temporal extents of the corresponding image structures.

The top rows of Fig. 8 show interest points detected
in an outdoor sequence with a walking person and a
zooming camera. The changing values of the selected
spatial scales (illustrated by the size of the circles) il-
lustrate the invariance of the method with respect to
spatial scale changes of the image structures. Note that
besides events in the leg pattern, the detector finds spu-
rious points due to the non-constant motion of the coat
and the arms. Image structures with constant motion in
the background, however, do not result in the response
of the detector. The pure spatial interest operator3 on
the contrary gives strong responses in the static back-
ground as shown at the bottom row of Fig. 8.

The third example explicitly illustrates how the pro-
posed method is able to estimate the temporal extent
of detected events. Figure 9 shows a person making
hand-waving gestures with a high frequency on the left
and a low frequency on the right. The distinct interest

points are detected at the moments and at the spatial po-
sitions where the palm of a hand changes its direction
of motion. Whereas the spatial scale of the detected
interest points remains constant, the selected temporal
scale depends on the frequency of the wave pattern.
The high frequency pattern results in short events and
gives rise to interest points with small temporal extent
(see Fig. 9(a)). Correspondingly, hand motions with
low frequency result in interest points with long tem-
poral extent as shown in Fig. 9(b).

4. Classification of Events

The detected interest points have significant variations
of image values in a local spatio-temporal neighbor-
hood. To differentiate events from each other and from
noise, one approach is to compare local neighbor-
hoods and assign points with similar neighborhoods
to the same class of events. A similar approach has
proven to be highly successful in the spatial domain for
the task of image representation (Malik et al., 1999)
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Figure 9. Result of interest point detection for a sequence with waving hand gestures: (a) Interest points for hand movements with high
frequency; (b) Interest points for hand movements with low frequency.

indexing (Schmid and Mohr, 1997) and recogni-
tion (Hall et al., 2000; Weber et al., 2000; Leung and
Malik, 2001). In the spatio-temporal domain, local de-
scriptors have been previously used by Chomat et al.
(2000b) and others.

To describe a spatio-temporal neighborhood, we
consider normalized spatio-temporal Gaussian deriva-
tives defined as

Lxm yntk = σ m+nτ k(∂xm yn tk g) ∗ f, (15)

computed at the scales used for detecting the corre-
sponding interest points. The normalization with re-
spect to scale parameters guarantees the invariance of
the derivative responses with respect to image scalings
in both the spatial domain and the temporal domain.
Using derivatives, we define event descriptors from
the third order local jet4 (Koenderink and van Doorn,
1987) computed at spatio-temporal scales determined
from the detection scales of the corresponding interest
points

j = (Lx , L y, Lt , Lxx , . . . , Lttt )
∣
∣∣
σ 2=σ̃ 2

i ,τ 2=τ̃ 2
i

(16)

To compare two events, we compute the Mahalanobis
distance between their descriptors as

d2( j1, j2) = ( j1 − j2)�−1( j1 − j2)T , (17)

where � is a covariance matrix corresponding to the
typical distribution of interest points in training data.

To detect similar events in the data, we apply
k-means clustering (Duda et al., 2001) in the space of

point descriptors and detect groups of points with sim-
ilar spatio-temporal neighborhoods. Thus clustering of
spatio-temporal neighborhoods is similar to the idea
of textons (Malik et al., 1999) used to describe image
texture as well as to detect object parts for spatial recog-
nition (Weber et al., 2000). Given training sequences
with periodic motion, we can expect repeating events
to give rise to populated clusters. On the contrary, spo-
radic interest points can be expected to be sparsely dis-
tributed over the descriptor space giving rise to weakly
populated clusters. To test this idea we applied k-means
clustering with k = 15 to the sequence of a walking
person in the upper row of Fig. 11. We found out that
the four most densely populated clusters c1, . . . , c4 in-
deed corresponded to stable interest points of the gait
pattern. Local spatio-temporal neighborhoods of these
points are shown in Fig. 10, where we can confirm the
similarity of patterns inside the clusters and their dif-
ference between clusters.

To represent characteristic repetitive events in video,
we compute cluster means mi = 1

ni

∑ni
k=1 jk for each

significant cluster ci consisting of ni points. Then,
in order to classify an event on an unseen sequence,
we assign the detected point to the cluster ci that
minimizes the distance d(mi , j0) (17) between the jet
of the interest point j0 and the cluster mean mi . If
the distance is above a threshold, the point is clas-
sified as background. An application of this classifi-
cation scheme is demonstrated in the second row of
Fig. 11. As can be seen, most of the points corre-
sponding to the gait pattern are correctly classified,
while the other interest points are discarded. Observe
that the person in the second sequence of Fig. 11



118 Laptev

Figure 10. Local spatio-temporal neighborhoods of interest points corresponding to the first four most populated clusters obtained from a
sequence of walking person.

Figure 11. Interest points detected for sequences of walking persons. First row: the result of clustering spatio-temporal interest points in training
data. The labelled points correspond to the four most populated clusters; Second row: the result of classifying interest points with respect to the
clusters found in the first sequence.
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Figure 12. Matching of spatio-temporal data features with model features: (a) Features detected from the data sequence over a time interval
corresponding to three periods of the gait cycle; (b) Model features minimizing the distance to the features in (a); (c) Model features and data
features overlaid. The estimated silhouette overlayed on the current frame confirms the correctness of the method.

undergoes significant size changes in the image. Due
to the scale-invariance of the interest points as well as
their jet responses, the size transformations do not ef-
fect neither the result of event detection nor the result of
classification.

5. Application to Video Interpretation

In this section, we illustrate how a sparse representa-
tion of video sequences by classified spatio-temporal
interest points can be used for video interpretation. We
consider the problem of detecting walking people and
estimating their poses when viewed from the side in
outdoor scenes. Such a task is complicated, since the
variations in appearance of people together with the
variations in the background may lead to ambiguous
interpretations. Human motion is a strong cue that has
been used to resolve this ambiguity in a number of pre-
vious works. Some of the works rely on pure spatial
image features while using sophisticated body mod-
els and tracking schemes to constrain the interpreta-
tion (Baumberg and Hogg, 1996; Bregler and Malik,
1998; Sidenbladh et al., 2000). Other approaches use
spatio-temporal image cues such as optical flow (Black
et al., 1997) or motion templates (Baumberg and Hogg,
1996; Efros et al., 2003). The work of Niyogi and
Adelson (1994) concerns the structure of the spatio-
temporal gait pattern and is closer to ours.

The idea of the following approach is to represent
both the model and the data using local and discrimi-
native spatio-temporal features and to match the model
by matching its features to the correspondent fea-

tures of the data inside a spatio-temporal window (see
Fig. 12).

5.1. Walking Model

To obtain a model of a walking person, we consider
the upper sequence in Fig. 11 and manually select a
time interval (t0, t0 + T ) corresponding to the period
T of the gait pattern. Then, given n features f m

i =
(xm

i , ym
i , tm

i , σ m
i , τm

i , cm
i ), i = 1, . . . , n (m stands for

model) defined by the positions (xm
i , ym

i , tm
i ), scales

(σ m
i , τm

i ) and classes cm
i of interest points detected in

the selected time interval, i.e. tm
i ∈ (t0, t0 + T ), we

define the walking model by a set of periodically re-
peating features M = { fi + (0, 0, kT, 0, 0, 0, 0) | i =
1, . . . , n, k ∈ Z}. Furthermore, to account for varia-
tions of the position and the size of a person in the
image, we introduce a state for the model determined
by the vector X = (x, y, θ, s, ξ, vx , vy, vs). The com-
ponents of X describe the position of the person in the
image (x, y), his size s, the frequency of the gait ξ ,
the phase of the gait cycle θ at the current time mo-
ment as well as the temporal variations (vx , vy, vs) of
(x, y, s); vx and vy describe the velocity in the image
domain, while vs describes how fast size changes oc-
cur. Given the state X , the parameters of each model
feature f ∈ M transform according to

x̃m = x + sxm + ξvx (tm + θ ) + sξ xmvs(tm + θ )

ỹm = y + sym + ξvy(tm + θ ) + sξ ymvs(tm + θ )

t̃m = ξ (tm + θ )
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σ̃ m = sσ m + vssσ m(tm + θ ) (18)

τ̃m = ξτm

c̃m = cm

It follows that this type of scheme is able to handle
translations and uniform rescalings in the image do-
main as well as uniform rescalings in the temporal do-
main. Hence, it allows for matching of patterns with
different image velocities as well as with different fre-
quencies over time.

To estimate the boundary of the person, we extract
silhouettes S = {xs, ys, θ s | θ s = 1, . . . , T } on the
model sequence (see Fig. 11) one for each frame cor-
responding to the discrete value of the phase parameter
θ . The silhouette is used here only for visualization pur-
pose and allows us to approximate the boundary of the
person in the current frame using the model state X and
a set of points {(xs, ys, θ s) ∈ S | θ s = θ} transformed
according to x̃ s = sxs + x , ỹs = sys + y.

5.2. Model Matching

Given a model state X , a current time t0, a length
of the time window tw, and a set of data features
D = { f d = (xd , yd , td , σ d , τ d , cd ) | td ∈ (t0, t0 − tw)}
detected from the recent time window of the data se-
quence, the match between the model and the data is
defined by a weighted sum of distances h between the
model features f m

i and the data features f d
j

H(M̃(X ), D, t0) =
n∑

i

h
(

f̃ m
i , f d

j

)
e−(t̃m

i −t0)2/ξ , (19)

where M̃(X ) is a set of n model features in the time
window (t0, t0 − tw) transformed according to (18),
i.e. M̃ = { f̃ m |tm ∈ (t0, t0 − tw)}, f d

j ∈ D is a data
feature minimizing the distance h for a given f m

i and
ξ is the variance of the exponential weighting function
that gives more importance to recent features.

The distance h between two features of the same
class is defined as a Euclidean distance between two
points in space-time, where the spatial and the temporal
dimensions are weighted with respect to a parameter ν

as well as by the extents of the features in space-time

h2( f m, f d ) = (1 − ν)
(xm − xd )2 + (ym − yd )2

(σ m)2

+ ν
(tm − td )2

(τm)2
. (20)

Here, the distance between features of different classes
is regarded as infinite. Alternatively, one could mea-
sure the feature distance by taking into account their
descriptors and distances from several of the nearest
cluster means.

To find the best match between the model and the
data, we search for the model state X̃ that minimizes
H in (19)

X̃ = argmin
X

H(M̃(X ), D, t0) (21)

using a standard Gauss-Newton optimization method.
The result of such an optimization for a sequence with
data features in Fig. 12(a) is illustrated in Fig. 12(b).
Here, the match between the model and the data fea-
tures was searched over a time window corresponding
to three periods of the gait pattern or approximately
2 seconds of video. As can be seen from Fig. 12(c),
the overlaps between the model features and the data
features confirm the match between the model and the
data. Moreover, the model silhouette transformed ac-
cording to X̃ matches with the contours of the person
in the current frame and confirms a reasonable estimate
of the model parameters.

5.3. Results

Figure 13 presents results of the described approach
applied to two outdoor sequences. The first sequence
illustrates the invariance of the method with respect
to size variations of the person in the image plane.
The second sequence shows the successful detection
and pose estimation of a person despite the presence
of a complex non-stationary background and occlu-
sions. Note that these results have been obtained by
re-initializing model parameters before optimization
at each frame. Hence, the approach is highly stable
and could be improved further by tracking the model
parameters X̃ over time.

The need for careful initialization and/or simple
background are frequent obstacles in previous ap-
proaches for human motion analysis. The success of
our method is due to the low ambiguity and simplicity
of the matching scheme originating from the distinct
and stable nature of the spatio-temporal features. In this
respect, we want to propose direct detection of spatio-
temporal events as an interesting alternative when rep-
resenting and interpreting video data.
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Figure 13. The result of matching a spatio-temporal walking model to sequences of outdoor scenes.

6. Summary

We have described an interest point detector that finds
local image features in space-time characterized by a
high variation of the image values in space and non-
constant motion over time. From the presented exam-
ples, it follows that many of the detected points in-
deed correspond to meaningful events. Moreover, we
propose local maximization of the normalized spatio-
temporal Laplacian operator as a general tool for scale
selection in space-time. Using this mechanism, we es-
timated characteristic spatio-temporal extents of de-
tected events and computed their scale-invariant spatio-
temporal descriptors.

Using scale-adapted descriptors in terms of N -jets
we then addressed the problem of event classifica-
tion and illustrated how classified spatio-temporal in-
terest points constitute distinct and stable descriptors
of events in video, which can be used for video rep-
resentation and interpretation. In particular, we have
shown how a video representation by spatio-temporal
interest points enables detection and pose estimation
of walking people in the presence of occlusions and
highly cluttered and dynamic background. Note that
this result was obtained using a standard optimiza-
tion method without careful manual initialization or
tracking.

In future work, we plan to extend application of in-
terest points to the field of motion-based recognition.
Moreover, as the current scheme of event detection
is not invariant under Galilean transformations, future
work should investigate the possibilities of including
such invariance and making the approach independent
of the relative camera motion (Laptev and Lindeberg,
2002). Another extension should consider the invari-
ance of spatio-temporal descriptors with respect to the

direction of motion, changes in image contrast and ro-
tations.
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Notes

1. For real-time applications, convolution with a Gaussian kernel
in the temporal domain violates causality constraints, since the
temporal image data is available only for the past. To solve this
problem, time-causal scale-space filters can be used to satisfy the
causality constraints (Koenderink, 1988; Lindeberg and Fager-
ström, 1996; Florack, 1997; Lindeberg, 2002). In this paper, we
assume that the data is available for a sufficiently long period
of time and that the image sequence can be convolved with a
Gaussian kernel over both space and time.

2. For the experiments presented in this paper, with image sequences
of spatial resolution 160 × 120 pixels and temporal sampling
frequency 25 Hz (totally up to 200 frames per sequence), we
initialized the detection of interest points using combinations of
spatial scales σ 2

l = [2, 4, 8] and temporal scales σ 2
l = [2, 4, 8],

while using s = 2 for the ratio between the integration and the
local scale when computing the second-moment matrix.

3. Here, we used the scale-adapted Harris interest point detector
(Mikolajczyk and Schmid, 2001) that detects maxima of Hsp (4)
in space and extrema of normalized Laplacian operator over
scales (Lindeberg, 1998).

4. Note that our representation is currently not invariant with re-
spect to planar image rotations. Such invariance could be added
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by considering steerable derivatives or rotationally invariant op-
erators in space.
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