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Abstract
The cotton leafroll dwarf virus (CLDV), an important viral pathogen responsible for substantial losses in cotton crops, has 
recently emerged in the United States (US). Although CLDV shares similarities with other members of the genus Polero-
virus in terms of encoded proteins, their functional characteristics remain largely unexplored. In this study, we expressed 
and analyzed each protein encoded by CLDV to determine its intracellular localization using fluorescence protein fusion. 
We also evaluated their potential to induce plant responses, such as the induction of hypersensitive response-like necrosis 
and the generation of reactive oxygen species. Our findings show that the proteins encoded by CLDV exhibit comparable 
localization patterns and elicit similar robust plant responses as observed with cognate proteins from other viruses within 
the genus Polerovirus. This study contributes to our understanding of the functional repertoire of genes carried by Polero-
virus members, particularly to CLDV that has recently emerged as a widespread viral pathogen infecting cotton in the US.
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Recently, viral disease symptoms were observed in cot-
ton plants within the United States (US) cotton belt [1]. 
Sequencing analysis of the RNA genome isolated from 
symptomatic cotton plants revealed the presence of a viral 
genome closely related to cotton leafroll dwarf virus (CLDV, 
commonly known as CLRDV), a species previously reported 
in South America that has caused substantial yield losses 
by inducing cotton blue disease [1–3]. CLDV belongs to 

the genus Polerovirus, family Solemoviridae [4], which 
comprises plant viruses expressing their proteins through 
complex translation strategies from a positive-sense, single-
stranded RNA genome approximately 5.8 kb in length [1, 2, 
5]. The CLDV genome is organized into seven open reading 
frames (ORFs), akin to other members of the genus Polero-
virus (see Supplementary Fig. 1). The translation mecha-
nism and the function of proteins encoded by each ORF have 
been studied extensively in other poleroviruses (reviewed 
in [6]). ORF 0 encodes the P0 protein, which functions as a 
viral suppressor of RNA silencing (VSR) to counteract the 
RNA silencing mechanism in plants [7–15]. ORF 1 encodes 
the P1 protein, which is involved in viral RNA replication 
and genomic RNA synthesis, along with a P1–P2 fusion 
protein translated by a—1 ribosomal frameshift near the end 
of ORF 1 [16]. ORF 3a translates into the P3a protein via a 
non-canonical start codon, facilitating viral movement [17, 
18]. ORF 3 and ORF 4 overlap, and the translation of P3 and 
P4 is determined by leaky scanning. P3 functions as a coat 
protein (CP), while P4 serves as a movement protein (MP) 
[19–23]. ORF 3-ORF 5 produces a read-through protein 
(P3-5), which is essential for aphid transmission and virus 
movement in plants [24–26].

Although CLDV presents a potential threat to the profit-
able production of economically important cotton crops, 
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research into the functions of CLDV-encoded proteins has 
been limited, except for the P0 protein, which has been 
studied in the context of VSR [13–15, 27, 28]. Therefore, 
a more comprehensive investigation into CLDV-encoded 
proteins is warranted to understand their pathogenicity 
better and facilitate successful pest management for cotton 
diseases in future. As an initial step toward this goal, our 
study examined the molecular and cellular characteristics 
of the proteins produced by CLDV. Using two series of 
clones containing individual CLDV ORFs, we conducted 
experiments to assess hypersensitive response (HR)-like 
lesion elicitation and intracellular localization of CLDV-
encoded proteins.

The induction of an HR-like response and the associated 
accumulation of reactive oxygen species (ROS) represent a 
fundamental plant basal defense response against viruses. 
During the early stages of pathogen invasion, including viral 
infections, the rapid buildup of ROS can trigger an HR-like 
response, resulting in lesions at the site of pathogen entry 
[29–31]. In interactions between plant hosts and viruses, 
the speed and intensity of the host’s immune response at 
the viral infection site often dictate the infection’s outcome. 
Therefore, viral proteins that contribute to generating HR-
like lesions are considered primary factors in pathogenicity. 
The CLDV-encoded proteins responsible for triggering ROS 
accumulation and HR-like lesions were identified by visually 

Fig. 1  Hypersensitive response (HR)-like necrosis induction and 
intracellular localization of CLDV-encoded proteins. Six-week-old 
N. benthamiana plants were infiltrated with A. tumefaciens GV3101 
cells transformed with binary plasmid clones harboring CLDV ORFs. 
Abright-field images show necrotic phenotype within the infiltrated 
patches (white dotted circle). The number in the dotted circle indi-
cates the ratio of patches showing necrotic phenotype. Images were 
taken at 8 dpi. P/C; turnip crinkle virus P38, N/C; empty vector. B 
N. benthamiana leaves were treated with 3,3ʹ.-diaminobenzidine 
(DAB) staining to demonstrate reactive oxygen species (ROS) accu-
mulation within the infiltrated patches (white dotted circle). C The 

relative ROS production corresponding to the leaf patches express-
ing six CLDV proteins was analyzed by measuring the color intensity 
of DAB staining using ImageJ. Values are means from at least three 
independent patches per treatment. Error bars are standard deviation. 
Statistically significant differences, p < 0.01, determined by one-way 
ANOVA are denoted by letters. D Six-week-old N. benthamiana 
plants were infiltrated with A. tumefaciens GV3101 cells transformed 
with binary plasmid clones harboring fluorescence protein (FP)-
tagged CLDV genes or a free FP. Images were taken using an epifluo-
rescence microscope, echo revolve, at 4 dpi. Scale bar = 20 µm
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examining Nicotiana benthamiana plants expressing each 
CLDV protein (Fig. 1A). Full-length genes of each ORF, 
amplified by polymerase chain reaction (PCR), were cloned 
into the binary plasmid pAIDEE (pAI [32]), which contains 
an upstream CaMV 35S promoter sequence (see Supplemen-
tary Table 1 for additional details regarding the constructs). 
The resulting constructs were used to transform Agro-
bacterium tumefaciens strain GV3101 for expressing the 
CLDV proteins in plants. Six CLDV proteins, P0, P1, P3a, 
P3, P4, and P3-5, were transiently expressed in six-week-
old N. benthamiana via agroinfiltration of the transformed 
cells resuspended in buffer (10 mM MES, pH 5.85; 10 mM 
 MgCl2; 150 µM acetosyringone) at the optical density 1.0 at 
600 nm. The infiltrated plants were then maintained under a 
16 h photoperiod for up to 10 days for the evaluation.

Within three days post-infiltration (dpi), leaf patches 
expressing the P0 protein or the P38 protein of turnip 
crinkle virus (P/C), which belongs to the genus Betacar-
movirus, family Tombusviridae and has been documented 
to trigger a robust programmed cell death response [33], 
began to exhibit HR-like necrotic lesions (Fig. 1A). This 
evaluation continued up to 8 dpi, during which, among 
the CLDV-encoded proteins, only the patches express-
ing the P0 protein consistently produced HR-like lesions 
(Fig. 1A; shown by the number within white dotted cir-
cles). Furthermore, at 8 dpi, the severity of the necrotic 
symptoms caused by the P0 protein was less pronounced 
compared to those caused by the P/C. To explore whether 
the phenotype associated with the HR-like necrotic lesion 
formation was linked to ROS accumulation, we collected 
agroinfiltrated leaves at 3 dpi and subjected them to treat-
ment with 3,3ʹ-diaminobenzidine (DAB) to detect hydro-
gen peroxide (Fig. 1B). For DAB staining, the detached 
leaves were washed three times with double distilled water 
and incubated overnight in 1 mg/ml DAB-HCl prepared 
in boric acid buffer (50 mM, pH 7.6). The leaves were 
subsequently incubated in 95% ethanol with three changes 
before the images were taken. The staining revealed brown 
pigmentation in all constructs within the infiltrated patches 
(Fig. 1B; depicted by white dotted circles). Notably, the 
intensity of the brown pigmentation was visibly stronger 
in patches infiltrated with the P0 or P/C compared to those 
infiltrated with other CLDV proteins. To better assess the 
relative ROS accumulation levels, we quantified the inten-
sity of the DAB staining by measuring the pixel inten-
sity of the infiltrated patches using an ImageJ software 
[34] (Fig. 1C). The analysis indicated that the P0 protein 
triggered significantly more ROS accumulation than the 
other CLDV proteins (Fig. 1C; denoted as ‘b’). As antici-
pated from the visual lesion evaluation, the level of ROS 
accumulation induced by the P0 protein was significantly 
lower than that caused by the P/C (Fig. 1C; denoted as ‘a’). 
These results suggest that among the proteins produced by 

CLDV, only the P0 protein induces an HR-like response 
and ROS accumulation, reinforcing its potential role as a 
pathogenicity factor. It is worth noting that P0 proteins 
encoded by other poleroviruses have also been shown to 
similarly trigger HR-like lesions and ROS accumulation in 
viruses such as sugarcane yellow leaf virus, turnip yellows 
virus (TuYV), potato leafroll virus (PLRV), brassica yel-
lows virus, and pepper vein yellows virus [35–38]. How-
ever, these studies involving other poleroviruses have not 
reported the effects of other proteins encoded by them. To 
the best of the author’s knowledge, this is the first study to 
report such a comprehensive survey encompassing multi-
ple poleroviral proteins.

Understanding the intracellular localization of virus-
encoded proteins within the host provides insight into their 
functions and roles in the virus infection. Previous studies 
on the subcellular localization of poleroviral proteins have 
elucidated some of their key mechanisms during host infec-
tion by TuYV [10, 17] and PLRV [39–41]. To extend our 
understanding of the proteins produced by Polerovirus, we 
examined the intracellular localization of CLDV proteins 
by expressing each of them fused to the green fluorescent 
protein (FP) ORF. The cDNA of FP-tagged CLDV ORFs 
was placed under the CaMV 35S promoter sequence in the 
pAI plasmid (see Supplementary Table 1 for additional 
details regarding the constructs) and introduced into A. 
tumefaciens GV3101 for ectopic expression by agroinfil-
tration in N. benthamiana plants. At 4 dpi, the mesophyll 
cells of the infiltrated leaves were observed using a fluo-
rescence microscope with either FITC cube (EX:470 ± 40 
and EM:525 ± 50) or TxRED cube (EX:560 ± 40 and 
EM:630 ± 75) for the fluorescence detection (Fig. 1D).

All five CLDV protein-tagged FPs showed localization 
patterns different from the control FP, to which no CLDV 
protein was tagged (Fig. 1D; FP). Strong nuclear fluores-
cence was observed from the CLDV P3-tagged FP (Fig. 1D; 
P3), similar to what has been shown to be mediated by 
nuclear localization signal of PLRV P3 [39]. The CLDV 
P4-tagged FP displayed multiple fluorescent speckles along 
the membrane (Fig. 1D; P4). The observed speckles resem-
ble typical plasmodesmata localization previously shown for 
PLRV P4 [40]. Some fluorescence was observed from the 
CLDV P3-5 RTP-tagged FP mainly in the nucleus (Fig. 1D; 
P3-5). The fluorescence of CLDV P3a-tagged FP was mainly 
found along the membrane without any trace in the nucleus 
(Fig. 1D: P3a), suggesting subcellular localization similar 
to P3a encoded by other poleroviruses. Indeed, CLDV P3a 
protein has a putative transmembrane domain [17]. As pre-
viously reported [27], the CLDV P0-tagged FP exhibited 
significant fluorescence appearing as multiple speckles 
distributed along the membrane with some observed in the 
nucleus (Fig. 1D: P0). Although the intracellular localiza-
tion of CLDV proteins seems to be very similar to cognate 
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proteins from other poleroviruses, further investigation is 
needed to better understand the role of each CLDV protein 
during viral infection.

Overall, the surveyed characteristics of CLDV-encoded 
proteins were comparable to their cognate proteins produced 
by other viruses within the genus Poleovirus. Further inves-
tigation into the underlying mechanisms of their cellular 
location within the primary host, cotton, could enhance our 
understanding of their biological functions and their roles 
in virus pathogenesis. Such insights could pave the way for 
developing effective strategies by specifying the targets to 
consider for the development of genetically modified cotton 
or selecting them for breeding programs to protect cotton 
crops from virus infections, thereby promoting sustainable 
CLDV management in cotton crops.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11262- 024- 02086-3.
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