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Abstract
In this paper, the dynamics of an infectious disease is studied by considering age-structured models; a stage structure and 
an age-structured epidemic model. The respective basic reproduction numbers for the proposed models are calculated, and 
the local analyses of the equilibria of the models are investigated by using the method of linearization. The global dynamics 
of the two models are analyzed by using the wave lemma and the Lyapunov function theory. This study establishes a solid 
theoretical framework and a rigorous mathematical formulation for the prevention and control of pseudorabies.

Keywords  Infectious diseases · Equilibrium point · Basic reproduction number · Global stability · Linearization method · 
Wave lemma

Introduction

When a pathogenic microbial agent (such as bacteria, fungi, 
virus etc.) is present in a body, it causes a clinically obvi-
ous sickness known as an infectious disease [1]. There has 
always been a threat to human health from infectious dis-
eases. In the past, emergence and re-emergence of infectious 
diseases have caused devastating human disasters [2–6]. 
Since then, epidemiologists and other related health officials 
have achieved better results in the possible prevention and 
elimination of infectious diseases by studying its dynamics 
and introducing a number of pharmaceutical and non-phar-
maceutical measures. However, the complete elimination of 
infectious diseases needs a lot of human efforts and is very 
costly. Further, such diseases can be controlled by employing 
variety of experiments, and humanly, research experiments 
on infectious diseases are unethical and sometime impos-
sible [7]. Therefore, theoretical analysis and simulation are 
the best way to find out the root causes of the disease, to 
summarize the associated epidemic characteristics and to 
predict the future behaviors of the disease [7].

Pseudorabies (PR) is a severe infectious disease caused 
by pseudorabies virus (PRV) and the virus affects a wide 
range of domestic and wild animals like pigs, dogs, sheep, 
and cats. The main symptoms include fever, itching, leth-
argy, ataxia, and encephalomyelitis [8]. PRV belongs to the 
herpesviridae family, and the disease was first discovered in 
the United Statesin 1813. Aujeszky, a Hungarian scientist, 
recognized it as a novel and distinct disease in 1902 [8]. In 
1910, Schniedh offer confirmed it as a virus [9]. Pigs are 
the main reservoirs and a place of detoxification of the PRV. 
Pigs infected with a small amount of virus under natural 
conditions will show no symptoms but could have reces-
sive infection [9]. Once the swine is infected with PRV, it is 
generally difficult to completely remove the virus from the 
body. The infected body will continue to retain the virus 
throughout the incubation period [10], where it can be easily 
activated by certain environmental stimuli and may cause the 
disease once again.

Among other known infections in pigs, PR infection 
is one of the most severe and highly contagious diseases 
[11]. In general, there is a close relationship between the 
symptoms and the age of the infected pigs. Further, the 
infection is asymptomatic in pigs having age more than 
two months. Piglets have the most obvious symptoms after 
the disease, which include the rise in temperature, dyski-
nesia, tremor, diarrhea, etc., and the disease course is short 
and the mortality is very high [12]. After PRV infection, 
adult pigs will only suffer from mild diarrhea, temperature 
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rise or slight dyspnea, etc. Sows may experience infertility 
and decreased appetite in severe cases, as well as tempo-
rary blindness [13]. Infected pigs and mice are important 
sources of PR infection, especially asymptomatic infected 
pigs, which play the key role in the preservation and trans-
mission of the virus [14]. At present, there are no specific 
available drugs to treat the disease, and hence one can rely 
only on the control measures such as weeding out sick 
pigs, timely isolation of the infected animals, vaccine pre-
vention, and distillation of pigs. In the recent years, PR has 
been continuously breaking out and popular in pig farms 
in many countries around the globe [15], which caused a 
great economic loss to our pig industry.

In order to decrease the spread of pseudorabies in the 
community, similar to other medical researchers, math-
ematicians playing their own role by developing and 
analyzing the models that describe the dynamics of the 
underlying disease. Due to the complexity of the disease, 
very little research work related the modeling and control 
of PRV is available in the literature. This paper mainly 
focuses on the interior and the exterior spread of pseudora-
bies within the animals by using the tools of mathemati-
cal modeling. By considering the features and character-
istics of pseudo rabies infection in pigs and its spreading 
mechanism, the corresponding stage-structured model 
for the disease will be formulated using the techniques 
of differential equations. The models will be analyzed 
from the dynamic perspectives, and initially, the models 
will be investigated for possible steady states. The local 
analysis of the equilibria of the stage-structured model is 
investigated by using the linearization method. The global 
stabilities of the disease-free and endemic equilibria of the 
model are proved with the help of Lyapunov functional 
theory. We utilized the techniques of partial differential 
equations and formulated an age-structured model reflect-
ing the effect of age in the dynamics of pseudorabies. 
Again, the model was checked for the existence of infec-
tion-free and endemic steady states. The steady states of 
the model were investigated from the dynamical aspects. 
The qualitative analysis of the study provides novel and 
accurate theoretical results for the prevention and control 
of pseudorabies disease. Theoretical analysis of the results 
indicates that clinical symptoms in particular age groups 
of pigs can be reduced by immunization. The study further 
suggests that the disease could be effectively controlled 
with routine vaccination, and hence, all pig farms in China 
should be vaccinated with a modified live virus. The study 
is considered to be of sufficient novelty both from method-
ology and results point of view as the proposed research 
assumes the effect of age in the modeling. Due to the theo-
retical and practical importance of the study, the authors 
expect that this work will open new doors of research in 
the modeling and control of the pseudorabies disease.

A class of pseudorabies models with stage 
structure

A significant cause of swine infectious illnesses and a 
large source of financial losses in the swine business is 
the pseudorabies virus. The fundamental epidemic mod-
els categorize people according to their infection status 
(susceptible, infected, recovered, immune, etc.), and they 
calculate the dynamics of the epidemic based on the rates 
at which people switch between various infection states. 
A population unit may vary in terms of their age, maturity, 
size, and reproductive status from another population unit. 
Stage-structured epidemic models provide a way to study 
interactions between epidemic and demographic process. 
Further, such models classify population units according 
to their infectious and demographic status.

In this section, we will establish a pseudorabies model 
with stage structure according to different infectious and 
demographic characteristics of adult and young pigs, the 
effect of the disease on the two pigs with different age 
segments, the development law, and the transmission 
mechanism.

Establishment of model

Here, the pig population is divided into five compartments: 
susceptible piglet group, infected piglet group, suscepti-
ble adult piglet group, infected adult piglet group, and the 
latent pig group, whose sizes (at any time t  ) are, respec-
tively, denoted by S1(t) , I1(t) , I2(t) and L(t) . Let us assume 
that the pigs give birth at a constant rate b , �1 and �2 are, 
respectively, the rates at which susceptible piglets and 
susceptible adult piglets moving to the compartments of 
infected piglet and infected adult piglet. The terms d1 and 
d2, respectively, denote the natural death rates of pig and 
adult pig populations. The notion � is the progression rate 
of piglets into the adult pig’s population. The piglet dies 
due to the disease at a constant rate � � is the constant rate 
at which infected adult swine move to the latent compart-
ment and finally, the term � stands for the rate at which the 
exposed adult swine rejoin the infected compartment after 
completing their latent period.

The proposed model is based on the following 
assumptions:

(1) We did not consider the mobility of the herd, and it is 
assumed that all the newborn piglets are the susceptible pigs;

(2) It is assumed that only infected adult pigs are conta-
gious, that is, the disease spread only when the susceptible 
pigs interact with infected adult pigs.

(3) It is assumed that adult pigs cannot recover from the 
disease rather they enters into the incubation period and 



401Virus Genes (2023) 59:399–409	

1 3

after completing the latent period, the adult pigs rejoin the 
infected compartment at a constant rate �.

Based on the above-mentioned assumptions, the follow-
ing model is formulated which governs the dynamics of 
pseudorabies:

Let N1(t),N2(t) denote the total number of piglets and adult 
pigs, respectively, that is,N1 = S1 + I1,N2 = S2 + I2 + L, and 
hence model (2.1) will take the form:

It is easy to prove that the forward invariant set of model 
(2.1) is given by

The right hand sides of model (2.1) were set equal to zero, 
and the disease-free equilibrium point was obtained

According to the third part of literature [16], the basic 
reproduction number for model (2.1) is calculated as

Local and global asymptotic stabilities 
of the disease‑free equilibrium point

Theorem 2.2.1  When ℜ0 < 1 , the disease-free equilibrium 
point E0 is locally asymptotically stable.

Prove By linearizing model (2.1) at the disease-free equilib-
rium E0(S0

1
, I0

1
, S0

2
, I0

2
, L0) , we have the following characteristic 

equation

(2.1)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

dS1

dt
= b − �1S1I2 − (d1 + �)S1,

dI1

dt
= �1S1I2 − (d1 + � + �)I1,

dS2

dt
= �(S1 + I1) − �2S2I2 − d2S2,

dI2

dt
= �2S2I2 − (d2 + �)I2 + �L,

dL

dt
= �I2 − (� + d2)L.

⎧

⎪

⎨

⎪

⎩

dN1(t)
dt

= b − (d1 + �)N1(t) − �I1(t),

dN2(t)
dt

= �N1(t) − d2N2(t).

Ω =

{
(S1, I1, S2, I2, L) ∈ R5

+

|||0 < S1 + I1 ≤ b

d1 + 𝜌
, 0 < S2 + I2 + L ≤ 𝜌b

d2(d1 + 𝜌)

}
.

E0(S0
1
, I0

1
, S0

2
, I0

2
, L0) =

(
b

d1 + �
, 0,

�b

d2(d1 + �)
, 0, 0

)
.

ℜ0 =
�2S

0
2
(d2 + �)

(d2 + �)(d2 + �) − ��
=

�2S
0
2
(d2 + �)

d2(d2 + � + �)
.

(2.2)
(� + d2)(� + d1 + �)(� + d1 + � + �)(�2 + A� + B) = 0.

Three roots of Eq. (2.2) are given by

The remaining two roots of Eq. (2.2) can be determined 
from the following quadratic equation

where

Clearly for ℜ0 < 1 , we have

Thus, the condition R0 < 1 guarantees that both 
A > d2 + 𝛾 − 𝛽2S

0
2
> 0, and B > 0 . By using the Descartes 

rule of signs, Eq. (2.2a) has no positive real solution and 
there exist two negative real roots of Eq. (2.2a) or com-
plex with negative real parts. Therefore, all roots of the 

characteristic Eq. (2.2) are negative real or complex with 
negative real parts, so the disease-free equilibrium point 
E0 is locally asymptotically stable.

Mathematically, Theorem 2.2.1 indicates that if the 
initial conditions are sufficiently close to the disease-free 
equilibrium point, the respective solution curves will 
approach the disease-free fixed point. However, if one 
chose initial conditions far away from E0 , it is not neces-
sary that the solution curves will approach to the equilib-
rium point in the long run. Biologically, the statement of 
the theorem suggests that if the size of the population of 
the initially infected piglets and adults pigs is close to zero 
and further, if one infected pig/piglet infect less than one 
pig during their course of infection, the disease will tend 
to eliminate from the population. However, if one infected 
pig produces more than one infected pigs, the disease will 
tend to persist in the pig’s community. Moreover, if the 
population of the initially infected pigs are not close to 
zero, then Theorem 2.2.1 does not guarantee that the elimi-
nation of the disease.

In the following theorem, we will prove that for ℜ0 < 1 , 
the disease-free equilibrium E0 is globally asymptotically 
stable.

�1 = −d2, �2 = −
(
d1 + �

)
, �2 = −

(
d1 + � + �

)
.

(2.2a)�2 + A� + B = 0,

A = d2 + � + d2 + � − �2S
0
2
,

B = d2(d2 + � + �) − (d2 + �)�2S
0
2
= d2(d2 + � + �)(1 −ℜ0).

𝛽2S
0
2
<

(d2 + 𝛾)(d2 + 𝜂) − 𝜂𝛾

d2 + 𝜂
< d2 + 𝛾 .
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Theorem 2.2.2  The disease-free equilibrium point E0 is 
globally asymptotically stable for R0 < 1 and unstable 
otherwise.

Proof  In order to prove the global stability of the disease-
free equilibrium, we will consider the following Lyapunov 
function.[26]

The derivative of V  with respect to t while considering 
equations in system (2.1), we have

f o r R0 < 1   .  L e t 
Γ =

{(
S1, I1, S2, I2, L

)
∈ Ω|V �(t) = 0

}
=
{
I2= 0

}
,  b e 

obtained from model (2.1), and the maximum invariant set 
of Γ is 

{
E0

}
.Thus, according to the LaSalle invariant princi-

ple [18], the disease-free equilibrium E0 is globally asymp-
totically stable for R0 < 1 and unstable otherwise.

Physically, the global stability of the disease-free equilib-
rium implies that irrespective of the initial condition of the 
infected population, the disease will tend to dies out of the pig 
population if one infected pig infects less than one susceptible 
pig/piglets.

Existence of the unique positive equilibrium point

In majority of the cases, we are not only interested in the 
elimination of the diseases rather we are looking for the con-
ditions under which the disease may persist in the commu-
nity. To find the unique positive endemic equilibrium point 
E∗(S∗

1
, I∗

1
, S∗

2
, I∗

2
, L∗) of model (2.1), again we will set the 

expressions at the right of each equation in model equal to 
zero. By solving the resultant simultaneous system of algebraic 
equations, we have

The value of I∗
1
 can be obtained from the following equation

V =
(
d2 + �

)
I2 + �L.

V � =
(
d2 + �

)[
�2S2 −

(
d2 + �

)]
I2 + ��I2,

=
[(
d2 + �

)
(�2S2 − d2 − �) + ��

]
I2,

≤[(d2 + �
)
(�2S

0
2
− d2 − �) + ��

]
I2 ≤ 0,

S∗
1
=

b − (d1 + � + �)I∗
1

d1 + �
, S∗

2
=

(d2 + �)(d2 + �) − ��

�2(d2 + �)
,

I∗
2
=

(d1 + � + �)I∗
1

�1S
∗
1

, L∗ =
�

d2 + �
I∗
2
.

f (I∗
1
) =

(d2 + �)(d2 + �) − ��

�2(d2 + �)

(
d2 +

�2(d1 + �)(d1 + � + �)I∗
1

�1b − �1I
∗
1
(d1 + � + �)

)
+

(�I∗
1
− b)�

d1 + �
= 0.

Since f �(I∗
1
) =

(d2+𝛾)(d2+𝜂)−𝜂𝛾

d2+𝜂
⋅

b(d1+𝜌)(d1+𝛼+𝜌)

𝛽1[b−(d1+𝛼+𝜌)I∗1]
2 +

𝛼𝜌

d1+𝜌
> 0, 

which implies that f  is monotonically increasing. Further, 
S∗
1
> 0 if and only if I∗

1
<

b

d1+𝛼+𝜌
, . However, I∗

1
→

b

d1+�+�
 , 

implies that f (I∗
1
) → +∞. Moreover, f (0) = �b(1−ℜ0)

(d1+�)ℜ0

, and 
f (0) ≥ 0 only if ℜ0 ≤ 1 . This implies that forR0 < 1 , equation 
f (I∗

1
) = 0 has no positive root in the interval 

(
0,

b

d1+�+�

)
 , that 

is, model (2.1) has only the disease-free equilibrium point E0 
whenR0 < 1 . However for ℜ0 > 1 , f (0) < 0 , and hence 
f (I∗

1
) = 0 has a unique positive solution on interval (

0,
b

d1+�+�

)
 , that is, model (2.1) has a unique positive equilib-

rium point E∗ besides disease-free equilibrium point E0. Based 
on the above discussion, we can state the following theorem.

Theorem 2.3.1  If R0 > 1 , then there exists a unique positive 
endemic equilibrium E∗ of model (2.1) given by

where I∗
1
 is the positive root of the following equation 

f (I∗
1
) =

(d2+�)(d2+�)−��

�2(d2+�)
(d2 +

�2(d1+�)(d1+�+�)I
∗
1

�1b−�1I
∗
1
(d1+�+�)

) +
(�I∗

1
−b)�

d1+�
= 0.

Local and global asymptotic stability analysis 
of the endemic equilibrium

If we assume � = 0 , then it is easy to show that for t → ∞ , 
we have.

N1(t) →
b

d1+�
, N2(t) →

b�

d2(d1+�)
, and thus the limit equation 

of model (2.1) will take the form

Here again, if we let ℜ0 > 1 , then model (2.3) has a unique 
positive endemic equilibrium point Ê∗(I∗

1
, I∗

2
, L∗).

S∗
1
=

b − (d1 + � + �)I∗
1

d1 + �
, S∗

2
=

(d2 + �)(d2 + �) − ��

�2(d2 + �)
,

I∗
2
=

(d1 + � + �)I∗
1

�1S
∗
1

, L∗ =
�

d2 + �
I∗
2
.

(2.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dI1

dt
=

�1b

d1 + �
I2 − �1I1I2 − (d1 + �)I1,

dI2

dt
=

�2b�

d2(d1 + �)
I2 − �2I

2
2
− �2I2L − (d2 + �)I2 + �L,

dL

dt
= �I2 − (d2 + �)L.
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Theorem 2.4.1  If � = 0 and ℜ0 > 1 , then the unique positive 
equilibrium point E∗ of model (2.1) is locally asymptotically 
stable.

Proof  By linearizing model (2.1) around the endemic equi-
librium E∗(S∗

1
, I∗

1
, S∗

2
, I∗

2
, L∗) , the following characteristic 

equation can be easily obtained.

that is

The two roots of Eq. (2.4) can be easily calculated and 
one can notice that both the roots �1 = −(�1I

∗
2
+ d1 + �) 

and �2 = −(d1 + �) are negative only if R0 > 1 . The other 
three roots of Eq. (2.4) can be calculated from the following 
equation

 where

This means, all of the coefficients of Eq. (2.4a) are posi-
tive and further

Thus, at � = 0 , the application of Routh–Hurwitz crite-
rion [19]to Eq. (2.4a) ensures that all the roots of character-
istic Eqs. (2.4) are negative or complex with negative real 
parts, so the unique positive equilibrium point E∗ is locally 
asymptotically stable.

Biologically Theorem 2.4.1 argued that if we have very 
small size of the infected pigs and one infectious pig infect-
ing more than one susceptible pigs/piglets, then the Pseu-
dorabies disease will tend to persist in the pigs community.

|||||||||||

� + �1I
∗
2
+ d1 + � 0 0 �1S

∗
1

0

−�1I
∗
2

� + d1 + � 0 −�1S
∗
1

0

−� −� � + d2 + �2I
∗
2

�2S
∗
2

0

0 0 −�2I
∗
2

� − �2S
∗
2
+ d2 + � −�

0 0 0 −� � + d2 + �

|||||||||||

= 0,

(2.4)
(� + �1I

∗
2
+ d1 + �)(� + d1 + �)(�3 + C1�

2 + C2� + C3) = 0,

(2.4a)�3 + C1�
2 + C2� + C3 = 0,

C1= 2d2 + 𝛽2I
∗
2
+ 𝜂 +

𝜂𝛾

d2 + 𝜂
> 0,

C2= (d2 + 𝛽2I
∗
2
)(d2 + 𝜂 +

𝜂𝛾

d2 + 𝜂
) + 𝛽2

2
S∗
2
I∗
2
> 0,

C3=𝛽
2
2
S∗
2
I∗
2
(d2 + 𝜂) > 0.

C1C2 − C3=(d2 + 𝛽2I
∗
2
)2
(
d2 + 𝜂 +

𝜂𝛾

d2 + 𝜂

)2

+ 𝛽2S
∗
2
𝛽2I

∗
2

(
d2 + 𝛽2I

∗
2
+ d2 + 𝜂 +

𝜂𝛾

d2 + 𝜂

)

− 𝛽2S
∗
2
𝛽2I

∗
2
(d2 + 𝜂)

=(d2 + 𝛽2I
∗
2
)2
(
d2 + 𝜂 +

𝜂𝛾

d2 + 𝜂

)2

+ 𝛽2S
∗
2
𝛽2I

∗
2

(
d2 + 𝛽2I

∗
2
+

𝜂𝛾

d2 + 𝜂

)
> 0.

Theorem 2.4.1  If � = 0 and ℜ0 > 1 , then the unique endemic 
equilibrium E∗ of model (2.1) is globally asymptotically sta-
ble inΩ.

Proof  To prove the global stability of the endemic equilib-
rium, we will consider the following Lyapunov function.

where the functions Gi ’s for i = 1, 2, 3, are given by

The derivatives of the function Gi's with respect to t along 
model (2.3) are of the form.

G = �I∗
2
G1 + �L∗G2 + G3,

G1 = I2 − I∗
2
− I∗

2
ln

I2

I∗
2

,G2 = L − L∗ − L∗ ln
L

L∗
,G3 =

�2

2
I∗
2
(L − L∗)2.

G′
1 =

(

1 −
I∗2
I2

)

I′2 =
(

1 −
I∗2
I2

)

[

�2I2(S02 − I2 − L) + �L − (d2 + �)I2
]

,

=
(

1 −
I∗2
I2

)[

�2I2(I∗2 + L∗ − I2 − L) −
I2
I∗2
�L∗ + �L

]

= − �2(I2 − I∗2 )
2 + �2(I2 − I∗2 )(L

∗ − L)

+ �L∗
(

L
L∗

−
I2
I∗2

−
LI∗2
L∗I2

+ 1
)

;

G�
2
=
(
1 −

L∗

L

)
L� =

(
1 −

L∗

L

)[
�I2 − (� + d2)L

]

=
(
1 −

L∗

L

)[
�I2 −

�I∗
2

L∗
L

]
= �I∗

2

(
I2

I∗
2

−
L

L∗
−

L∗I2

LI∗
2

+ 1

)
;
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Therefore,

Let E =
{(

S1, I1, S2, I2, L
)

∈ Ω|G′(t) = 0
}

=
{

I2 = I∗2 , L = L∗
} be 

obtained from model (2.1), and the maximum invariant set 
of E is {E∗} . According to LaSalle invariant set principle, 
for � = 0 and ℜ0 > 1 , the unique positive equilibrium point 
E∗ is globally asymptotically stable.

A pseudorabies model with age structure 
in the infected class

The infectious disease modeled structured via ordinary dif-
ferential equations has been widely and deeply studied from 
the last century by numerous researchers. However, different 
age groups or populations have different infection degrees 
to a certain infectious disease, and therefore, it is necessary 
and practical to consider infectious disease models with age 
structure in the infectious compartment.

Age-structured models are a special case of the stage-
structured models. This means, stage-structured epidemic 
models include age-classified and stage-classified models.

Formulation of the model

In this part of the paper, for model formulation, the pig 
population is divided into susceptible pigs, infected pigs, 
and latent pigs. Let S(t) and L(t) represent the total number 
of susceptible pigs and latent pigs at any time t  and i(t, a) 
represents the density function of the infected pigs at time 
t  having the age of infectivitya . Thus I(a) = ∫ ∞

0
i(t, a)da 

represents the total number of infected pigs at time t . Let 
Λ be the birth rate of pigs, d is the natural mortality rate of 
the pigs,m is the killing rate of the pigs, and thus mX(.) will 
denote the total population of pig being killed at any timet,� 
is the reoccurrence rate of adult pigs in the latent period,a is 
the age of infection. Further, the coefficient of infection rate 
and the transformation coefficient of the adult pigs from the 
infectious period to the latent period are related to the age of 
infection, which are denoted by �(a) and �(a), respectively.

G′
3 =�2I

∗
2 (L − L∗)L′ = �2I∗2 (L − L∗)
[

�I2 − (� + d2)L + (� + d2)L∗ − �I∗2
]

=�2I∗2 (L − L∗)
[

�(I2 − I∗2 ) − (d2 + �)(L − L∗)
]

= − �2I∗2 (d2 + �)(L − L∗)2 + �2I∗2 �(L − L∗)(I2 − I∗2 ).

G′ =�I∗2G
′
1 + �L∗G′

2 + G′
3

= − �2I∗2 �(I2 − I∗2 )
2 − �2I∗2 (d2 + �)(L − L∗)2

+ ��I∗2L
∗
(

2 −
L∗I2
LI∗2

−
LI∗2
L∗I2

)

≤ 0.

Next, we shall assume that the new infections from the 
susceptible and latent pigs will come to the infected com-
partment. The rate � at which the disease is transferred to 
susceptible from the infectious now depends on a , that is 
� = �(a) . Thus, the inflow into the infected compartment 
is given by

This inflow into the infected compartment will be entered 
via boundary condition.

Based on the above-mentioned assumptions, the follow-
ing model is established

with the boundary conditions

for t ≥ 0 and the initial conditions

for a ≥ 0 . The parameters �(a) and �(a) are from the space 
L1
+
 where L1

+
 is the set of integrable functions from (0,∞) 

to R+ = [0,+∞). If we set N(t) = ‖S(t), i(t, ⋅), L(t)‖ , we get 
dN(t)

dt
≤ Λ − (d + m)N(t).

For computational convenience, let us define the follow-
ing function and parameters

Further, we will define the basic reproduction number as

Existence of an equilibrium point 
of the age‑structured model

If E =
(
S, i,L

)
 is the equilibrium point of (3.1), then such 

equilibrium point will satisfy the following system of 
equations

S(t)∫
∞

0

�(a)i(t, a)da + �L(t).

(3.1)

⎧
⎪⎨⎪⎩

dS(t)

dt
= � − ∫ ∞

0
�(a)S(t)i(t, a)da − (m + d)S(t),

�i(t,a)

�t
+

�i(t,a)

�a
= −(�(a) + m + d)i(t, a),

dL(t)

dt
= ∫ ∞

0
�(a)i(t, a)da − (m + d + �)L(t),

i(t, 0) = ∫
∞

0

�(a)S(t)i(t, a)da + �L(t),

S(0) = S0, i(0, a) = i0(a), L(0) = L0,

�(a) = e− ∫ a

0
(d+m+�(s))ds, K = �

∞

0

�(a)�(a)da, P = �
∞

0

�(a)�(a)da.

ℜ0 =
ΛK

d + m
+

�P

d + m + �
.
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The second equation of system (3.2) is linear and separa-
ble, and a solution of this equation is given by

By substituting this expression in the fourth equation of 
system (3.2), and we get L =

P

d+m+�
i(0) . Similarly, from the 

first and third equation of system (3.2), one can obtain

From the third equation of system (3.2), one can notice 
that i(0) is the root of the equation g(x) = 0 , where 

Obviously g(0) = 0 . Further, the function g(x) is a con-
cave function as g( Λ

1−
𝜂P

d+m+𝜂

) = −Λ < 0 and g�(0) = ℜ0 − 1 . 

So, for ℜ0 ≤ 1 , we have g�(x) < 0 and as a result, model (3.1) 
has only the disease-free equilibrium point E0 = (

�

d+m
, 0, 0) 

of one is However, for ℜ0 > 1,g�(x) > 0 , and hence g(x) has 
a unique zero point, then model (3.1) in addition to a dis-
ease-free equilibrium point E0 , there is also a positive equi-
librium point E∗ . The following conclusions can be drawn 
about the steady states of model (3.1):

Theorem  3.2.1  For model (3.1), we have the following 
results about the existence of the steady states:

	 (i)	 When ℜ0 ≤ 1, then model (3.1) has a disease-free 
equilibrium point E0 =

(
Λ

d+m
, 0, 0

)
.

	 (ii)	 If ℜ0 > 1, then model (3.1) has the disease-free 
steady state E0 and the positive equilibrium point 

E∗ = (S∗, i∗, L∗)  w h e r e S∗ =
Λ−(1−

�P

d+m+�
)i∗(0)

d+m
  , 

i∗(a) = i∗(0)�(a) , L∗ = P

d+m+�
i∗(0) , and i∗(0)  is the 

root of function (3.3).

(3.2)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 = Λ − S∫
∞

0

�(a)i(a)da − (d + m)S,

di(a)

dt
= −(d + m + �(a))i(a),

i(0) = S∫
∞

0

�(a)i(a)da + �L,

0 = ∫
∞

0

�(a)i(a)da − (d + m + �)L.

i(a) = i(0)�(a).

S =
Λ −

(
1 −

�P

d+m+�

)
i(0)

d + m
.

(3.3)

g(x) =
Λ −

(
1 −

�P

d+m+�

)
x

d + m ∫
∞

0

�(a)�(a)xda +

(
�P

d + m + �
− 1

)
x

Local stability of equilibrium point

To study the local stability of model (3.1), we need to line-
arize the model at E =

(
S, i,L

)
 , and the linearized system 

is as follows

The linear system (3.4) has the exponential solution of the 
form S(t) = x0e

�t,i(t, a) = y0e
�t and L(t) = z0e

�t . By substitut-
ing these solutions in the linearized system (3.4),we have the 
following characteristic equation.

 where P̂(𝜆)
Δ
= ∫ ∞

0
𝛾(a)𝜋(a)e−𝜆ada is the Laplace transform 

of ��.

Theorem 3.3.1 

	 (i)	 If ℜ0 ≤ 1 , then the disease-free equilibrium 
E0 =

(
Λ

d+m
, 0, 0

)
 of model (3.1) is locally asymptoti-

cally stable, and unstable otherwise.
	 (ii)	 If ℜ0 > 1 , then the positive endemic equilibrium 

E∗ = (S∗, i∗, L∗) of model (3.1) is locally asymptoti-
cally stable.

Proof:  (i) The characteristic Eq. (3.5) at the disease-free 
equilibrium point E0 is given by

 where C(𝜆) = (1 −
Λ

d+m
K̂(𝜆))(𝜆 + d + m + 𝜂) − 𝜂P̂(𝜆) , and 

K̂(𝜆)
Δ
= ∫ ∞

0
𝛽(a)𝜋(a)e−𝜆ada is the Laplace transform of ��

. Obviously, d + m is a root of (3.6), and the other roots are 
actually the roots of the equation C(�) = 0.

Assume that ℜ0 > 1 , then C(0) = (1 −ℜ0)(d + m + �) , 
and lim

�→∞
C(�) = ∞ . Hence, by mean value theorem, the 

equation C(�) = 0 has a positive root. Consequently, for 
ℜ0 > 1 , the disease-free equilibrium point E0 is unstable.

On the other hand, if ℜ0 < 1 , let us assume that the equa-
tion C(�) = 0 has a solution with nonnegative real part, then 

(3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS(t)

dt
= −(d + m + ∫

∞

0

�(a)i(a)da)S(t) − S∫
∞

0

�(a)i(t, a)da,

�i(t, a)

�t
+

�i(t, a)

�a
= −(d + m + �(a))i(t, a),

i(t, 0) = S(t)∫
∞

0

�(a)i(a)da + S∫
∞

0

�(a)i(a)da + �L(t),

dL(t)

dt
= ∫

∞

0

�(a)i(t, a)da − (d + m + �)L(t).

(3.5)

|

|

|

|

|

|

|

|

|

� + d + m + ∫ ∞
0 �(a)i(a)da S ∫ ∞

0 �(a)�(a)e−�ada 0

− ∫ ∞
0 �(a)i(a)da � − S ∫ ∞

0 �(a)�(a)e−�ada −�

0 −P̂(�) � + d + m + �

|

|

|

|

|

|

|

|

|

= 0,

(3.6)(� + d + m)C(�) = 0,
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there must exist some �0 ∈ C with Re(𝜆0) > 0 such that 
C(�0) = 0 . Consequently,

Further, we assumed that ℜ0 < 1 and Re(𝜆0) > 0 , thus

In summary, we have ℜ0 ≥ 1 , which contradicts the 
assumption of ℜ0 < 1 . Hence, we concluded that for ℜ0 ≤ 1 , 
the disease-free equilibrium E0 is locally asymptotically 
stable.

(ii) The characteristic Eq. (3.5) at the positive endemic 
equilibrium point E∗ will take the form

Let us assume that Eq. (3.7) has a solution with posi-
tive real parts. Thus, for a solution �0 of Eq. (3.7), we have 
Re(�0) ≥ 0 , and by putting this solution in Eq. (3.7), we have

This is a clear contradiction; hence our hypothesis is 
wrong and the original proposition holds. That is, if ℜ0 > 1 , 
then the positive equilibrium point E∗ is of the proposed 
model is locally asymptotically stable.

Physically, this theorem reflects that a solution that start 
close to the disease-free fixed point will approach to E0 
whenever R0 < 1 and contrary, for R0 > 1 , a solution closer 
to E∗ will approach to the endemic equilibrium in the long 
run.

||||1 −
Λ

d + m
K̂(𝜆0)

|||| =
|||||

𝜂P̂(𝜆0)

𝜆0 + d + m + 𝜂

|||||
.

|

|

|

|

1 − Λ
d + m

K̂(�0)
|

|

|

|

≥
|

|

|

|

1 −
|

|

|

|

Λ
d + m

K̂(�0)
|

|

|

|

|

|

|

|

≥ 1 − ΛK
d + m

= 1 −ℜ0 +
�P

d + m + �
,

|||||
𝜂P̂(𝜆0)

𝜆0 + d + m + 𝜂

|||||
≤ 𝜂P

d + m + 𝜂
.

(3.7)
(𝜆 + d + m)(𝜆 + d + m + 𝜂)S∗ ∫

∞

0

𝛽(a)𝜋(a)e−𝜆ada + 𝜂P̂(𝜆)(𝜆 + d + m + ∫
∞

0

𝛽(a)i∗(a)da)

= (𝜆 + d + m + ∫
∞

0

𝛽(a)i∗(a)da)(𝜆 + d + m + 𝜂).

i∗(0) =
(�0 + d + m)S∗ ∫ ∞

0 �(a)i∗(0)�(a)e−�0ada

�0 + d + m + ∫ ∞
0 �(a)i∗(a)da

+
�P̂(�0)i∗(0)

�0 + d + m + �
,

≤
S∗ ∫ ∞

0 �(a)i∗(a)da

1 + ∫ ∞
0 �(a)i∗(a)da
�0+d+m

+
�Pi∗(0)
d + m + �

<S∗ ∫

∞

0
�(a)i∗(a)da + �Pi∗(0)

d + m + �

= i∗(0),

Global stability analysis of the equilibria of model (3.1)

For convenience, let us define the following function

If we integrate the second equation of model (3.1) along 
the characteristic line t = a , we get the following piece-wise 
defined solution

For any bounded function f  defined on [0,∞) , we shall 
denote f∞ = lim

t→∞
sup f (t) , and f∞ = lim

t→∞
inf f (t).

Theorem 3.4.1  If ℜ0 < 1 , then the disease-free equilibrium 
E0 of model (3.1) is globally asymptotically stable.

Proof  First of all, we need to prove B∞ = L∞ = 0 , which 
means that lim

t→∞
B(t) = lim

t→∞
L(t) = 0.

According to the wave lemma [20], there exists a 
sequence 

{
tn
}
 such that tn → ∞,L(tn) → L∞ and when n → ∞

,dL(tn)
dt

→ 0 . From the relation (3.1), we can obtain

Let n → ∞ , and by applying the wave lemma, we get

Since

B(t) = i(t, 0) = S(t)∫
∞

0

�(a)i(t, a)da + �L(t).

(3.8)i(t, a) =

{
B(t − a)�(a), t ≥ a,

i0(a − t)
�(a)

�(a−t)
, t ≤ a.

dL(tn)
dt

=∫

tn

0
�(a)B(tn − a)�(a)da + ∫

∞

tn
�(a)i0(a − tn)

�(a)
�(a − tn)

da

− (d + m + �)L(tn) ≤ ∫

tn

0
�(a)B(tn − a)�(a)da

+ e−(d+m)tn‖�‖∞ ⋅ ‖
‖

i0‖‖1 − (d + m + �)L(tn)

0 ≤ B∞� − (d + m + �)L∞ ⇒ L∞ ≤ B∞�

d + m + �
.

B(t) ≤ Λ
d + m ∫

∞

0
�(a)i(t − a)da + �L(tn),

= Λ
d + m

(

∫

t

0
�(a)B(t − a)�(a)da + ∫

∞

t
�(a)i0(a − t) �(a)

�(a − t)
da

)

+ �L(t)

= Λ
d + m

(

∫

t

0
�(a)B(t − a)�(a)da + ∫

∞

t
�(a + t)i0(a − t) �(a + t)

�(a)
da

)

+ �L(t)

≤ Λ
d + m

(

∫

t

0
�(a)B(t − a)�(a)da + e−(d+m)t‖B‖∞ ⋅ ‖

‖

i0‖‖1

)

+ �L(t)
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Letting t → ∞ , and then by using the wave lemma, we 
have

Since ℜ0 < 1 , therefore, we must accept that B∞ = 0 , and 
due to B∞ = 0 , we have L∞ = 0.

By the wave lemma, there exists a sequence 
{
sn
}
,such 

that sn → ∞,S(sn) → S∞ and then n → ∞,dS(sn)
dt

→ 0 . Based 
on these results, we have the following assertion

because of lim
t→∞

B(t) = 0 , we get S∞ ≥ Λ

d+m
 . Also, we have 

S∞ ≤ Λ

d+m
 , then by letting n → ∞ , we reach to the conclusion 

lim
t→∞

S(t) =
Λ

d+m
.

Thus lim
t→∞

(S(t), i(t, ⋅), L(t)) = E0 , that is, if ℜ0 < 1 , then 
disease-free equilibrium E0 is globally asymptotically 
stable.

In the above, by using the wave lemma, we proved that 
the disease-free steady state is globally asymptotically stable 
when ℜ0 < 1 . In Appendix A, we also proved the global sta-
bility of the disease-free equilibrium by using the Lyapunov 
stability theorem while imposing an additional condition on 
the model.

The global stability of the endemic equilibrium is pre-
sented in the following theorem.

Theorem 3.4.2  If ℜ0 > 1 , then the endemic equilibrium E∗ 
of model (3.1) is globally asymptotically stable.

Proof  To prove the result, let us consider a function 
� ∶ (0,∞) → R defined by �(x) = x − 1 − ln x and x ∈ (0,∞).

Further, we set �(a) = ∫ ∞

a

(
�(s)i∗(s) +

��(s)

(d+m+�)S∗
i∗(s)

)
ds , 

whose derivative with respect to a is given by
d�(a)

da
= −

[
�(a)i∗(a) +

��(a)

(d+m+�)S∗
i∗(a)

]
.

Define

where VS(t)=�(
S(t)

S∗
),VL(t)=�(

L(t)

L∗
),Vi(t)= ∫ ∞

0
�(a)�(

i(t,a)

i∗(a)
)da . 

This shows that V  is bounded on x(t) . The derivative of Vs 
with respect to t is given by

B∞ ≤ Λ

d + m
B∞ + �L∞ ≤ ℜ0B

∞.

dS(sn)

dt
=Λ − S(sn)�

∞

0

�(a)i(sn, a)da − (d + m)S(sn)

≥Λ − B(sn) − (d + m)S(sn)

V(t) = VS(t) + Vi(t) +
�L∗

(d + m + �)S∗
VL(t),

dVS(t)
dt

=
(

1 − S∗
S(t)

)

1
S∗

[

Λ − (d + m)S(t) − S(t)∫

∞

0
�(a)i(t, a)da

]

=
(

1 − S∗
S(t)

)

1
S∗

[

(d + m)(S∗ − S(t))

+S∗ ∫

∞

0
�(a)i∗(a)da − S(t)∫

∞

0
�(a)i(t, a)da

]

,

= − (d + m)
(

S∗
S(t)

+
S(t)
S∗

− 2
)

+ ∫

∞

0
�(a)i∗(a)da

[

1 − S(t)i(t, a)
S∗i∗(a)

− S∗
S(t)

+
i(t, a)
i∗(a)

]

da.

,

By using the relation d + m + � =
∫ ∞

0
�(a)i∗(a)da

L∗
 , we have

dVL(t)
dt

= 1
L∗

(

1 − L∗
L(t)

)[

∫

∞

0
�(a)i(t, a)da − (d + m + �)L(t)

]

,

= 1
L∗

(

1 − L∗
L(t)

)

[

∫

∞

0
�(a)i(t, a)da −

∫ ∞
0 �(a)i∗(a)da

L∗
L(t)

]

= 1
L∗ ∫

∞

0
�(a)i∗(a)

(

i(t, a)
i∗(a)

−
L(t)
L∗

−
L∗i(t, a)
L(t)i∗(a)

+ 1
)

da

,

Next, for t ∈ R anda ∈ R+ , we have i(t,a)
i∗(a)

=
B(t−a)

i∗(0)
 , and as a 

result
dVi(t)

dt
= ∫ ∞

0
�(a)

�

�t
�

(
B(t−a)

i∗(0)

)
da,

Since �(0) = ∫ ∞

0

[
�(a)i∗(a) +

��(a)

(d+m+�)S∗
i∗(a)

]
da , thus

Accordingly,

Let E =
{
(S, i, L) ∈ Ω|G�(t) = 0

}
= {S = S∗, L = L∗} be 

obtained from model (3.1), and the maximum invariant set 
of E is {E∗} . According to LaSalle invariant set principle, 
when ℜ0 > 1 , the endemic equilibrium E∗ of model (3.1) 
is globally asymptotically stable.

Conclusion

In this paper, we established stage and age-structured pseu-
dorabies models describing the dynamics of the infection in 
different pig populations. The models are investigated for the 
existence of possible steady states, and stability of each equi-
librium point of the model is analyzed and discussed. The 

dVi(t)
dt

= ∫

∞

0

[

�(a)i∗(a) +
��(a)

(d + m + �)S∗
i∗(a)

]

[

�
(

i(t, 0)
i∗(0)

)

− �
(

i(t, a)
i∗(a)

)]

da.

dV(t)
dt

=
dVS(t)
dt

+
dVi(t)
dt

+
�L∗

(d + m + �)S∗
dVL(t)
dt

= −(d + m)
(

S∗
S(t)

+
S(t)
S∗

− 2
)

+ ∫

∞

0
�(a)i∗(a)

[

�
(

i(t, 0)
i∗(0)

)

− �
(

i(t, a)
i∗(a)

)

+1 − S∗
S(t)

+
i(t, a)
i∗(a)

−
S(t)i(t, a)
S∗i∗(a)

]

da + �
(d + m + �)S∗

∫

∞

0
�(a)i∗(a) ⋅

[

�
(

i(t, 0)
i∗(0)

)

− �
(

i(t, a)
i∗(a)

)

+
i(t, a)
i∗(a)

−
L∗i∗(a)
L(t)i(t, a)

+1 − L(t)
L∗

]

da = −(d + m)
(

S∗
S(t)

+
S(t)
S∗

− 2
)

− ∫

∞

0
�(a)i∗(a)

[

�
(

S∗
S(t)

)

+�
(

S(t)i(t, a)i∗(0)
S∗i∗(a)i(t, 0)

)]

da

−
�

(d + m + �)S∗ ∫

∞

0
�(a)i∗(a)

[

�
(

L(t)i∗(0)
L∗i(t, 0)

)

+ �
(

L∗i∗(a)
L(t)i(t, a)

)]

da ≤ 0
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traditional linearization method was used for carrying out the 
results on the local analysis of the steady states. In the sequel, 
we employed the well-known Routh–Hurwitz criterion. We 
developed suitable Lyapunov functions for proving the global 
stability of some equilibria where others were studied with the 
help of wave lemma. The findings of the study indicate that 
one must bring the value of R0 less than one for eradicating 
the disease out of the pig populations. Further, the study is 
considered to be much beneficial for researchers dealing with 
age-structured models particularly and it provides a platform 
that how one can apply the tools to study age and stage-struc-
tured models.

Appendix 1

From model (3.1), for the sake of simplicity, we make some 
substitutions. For a ≥ 0 , we denote

and the notions �(a),K and P in term of �(a) are reproduced 
as

Clearly, �(0) = 1 and 0 ≤ �(a) ≤ e−(�0+m+d) ≤ 1 . The 
derivative of �(a) is

The proposed model exhibits a disease-free steady state, 
i.e., E0 =

(
S0, 0, 0

)
 , where

The basic reproduction number ℜ0 in terms of (A1) and 
(A2) can be expressed alternatively as

Next, we will consider an important Volterra-type function

Obviously, G(x) ≥ 0 for x > 0 and G(x) has a global 
minimum at x = 1 and G(1) = 0.

Theorem A1  If ℜ0 < 1 , the DFE is globally asymptotically 
stable.

Proof  First, we define a positive function as

�(a) = �(a) + m + d,

(3.9)

�(a) = e−∫ a

0
�(s)ds,K = �

∞

0

�(a)e−∫ a

0
�(s)dsda,P = �

∞

0

�(a)e−∫ a

0
�(s)dsda.

d�(a)

da
= −�(a)�(a).

(3.10)S0 =
Λ

m + d
.

ℜ0 = S0K +
�P

m + d + �
.

G(x) = x − 1 − lnx, x > 0.

Note that K0(a) > 0 for a ≥ 0 and K0(0) = S0K . Further-
more, the derivative of K0(a) is

Now, we set the Lyapunov functional as follows

where

Note that Λ = (m + d)S0 , calculating the time derivative 
of V1(t) along solution of system (3.1), we obtain

Using (A3) , we obtain

Let us assume that � = 0 and we will consider 
the derivative of equation (A4) and then we put (A5) 
and (A6) . Further, keeping in view K0(0) = S0K  and 
i(t, 0) = ∫ ∞

0
�(a)S(t)i(t, a)da under the assumption of � = 0 , 

we have

K0(a) = �
∞

a

S0�(v)e−∫ v

a
�(�)d�d�.

(3.11)dK0(a)

da
= K0(a)�(a) − S0�(a).

(3.12)V(t) = V1(t) + V2(t),

V1(t) = S0G

(
S(t)

S0

)
,V2(t) = ∫

∞

0

K0(a)i(t, a)da.

(3.13)

cc
dV1(t)
dt

= S0
(

1 − S0
S(t)

)

1
S0

(� − (m + d)S(t)

−∫

∞

0
�(a)S(t)i(t, a)da

)

= (m + d)S0
(

2 − S0
S(t)

−
S(t)
S0

)

− ∫

∞

0
�(a)S(t)i(t, a)da + ∫

∞

0
�(a)S0i(t, a)da.

(3.14)

cc
dV2(t)
dt

= ∫

∞

0
K0(a) �

�t
i(t, a)da = ∫

∞

0
K0(a)

[

− �
�a

i(t, a)da − �(a)i(t, a)
]

da

= −∫

∞

0
K0(a) �

�a
i(t, a)da − ∫

∞

0
K0(a)�(a)i(t, a)da

= −K0(a)i(t, a)||
|

a=∞

a=0
+ ∫

∞

0
i(t, a) d

da
K0(a)da

− ∫

∞

0
K0(a)�(a)i(t, a)da

= K0(0)i(t, 0) + ∫

∞

0
i(t, a)

(

K0(a)�(a) − �(a)S0
)

da

− ∫

∞

0
K0(a)�(a)i(t, a)da

= K0(0)i(t, 0) − ∫

∞

0
�(a)S0i(t, a)da.
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Therefore, ℜ0 < 1 ensures that dV(t)∕dt ≤ 0 holds true. 
Furthermore, the strict equality holds only if S(t) = S0 . Thus, 
by the Lyapunov–LaSalle invariance principle, the DFE is 
globally asymptotically stable when ℜ0 < 1 . This finishes 
the proof.
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