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Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 
2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological 
treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms 
of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected 
develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) 
have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the 
innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. 
In this review, we highlighted how variations in the key genes affect the development of innate immune response against 
RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in 
generation of new strategies for vaccine development or generation of the pharmacological treatments.
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Introduction

Respiratory syncytial virus (RSV) infection is one of the 
main causes worldwide of acute respiratory infections 
(ARIs) among children under 5 years. 22% of ARIs are 
associated with this virus, being clinically manifested as 

bronchiolitis from 40 to 90% [1, 2]. In 2015, 3.2 million of 
hospitalizations were globally associated to RSV, of which 
59,600 cases resulted in deaths [2, 3]. RSV has a seasonal 
behavior with outbreaks mainly from early autumn to late 
spring in the North Hemisphere [4]. Viral spreading shows 
an important reduction during the summer, although rare 
outbreaks have been reported [5]. Importantly, co-infection 
of RSV and SARS-CoV-2 might have an important effect 
on the treatment and prognosis of the disease, since this 
viral coinfection may be associated to a higher level of care, 
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increased hospital stay, and progression to acute respira-
tory distress syndrome [6]. Currently, no vaccine has been 
licensed against RSV [7], and the search for an effective and 
safe preventive method for RSV infection continues to be 
one of the greatest challenges for the scientific community. 
Most treatment options are inaccessible, such as palivizumab 
which is used in severe disease, and in some cases, infected 
children are mainly treated with palliative treatments, such 
as oxygen and bronchodilators [8]. This suggests that there 
is need for an effective and safe treatment strategy against 
RSV infection. In this review, we have discussed general 
biological characteristics of RSV and further focused on the 
genetics of main components of the innate immune response 
activated during RSV infection. We have revised the poly-
morphism in various genes of innate immune response asso-
ciated with disease severity, particularly those that impact 
the probabilities of hospital care and co-infections among 
the infected individuals.

General characteristics of respiratory 
syncytial virus (RSV)

RSV was isolated in 1955 from a colony of 20 chimpanzees 
suffering from infectious coryza in the Walter Reed Army 
Institute of Research, Maryland, USA [9]. Two years later, 
similar viruses were isolated from children with respira-
tory illness (bronchopneumonia and laryngotracheobron-
chitis) [10]. RSV is a representative member of the order 
Mononegavirales, family Pneumoviridae, and subfamily 
Orthopneumovirus [11]. RSV is typically rounded (diam-
eter 150–250 nm) or filamentous (diameter 90–100 nm × 
length 10 µm) [12]. The genome is 15.2 kb single stranded, 
non-segmented, negative-sense RNA and contains ten genes 
that encode eleven different proteins, which are classified 
as structural, regulatory, and non-structural [13]. The F 
(fusion) and G (attachment) envelope glycoproteins, the M, 
M2-1, M2-2 matrix proteins, SH, N and P proteins, give 
structure to the virion. The large polymerase protein (L) 
is responsible for the viral RNA synthesis. Finally, the NS 
(non-structural)1 and NS2 proteins are important disruptors 
and regulators of the expression of cellular responses against 
the RSV [14, 15] (Fig. 1).

The G and F proteins are the major glycoproteins on the 
surface of the virion and have important roles in the virus 
entry to the host cell [12]. The G glycoprotein works as an 
attachment protein that binds virions to the surface mol-
ecules in the target cells. The F glycoprotein also facilitates 
attachment and mediates fusion of the viral and host cell 
membranes [16–19]. Diverse molecules have been proposed 
as receptor for RSV in the host cells, such as the intercel-
lular adhesion molecule-1 which binds the F protein [20], 
heparin which interacts with the G and F proteins [21, 22], 

annexin II which binds to G protein [23], and recently, and 
still controversial, nucleolin which binds to the viral F pro-
tein [24–26]. Although Toll-like receptor (TLR)4 and frac-
talkine receptor can recognize viral proteins and have been 
associated with the innate antiviral response against RSV, 
their possible involvement in viral attachment and entry is 
still elusive [27, 28]. Once the viral RNA is located into the 
host cell, transcription and translation of the viral genome 
occurs in a well-coordinated mechanism [29]. The three 
viral glycoproteins are anchored to the cell membrane to 
facilitate the release of viral particles, while the assembly of 
nucleocapsid is achieved in the cytoplasmic inclusions [30]. 
Finally, viral assembly occurs in plasma membrane, where 
the viral particle acquires its viral envelope [30, 31] (Fig. 2).

Innate immune response in respiratory 
syncytial virus (RSV) infection 
and associated polymorphisms

Polymorphisms in the genes of immune system is consid-
ered as an important aspect behind the resistance or sus-
ceptibility of the host to an infectious disease. Over the 
years, researchers have explored many genetic factors hav-
ing role in immune surveillance against infectious diseases 
[32]. Among them, single genetic mutations (such as single 
nucleotide polymorphisms -SNPs-) has been associated to 
the predisposition and development of the severe forms of 
the infections [33].

Different components of the innate immune response 
participate in the control of RSV infection, including vari-
ous pattern recognition receptors (PRRs), diverse cell types, 
and a large array of cytokines and chemokines. An appro-
priate innate immune response has an essential role in the 
resolution of RSV infection, as it promotes virus clearance, 
avoids virus replication and spreading to the lower respira-
tory tract, and promotes the development of an adequate 
adaptive immune response [34].

The panoply of molecules giving structure to the RSV 
and those implied in its replicative cycle are classified as 
pathogen-associated molecular patterns (PAMPs) and share 
common general characteristics with those expressed by 
other viral pathogens. They are recognized by PRRs that 
promote the innate immune response leading to the activa-
tion of an antiviral state. These PRRs are anchored to the 
cell membrane or located in the intracellular vesicles, such 
as TLRs, but could also be dispersed in the cytoplasm, as in 
the case of RIG-I-like receptors, and NOD-like receptors. 
Thus, different viral molecules at each step of their infec-
tion cycle can be recognized by the host cells for inducing 
an immune response.

Once host cells recognize the presence of RSV com-
ponents, such as the cytoplasmic viral RNA by the RIG-I 
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receptor, the production of type I interferons (IFNs) is trig-
gered. These innate anti-viral cytokines are represented 
by various isoforms such as IFN-α, IFN-β, and recently 
described IFN-ε, -κ, -ω [35–38]. Besides, upon RSV infec-
tion, diverse innate immune cells are activated to produce 
inflammatory mediators that orchestrate a type 1 antiviral 
response, characterized by production of IFN-γ (type II IFN) 
by natural killer (NK) and NKT cells. This response is com-
bined with a type 2 response, which is accomplished by the 
group 2 innate lymphoid cells, mast cells, and airway epi-
thelial. These cells release interleukin (IL)-5, IL-13, IL-25, 
IL-33, thymic stromal lymphopoietin (TSLP), CXCL8 (IL-
8), CXCL10, CCL4, regulated on activation normal T cell 
expressed and presumably secreted (RANTES, CCL5), and 
the high mobility group box I alarmin [39–42]. Among the 
primary cytokines produced by airway epithelial cells after 
RSV infection, tumor necrosis factor (TNF)-α, IL-1α, and 
IL-1β induce the secretion of IL-6, IL-8, and CCL5 in an 
autocrine manner [43]. Altogether, these mediators attract 
eosinophils, neutrophils, monocytes, NK, NKT, dendritic 
cells (DC), and T cells to the airways, which are involved 

in the immune response against RSV and viral clearance 
[39, 41].

Nevertheless, many of these cells are also involved in the 
severity of the RSV-associated respiratory disease. Bron-
choalveolar lavage fluid (BALF) or nasopharyngeal aspirates 
of infants with severe RSV bronchiolitis are characterized 
by a predominance of neutrophils [44], a significant increase 
in the activated conventional DC [45–47], and accumulation 
of granzyme B-expressing NK cells [48]. Pro-inflammatory 
cytokines IL-1β, IL-6, IL-8, and TNF-α are also signifi-
cantly higher in the BALF of RSV cases [47]. Additionally, 
a lower number of plasmacytoid DC (pDC) producing anti-
viral IFN-α in BALF has been found in preterm infant with 
RSV bronchiolitis [47]. Various studies have suggested the 
crucial role of pDCs and type I IFN responses in limiting the 
viral load and pulmonary inflammation, and in promoting 
viral clearance as an early response to RSV [49, 50].

It is also known that genetic polymorphism in the 
immune system genes influence the ability to respond to 
the RSV and also influences the severity of the infection. 

Fig. 1  Schematic representation of respiratory syncytial virus (RSV) 
genome and structure. The length of the genome is more than 15 kb, 
encoding 11 proteins. The negative-sense ssRNA is attached to N, P, 

and L proteins forming a nucleocapsid, which is covered by M pro-
teins and enveloped with a membrane consisting of G, F, and SH pro-
teins. Created with BioRender.com (access date: March 25th, 2022)



504 Virus Genes (2022) 58:501–514

1 3

In this section, we reviewed the polymorphism in impor-
tant genes of innate immune system which have been asso-
ciated with disease severity. For all the discussed genes 
in this study, we explored the role of protein encoded by 
those genes in host response to RSV infection and the 
signaling pathway involved. We have further described the 
genetic studies in pediatric population which have corre-
lated genetic polymorphism with RSV disease, emphasiz-
ing their protective or predisposing participation.

Pattern recognition receptors (PRRs)

One of the initial contacts between RSV and the host cell is 
mediated by the recognition of the F protein through TLR4. 
This interaction is proposed as an initiator of the innate 
immune response, that probably facilitates the virus entry 
and has been considered as one of the pathogenic triggers, 
which exacerbates airway inflammation by the release of 
cytokines and chemokines during RSV infection [43, 51, 
52]. Besides, when human lung epithelial cells are infected 

Fig. 2  Life cycle of RSV. For attachment and recognition of the 
virion mediated by glycoprotein (G) and fusion (F), proteins in the 
virion interact with the receptors in the host cell surface (1). The 
fusion (F) protein exposes the fusion peptide and change to a pre-
harping conformation which facilitates the fusion of the virus to the 
host cell membrane and leads to nucleocapsid delivery (2). Viral 
genome is thereafter, contained in the cytoplasmic inclusions where 

primary transcription occurs (3). This is followed by translation of 
genome in the cytoplasmic ribosomes (4) and replication (5). The SH, 
F, and G proteins are sorted via endoplasmic reticulum (6) and Golgi 
apparatus (7). Viral proteins are assembled into viral filaments for 
viral budding process (8). Created with BioRender.com (Access date: 
March 25th, 2022)
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with RSV, the expression of TLR4 mRNA is increased, sug-
gesting that RSV plays a role in the inflammatory sensiti-
zation of the airway epithelium [53]. Innate inflammatory 
cytokines are expressed once cell activation is initiated by 
TLR4 through MyD88-dependent or -independent signal-
ing pathways [54]. It has been observed that in splenocytes 
of TLR4-/- or MyD88-/- mice, the production of IFN-β or 
TNF-α is highly diminished, which negatively impacts the 
RSV-specific antibody levels [55]. Moreover, cytokine and 
chemokine production is also dependent on the nuclear tran-
scription factor kappa-light-chain-enhancer of activated B 
cells (NF-κB), once the TLR4/CD14 complex has been 
activated [45, 56]. Genetic polymorphisms alter the func-
tion of TLR4, and these alterations have been associated 
with the severity of RSV infection. Two of the most studied 
polymorphisms in TLR4 gene are 299Gly and 399Ile, due to 
their importance in the establishment of an effective immune 
response. The change of A to G at the position 896 generates 
a modification of Asp to Gly at the position 299, and the 
change of C to T at the position 196 leads to substitution of 
Thr to Ile, although the molecular effect of these changes is 
still elusive [57]. Both genetic polymorphisms are present 
in high frequency (in a heterozygous genotype) in ethnically 
diverse premature infants with symptomatic RSV infection 
[58]. In 1–12 months old Israeli infants, severe RSV bron-
chiolitis is significantly associated with polymorphisms 
299Gly and/or 399Ile in TLR4, with increased odd ratios 
(OR) of 4.9 (299Gly/399Ile), 5.1 (299Gly), and 4.0 (399Ile) 
of hospital admission [59]. On the contrary, the peripheral 
blood mononuclear cells from Canadian pediatrics subjects 
(7–9 years old) heterozygous for 299Gly and 399Ile, and 
acutely exposed to RSV, showed no difference in the produc-
tion of IFN-γ, CXCL10, IL-10, and CCL5, when compared 
to that obtained from normal homozygous infants [60]. The 
role of these alleles has been evidenced in human bronchial 
epithelial cells which express TLR4 gene with 299Gly or 
399Ile polymorphisms. These cells showed reduced produc-
tion of IL-8, IL-10, IL-12p35, IL-8, and CCL8, indicating 
that impaired TLR4-response may affect the establishment 
of an effective immune responses against RSV [57].

TLR2 receptor recognizes common viral motif in RNA 
viruses, such as dengue virus, human immunodeficiency 
virus, hepatitis C virus, and rhinovirus, through the dimer-
ization with either TLR1 or TLR6 [61–64]. Heterodimers 
TLR2/TLR1 and TLR2/TLR6 recruit MyD88 to the Toll/
IL-1 receptor (TIR) domain, which is located in the cyto-
solic C-terminal region [65, 66]. It has been shown in a 
study that peritoneal macrophages from C57BL/6 mice 
stimulated with RSV elicited TNF-α production, which 
was found to be significantly reduced in TLR2 knock-
out and TLR6 knock-out mice. This indicated that only 
TLR2/TLR6 heterodimers are responsible for RSV rec-
ognition and activation of the innate immune responses 

[67]. Human primary small airway epithelial cells exposed 
to viral G protein have been found to activate the TLR2/
TLR6 signaling and further expression of TNF-α [68]. In 
the human macrophage cell line U937 infected with RSV, 
TLR2/MyD88/NF-κB signaling is required for pro-IL-1β 
and NLRP3 gene expression. This has been found to later 
on trigger the inflammasome assembly and the subsequent 
caspase-1 activation and mature IL-1β secretion. After 
this, a coordinated participation of different pathways is 
required to orchestrate the innate immune response [69]. 
Although some TLR2 polymorphisms have been associ-
ated with the severity of viral infections, the contribu-
tion or mechanism of some of them have not been clearly 
described yet. The polymorphism rs18998830, known as 
-15,607 A/G and laid on the first intron of the TLR2 gene, 
has been significantly associated to severe bronchiolitis 
induced by RSV with fatalities in the Brazilian infants 
[70, 71]. Another polymorphism in TLR2 gene, named 
as rs3804099, which is a synonymous SNPs in the single 
exon that means a C/T change coding Asn, was associated 
to a reduced proinflammatory cytokine secretion in hepati-
tis B virus chronic infection in a Chinese population [72]. 
In a study conducted in Germany with 156 infants suffer-
ing from severe RSV infection, no association of disease 
severity with rs3804099 polymorphism was reported [73].

During its life cycle, the RSV synthetizes a positive-sense 
RNA antigenome and various subgenomic mRNAs, which 
generate an intermediate double-stranded (ds)RNAs within 
cytosolic inclusions in the host cell [74]. Endosomal TLR3 
recognizes dsRNA produced during viral replication [75]. 
The sensing of dsRNA is crucial to achieve an antiviral 
state during viral infection, which is characterized by the 
expression of IFN-α and IFN-β, and other proinflammatory 
cytokines, such as TNF-α, IL-6, IL-8, and IL-12 [76–79]. 
The induction of antiviral cytokine genes is triggered via 
the TIR domain-containing adaptor-inducing interferon-β 
(TRIF) signaling, which activates the interferon regulatory 
factor 3 (IRF3), NF-κB and the activator protein (AP)-1 [80, 
81]. Nevertheless, TLR3 activation has also been found to 
cause RSV-induced airway hyperreactivity and eosinophilia, 
since IL-33 production is partly TLR3-dependent in alveolar 
macrophages [82, 83]. There is limited evidence for the pres-
ence of polymorphic variants of the TLR3 gene in associa-
tion with the severity of RSV infection. In the previously 
mentioned study where 156 German infants were analyzed 
for TLRs polymorphisms, no association was found between 
severity of RSV infection and polymorphisms in TLR3 gene 
rs3775291 (Leu412Phe G/A in exon 4), rs3775290 (F459F in 
exon 4 1337C/T), rs3775296 (in exon 2, untranslated region 
299698T/G) [73]. Moreover, in 129 full-term Finn infants 
hospitalized for bronchiolitis, there were no significant asso-
ciation between rs3775291 SNP and RSV infection [84]. 
Although the association between TLR3 polymorphisms and 
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severity of RNA virus infection has been suggested [85–87], 
more data are needed to clarify it.

Finally, it is worthy to consider that RSV RNA can also 
be recognized by the retinoic acid-inducible gene-I (RIG-
I), that facilitates the oligomerization of the mitochondrial 
activator of signaling (MAVS) on the mitochondrial surface. 
Thereafter, diverse adaptors, like IκB kinase γ (IKKγ) and 
TNF receptor-associated factors (TRAFs), are activated with 
the subsequent activation of NF-κB [88–90]. It has been 
shown that after RSV infection of A549 cells, RIG-I acti-
vates the dimerization of the IRF3 and its translocation to 
the nucleus, leading to the expression of type I IFNs [91, 
92]. Based on the biochemical and structural modeling 
approaches, two variants of human RIGI gene have been 
identified: the P229fs, a frameshift mutation that generates a 
truncated constitutively active receptor; and the S183I (a Ser 
to Ile mutation), which drastically inhibits antiviral signal-
ing due to unintended stable complexes of RIG-I with itself 
and with MAVS [93]. However, these genetic alterations 
have not been detected in RSV-infected patients till date. 
Moreover, the information about SNPs in the RIG-I recep-
tor in these patients is scarce. A study conducted in Canada 
detected rs10813831 (C/T Arg7Cys) and rs17217280 (T/A 
Asp580Glu) SNPs, however the differences in particular 
genotype or allele frequency between the children hospital-
ized with severe RSV bronchiolitis (n = 140) and children 
who tested positive for RSV but without hospitalization 
(n = 100) were not significant [94]. Thus, the possibility 
of detecting changes in this receptor in diverse childhood 
populations with severe RSV infection remains open and 
important to be studied as genetic variants of the RIGI gene 
have been reported to favor severe infections with other 
RNA viruses, like hepatitis C virus [95].

Cytokines and chemokines

Type I interferon (IFN)

IFN-α has 13 different subtypes in humans, while there 
is only one subtype of IFN-β [96]. Once, type I IFNs, are 
released from the initially infected cells, they induce an anti-
viral state in the neighboring uninfected cells. To accomplish 
this, IFNs bind to the IFN-α receptors consisting of IFNAR1 
and IFNAR2 chains which further activates JAK-STAT sign-
aling [97, 98]. Type I IFN binding drives the assembly of 
the two IFNAR chains and the consequent phosphorylation 
of IFNAR1-associated Tyk2 and IFNAR2-associated Jak1 
tyrosine kinases, which phosphorylate IFNAR1 and IFNAR2 
[99]. Phosphorylation of the IFNAR1 chain results in phos-
phorylation of STAT1 and STAT2, which translocate into the 
nucleus and together with IRF9 form the interferon-stimu-
lated gene factor 3 (ISGF3) transcriptional complex. ISGF3 
recognizes the type I IFN-stimulated response elements in 

promoters of interferon-stimulated genes (ISGs). This initi-
ates transcription and translation of various genes having 
antiviral activity, antiproliferative activity and have poten-
tial to induce robust adaptive immune response [99–103]. 
RSV has the potential to evade IFN type I-mediated immune 
response. NS1 binds to RIG-I, thereby inhibiting the acti-
vation of MAVS pathway and disrupting the downstream 
IFN antiviral and inflammatory response [104]. It has been 
shown in a study that NS2 expression in airway epithelial 
cells via vaccinia vector decreases the STAT2 levels in 
human tracheobronchial epithelial cells (hTBE) [98]. The 
genes coding for type I IFNs are grouped in a locus at the 
chromosome 9 and consists of 17 different functional genes, 
among which main are IFNA5 and IFNA13 [104]. The effect 
of these genes on the severity of infection caused by RSV 
has been studied. Genetic resistance to severe RSV infec-
tion has been associated to the polymorphism rs10757212 
of IFNA5 gene. The minor allele T was found to provide 
a protective effect to the hetero- and homozygous carriers 
(ORs C/T 0.80 and T/T 0.53, respectively) in a cohort of 
Dutch children [105]. Additionally, in other study conducted 
in The Netherlands, the change c.-603G/A (rs643070) of 
IFNA13 gene conferred protection against RSV bronchiolitis 
in preterm children (OR 0.68) [106]. In the same study, but 
in context of IFN-α receptor genes, it was described that 
the polymorphism of rs7279064 of IFNAR2 gene, which 
changes Phe10Val, increases the risk of severe RSV infec-
tion (OR 1.64) in the same population [106]. Despite the 
great importance of an adequate and timely type I IFN 
response to control viral replication and spreading, no other 
polymorphisms of type I IFN genes that impact RSV sever-
ity have been described so far.

Regulated on activation normal T cell expressed 
and previously secreted (RANTES)

Nasal epithelial cells, fibroblasts, and mast cells produce 
RANTES protein after RSV infection [39, 107]. RANTES 
plays a critical role during RSV infection and pathophysiology 
of bronchiolitis, since it induces chemotaxis of eosinophils, T 
cells, and monocytes [108]. RANTES levels are associated 
with risk of recurrent wheezing in RSV bronchiolitis [109]. In 
an animal model of RSV-infected mice, RANTES production 
was found to be dependent on the RSV infection, and neu-
tralization of RANTES with anti-RANTES antibody reduced 
the airway hyperreactivity [110]. Genetic predisposition to 
severe bronchiolitis has been associated to the variations in 
the RANTES gene. The mutations -403G/A and -28C/G in the 
promoter were found to increase the transcription of RANTES 
which was evident by the serum levels of RANTES [111–113]. 
These variants have been related to increased risk of RSV 
bronchiolitis in two studies in China. One study analyzed 320 
children with RSV bronchiolitis in Southern China, and found 
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that the heterozygous genotype G/A in -403 G/A polymor-
phism was associated with increased recurrent wheezing risk 
after RSV bronchiolitis [113]. The second study evaluated 238 
infants (under 12 months) in the Nanjing Children's Hospi-
tal, and the results showed that the presence of -28G allele 
increased the risk of RSV bronchiolitis to 2.09, showing an 
absolute eosinophil count in peripheral blood of RSV-infected 
children higher than that of control infants [114]. On the con-
trary, in a study conducted in 106 Greek infants (1–24 months 
old), there was no association of two SNPs (-403G/A, -28C/
G,) in the promoter region of the RANTES gene to severity of 
RSV [115]. These results suggest that more studies are needed 
to determine the possible association of polymorphism in these 
genes in different population with a sufficient population size.

Interleukin (IL)‑8

During RSV infection, neutrophil recruitment is dependent 
on the IL-8 production. Neutrophil influx is a remarkable 
characteristic among the patients with severe RSV infection 
as the increased concentration of plasma levels of IL-8 has 
been associated with severe RSV infection in the children 
[116–118]. Neutrophils have been found to show protec-
tive effect during RSV infection, such as reduction of viral 
dissemination [119], or production of the anti-viral catheli-
cidin LL-37 [120, 121]. Nevertheless, many reports have 
evidenced a detrimental role of this innate immune cell in 
the pathogenesis of severe cases of RSV infection, mainly 
mediated through the release of elastase [122], mucin pro-
duction [123], or NETosis [124]. The IL8 gene has polymor-
phic variations that may contribute to the severity of RSV 
infection. The SNP -251A/T is ubicated in the promoter and 
has been associated with a higher risk of severe symptoms 
in RSV infection. In a cohort of 117 infants in the United 
Kingdom, the presence of allele -251A was increased in 
patients with RSV bronchiolitis. As a functional approach, 
the authors also reported that the -251A allele was related to 
the increased IL-8 secretion after stimulating whole blood 
cells with LPS [125]. In a cohort of 320 Chinese children 
with severe bronchiolitis for RSV, the 54.6% presented 
wheeze and had increased prevalence of the -251A allele 
[126]. On the contrary, the allele -251T showed increased 
frequency in 101 Chinese children with severe RSV pneu-
monia, which increased the OR to 2.08 [127].

Transcriptional factors

Nuclear transcription factor κ‑light‑chain‑enhancer 
of activated B cells (NF‑κB)

The NF-κB is a transcription factor with pivotal role in the 
regulation of the expression of hundreds of genes that partic-
ipate in the immune responses, such as enzymes, receptors, 

chemokines, cytokines [128]. Structurally, NF-κB consist 
of a family of dimeric transcriptional factors formed of two 
class of proteins. One is represented by RelA (p65), RelB 
and c-Rel subunits, that contain the DNA-binding/dimeriza-
tion domain called Rel homology domain (RHD), and the 
transcriptional activation domain. The other class comprises 
of p50 and p52 subunits, which are expressed as large pre-
cursors p105 and p100, respectively, and contains the RHD 
and, additionally, an ankyrin repeat domain. In a canonical 
pathway, p105 is cleaved with the participation of a phos-
phorylation-mediated activation of IKK complexes. This 
releases the inhibitory κB (IκB) proteins and C-terminal 
ankyrin repeats from p105, thereafter allowing the release 
of the heterodimers RelA:p50 (prominently), RelA:c-Rel and 
c-Rel:p50, which drive the expression of diverse genes of 
immune response [129–131]. RSV evades immune response 
by redirecting the RelA protein to the cytoplasmic inclu-
sions, making it unavailable to translocate to the nucleus 
for the transcriptional transactivation [132]. In this context, 
IL-8 expression after RSV infection has been found to be 
dysregulated. It has been shown by an in vitro study that 
this dysregulation is dependent on the translocation of RelA 
into the nucleus and binding to the IL-8 promoter [133]. It 
has also been found that host genetics might influence the 
activity of NF-κB during RSV infection. The promoter of 
the NFKBIA gene (coding IκB protein) possesses variants 
that influence the grade of response after stimuli. The poly-
morphism rs2233406 (-839 C/T) alters the binding regions 
for CCAAT/enhancer binding protein α (C/EBPα). In 352 
Canadian children the minor allele was more prevalent in the 
group with severe RSV infection and significantly increased 
the OR to 1.83 [134].

Activator protein (AP)‑1

The activator protein-1 (AP-1) is a dimeric transcriptional 
factor consisting of the members of the family Jun (c-Jun, 
JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) proteins, 
that after their interaction bind to AP-1 regulatory elements 
located in the promoters and enhancers of diverse genes 
related to the immune response [135, 136]. The increased 
expression of AP-1 in A549 cells (human type II pulmonary 
epithelial cells) infected with RSV demonstrated the impor-
tance of AP-1 in RSV infection. Binding of AP-1 to a region 
located from − 132 to − 99 in the IL8 promoter was found 
to induce the expression of IL-8 [45, 137]. The silent poly-
morphism rs11688 (c.750 G/A) in JUN gene, which encodes 
the c-Jun protein, has been recognized as a gene marker for 
the predisposition of severe forms of RSV bronchiolitis. This 
was evident in a cohort of 480 children in The Netherlands, 
in whom this allele increased the OR to 1.48 and 3.45 in 
hetero- and homozygous patients, respectively [105].
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Vitamin D receptor

Vitamin D is a steroid hormone obtained from dietary con-
stituents such as oily fish, and endogenous sources including 
photochemical transformation of precursor 7-dehydrocholes-
terol [138, 139]. The active form of vitamin D is produced 
when CYP27B1 hydroxylates 25-hydroxyvitamin  D3 into 
1,25-dihydroxyvitamin  D3 (1,25D), which has been found 
to induce the production of antimicrobial molecules catheli-
cidin and LL-37 in macrophages and monocytes [140, 141]. 
Vitamin D might play a regulatory role in RSV-induced 
inflammation. The hTBE cells have reduced activation of 
NF-κB in presence of 1,25D due to the increased expres-
sion of NFKBIA mRNA. This effect was found to alter the 
response in RSV-infected hTBE, since the treatment with 
1,25D reduced the levels of IFNB, CXCL10, and ISG15 
mRNA. However, the reduction of IFN-β did not alter the 

viral replication [142]. The effects of vitamin D are facili-
tated by the binding of vitamin D to the vitamin D receptor 
(VDR), which once complexed act as transcriptional fac-
tor triggering the expression of vitamin D responsive genes 
[143, 144]. Some genetic variations in the VDR gene have 
been described to alter the response to vitamin D in diverse 
pathologies [145]. In terms of RSV infection, the poly-
morphism rs10735810 has been found to be significantly 
involved. It causes a change C/T (Thr1Met), which can be 
determined with the restriction enzyme FokI, and generates 
a new start codon located three codons upstream from the 
wild-type start site (ATG). Then, the polymorphic version 
of VDR contains three amino acids extra in the N-terminal 
side [146–148]. The role of the polymorphism rs10735810 
in RSV severity was indicated in 470 children hospitalized 
in The Netherlands, by its significant association with bron-
chiolitis as evident by OR of 1.30 [105]. Similar results have 

Fig. 3  Genetic variations in the innate immune response genes that alter the severity of RSV infection. Polymorphisms associated to an 
increased severity of RSV infection (red letters) and to protection (green letters). Created with BioRender.com (Access date: March 25th, 2022)
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been found in a study conducted among 296 South African 
children with an average age of 3 months, reporting that 
patients with allele T were more susceptible to severe RSV 
infection [149].

Conclusion

As most cases of severe RSV infection occur in otherwise 
healthy infants who have no identifiable risk factors, it is 
suggested that additional subclinical factors, such as popu-
lation genetic variations, should also been studied as these 
might also influence the course of RSV infection. As we 
highlighted in this review, various studies have shown that 
different polymorphisms associated with innate immune 
genes play crucial roles in the physiopathology, susceptibil-
ity, or protection to RSV infection in children (summarized 
in Fig. 3).

Overall, literature suggests that the identification of more 
SNPs associated with RSV infection would help to decipher 
the mechanisms involved in the severity of RSV infection. 
This mechanistic elucidation could further lead to develop-
ment of novel therapeutic strategies against RSV infection. 
Since until now there are no vaccine for protection or spe-
cific treatment for helping to patient during infection, an 
accurate and properly modulation of the children immune 
response against the virus might be key in the prompt clear-
ance of RSV from the host.
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