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Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory 
syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induc-
tion of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. 
Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we 
summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need 
to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.
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Introduction

Cell death can occur by either the programmed or the non-
programmed pathway [1, 2]. A number of types of pro-
grammed cell death have been identified; these include 
apoptosis [3], autophagic cell death [4, 5], and necroptosis 
[6, 7]. Of them, apoptosis is the most common type of pro-
grammed cell death defined by a series of typically mor-
phological nuclear changes, such as chromatin condensa-
tion and nuclear fragmentation, and it plays a critical role 
in development and tissue homeostasis [8]. There are two 
major types of apoptosis pathways. One is the mitochon-
drial pathway (intrinsic pathways) characterized by mito-
chondrial outer membrane permeabilization (MOMP) and 
subsequent release of apoptotic factors such as cytochrome 
c into the cytoplasm to form the apoptosome and activate 
initiator caspase-9. The other one is the death receptor path-
way (extrinsic pathway) characterized by the formation of a 
death-inducing signaling complex (DISC) and subsequently 

activating initiator caspases (caspases-8 and -10). The cross-
talk among these two pathways can occur through the trun-
cated form of Bid (t-Bid) mitochondrial translocation [9]. 
The dysregulation of apoptosis is involved in numerous 
pathological processes including viral infection and repli-
cation [10].

Porcine reproductive and respiratory syndrome (PRRS) 
is a devastating disease of swine that poses a serious threat 
to the swine industry worldwide. Porcine reproductive and 
respiratory syndrome virus (PRRSV), a member of the 
positive-strand RNA virus family Arteriviridae was deter-
mined to be the etiologic agent of PRRS in the early 1990s 
[11]. It has been well documented that PRRSV infection 
induces apoptosis in host cells both in vitro and in vivo 
[12–17]. The apoptosis induction in host cells is a major cel-
lular mechanism contributing to the pathogenesis of PRRS 
[18–20]. A number of signaling pathways have been identi-
fied to be involved in regulating PRRSV-induced apoptosis; 
these include Bcl-2 family protein-regulated mitochondrial 
pathway, TNFR1/Fas-mediated death receptor pathway and 
the up-stream regulators of these pathways such as c-Jun 
N-terminal kinase (JNK), unfolded protein response (UPR), 
oxidative stress, p53, and autophagy-related signals.
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Signaling pathways involved 
in PRRSV‑induced apoptosis

Involvement of both mitochondrial and death 
receptor pathways

The activation of mitochondrial pathway (intrinsic pathway) is 
suggested to play an important role in PRRSV-induced apop-
tosis [21, 22]. The disruption of mitochondrial membrane 
potential (MMP) is a hallmark of mitochondrial pathway acti-
vation. Mitochondrial membrane potential is tightly controlled 
by Bcl-2 family proteins including multidomain pro-apoptotic 
proteins Bax (Bcl-2-associated X protein) and Bak (Bcl-2 
antagonist killer 1), BH3-only pro-apoptotic proteins Bid 
(BH3-interacting domain death agonist), Bim (Bcl-2 interact-
ing mediator of cell death), Bik (Bcl-2-interacting killer), Bad 
(Bcl-2 associated agonist of cell death), Bmf (Bcl-2 Modifying 
Factor), Hrk (harakiri), Puma (p53 up-regulated modulator of 
apoptosis), etc. and anti-apoptotic proteins Bcl-2 (B-cell lym-
phoma-2), Bcl-xL(B-cell lymphoma-extra-large), Bcl-w (Bcl-
2-like protein 2), A1(Bcl-2 related gene A1), Mcl-1 (myeloid 
cell leukemia 1), etc. Activation of multidomain pro-apoptotic 
Bax and Bak resulted in permeabilization of mitochondria, 
which in turn leads to induction of mitochondrial dependent 
apoptosis. The pro-survival Bcl-2 proteins are the key players 
in the inhibition of Bax and Bak, whereas the BH3-only mol-
ecules (BH3s) trigger apoptosis by either activating Bax/Bak 
or inhibiting anti-apoptotic Bcl-2 proteins [23]. The balance 
between pro-apoptotic and anti-apoptotic proteins is essential 
to keep mitochondrial membrane potential at normal levels. 
Lee and Kleiboeker [21] demonstrated that the pro-apoptotic 
Bax expression is up-regulated by PRRSV infection, fol-
lowed by the disruption of mitochondrial membrane potential, 
cytochrome c release, and subsequent caspase-9 activation. 
The authors also revealed that the expression of TNFR1 and 
FasL are increased in response to PRRSV infection, suggest-
ing that the death receptor pathway may also contribute to 
PRRSV-induced apoptosis. Furthermore, Bid is cleaved to 
form the active form t-Bid upon PRRSV infection, indicating 
that a crosstalk between the extrinsic and intrinsic pathways 
took place in PRRSV-induced apoptotic process [21, 24]. In 
addition to the involvement of Bax and t-Bid, studies by us or 
others show that the decreased expression of anti-apoptotic 
protein Mcl-1 and Bcl-xl, and increased pro-apoptotic Bim 
makes an additional contribution to PRRSV-induced mito-
chondrial activation [24, 25].

The role of MAPKs in regulating PRRSV‑induced 
apoptosis

The mitogen-activated protein kinase (MAPK) cascades 
are evolutionary conserved intracellular signal transduction 

pathways that play a pivotal role in transmitting cell-surface 
signals to the regulatory targets. It has been shown to be 
involved in regulating various cellular processes such as 
proliferation, differentiation, and cell death [26]. There are 
three major mammalian MAPK pathways have been identi-
fied: extracellular signal-regulated kinase 1 and 2 (ERK1/2), 
c-Jun N-terminal kinase (JNK), and p38. Each cascade con-
sists of three enzymes that are sequentially activated through 
phosphorylation: a MAPK, a MAPK kinase (MAPKK), 
and a MAPK kinase kinase (MAPKKK). The activation 
of MAPKs, especially the stress-activated kinase JNK, is 
a common event in response to viral infection [27–29]. A 
number of studies show that JNK is activated by PRRSV 
infection evidenced by increased phosphorylation of JNK 
and its substrate c-jun [24, 25, 30–33]. Inhibition of JNK 
activation by its specific inhibitor SP600125 leads to an 
abolishment of PRRSV-induced apoptosis, accompanied 
by the restoration of anti-apoptotic protein Mcl-1 and Bcl-
xl expression. These results suggest that the JNK activation 
functions as a critical mediator to trigger apoptosis through 
down-regulating anti-apoptotic Bcl-2 family proteins [25]. 
The JNK activation by PRRSV has been demonstrated to be 
attributed to ROS generation and ER stress induction [25, 
31]. In addition, the activation of JNK has been found con-
tributing the cytokine production induced by PRRSV infec-
tion [24, 30, 33].

The contribution of UPR in apoptosis induction 
by PRRSV infection

The endoplasmic reticulum (ER) is an important organelle 
and serves multiple functions such as lipid synthesis, cal-
cium storage, protein synthesis, folding, and maturation. 
Many cellular disturbances, such as redox imbanlane, 
cause accumulation of misfolded proteins or unfolded pro-
teins, which in turn leads to activation of an evolutionary 
conserved signaling pathway called the unfolded protein 
response (UPR). The final outcome of UPR is mitigation of 
ER stress via blocking protein translation, increasing protein 
folding capacity and promoting ubiquitination mediated mis/
unfolded protein degradation, and to re-establish the homeo-
stasis [34]. However, severe or prolonged activation of the 
UPR can cause cell death induction that is involved in the 
pathogenesis of various diseases, including vital infection 
[35, 36]. In response to PRRSV infection, the two branches 
of UPR signaling pathways IRE1-XBP1 and PERK–eIF2α 
are activated evidenced by the elevated phosphorylation 
levels of these kinases and the activation of their respective 
substrate XBP1 and eIF2α. The induction of UPR has been 
found not only contributing to PRRSV-induced apoptosis 
in host cells [24, 31], but also involving in the regulation of 
virus replication and dysregulation of alveolar macrophage 
cytokine production [37]. Mechanistically, the activation of 
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UPR promotes apoptosis of host cells through triggering 
JNK-mediated mitochondrial pathway [31].

Induction of oxidative stress promotes 
PRRSV‑induced apoptosis

Redox imbalance due to increased oxidative-free radicals 
and/or decreased anti-oxidative capacity will cause oxi-
dative stress. Redox balance is controlled by a battery of 
enzymes, non-enzymatic compounds, and redox-sensitive 
transcriptional factors. The oxidative stress-related enzymes 
include superoxide dismutases (SODs), catalase, glutathione 
peroxidase (GPx), heme oxygenase-1 (HO-1), thioredoxins 
(TRXs), peroxiredoxins (PRXs), glutaredoxins, cytochromes 
P450 (CYPs), and Nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, whereas the non-enzymatic 
redox-related molecules include mainly glutathione (GSH), 
ascorbic acid, and tocopherols/tocotrienols. The major tran-
scriptional factors involved in redox regulation include Nrf2, 
Nrf1, p53, and FoxO [38, 39]. Changes in redox homeosta-
sis in vital infected cells are one of the key events that is 
linked to the pathogenesis of viral infections [40]. It has been 
shown that oxidative stress is induced in response to PRRSV 
infection both in vitro and in vivo models [21, 25, 41, 42]. 
Inhibition of ROS generation by anti-oxidant protects the 
cells from PRRSV-induced apoptosis through suppressing 
JNK activation [25]. Regarding the mechanisms of PRRSV-
induced oxidative stress, Yan et al. [42] revealed that the 
increased ROS generation by PRRSV infection is likely 
attributable to the elevated inducible nitric oxide synthase 
(iNOS), which is associated with the changes of heat shock 
protein 90 (HSP90) and caveolin-1 (Cav-1) expression. In 
addition, a study by Stukelj et al. [43] demonstrates that 
the decreased GPX activity is observed in PRRSV-infected 
pigs, suggesting inhibition of anti-oxidant enzyme activity 
may also contribute to oxidative stress induction by PRRSV 
infection.

p53 activation protects the host cells 
from PRRSV‑induced apoptosis

p53 is a nuclear transcription factor that was discovered in 
1979. It has a broad range of biological functions, primarily 
regulation of apoptosis, cell cycle, and DNA repair. In most 
cases, the activation of p53 provokes pro-death signaling to 
trigger apoptosis through either transcriptional-dependent 
or -independent mechanisms. For transcriptional pathway, 
the activated p53 protein translocates into the nuclei and 
functions as transcriptional activator to activate its tran-
scriptional targets that are involved in apoptosis induction 
such as pro-apoptotic proteins Bax, puma and NOXA [44]. 
For transcriptional-independent pathway, the activated p53 
protein translocates into the mitochondria, leading to the 

activation of mitochondrial pathway through forming com-
plexes with the anti-apoptotic Bcl-2 family proteins [45]. In 
addition, cytosolic p53 can also directly trigger Bax acti-
vation and apoptosis [46]. However, cumulating evidence 
suggests that p53 may also exert pro-survival activity to 
suppress apoptosis induction in certain model systems [47]. 
Proposed mechanisms contributing the anti-apoptotic func-
tion of p53 include: p53 inhibits pro-apoptotic JNK activa-
tion [48]; p53 induces pro-survival p21 up-regulation [49]; 
p53 functions as anti-oxidant to counteract ROS-mediated 
apoptosis [50]. It has been shown that p53 is activated in 
response to PRRSV infection evidenced by the increased 
p53 phosphorylation at Ser15 and up-regulation of it tran-
scriptional target p21 [31, 51]. To examine the functional 
role of p53 activation in apoptosis induction by PRRSV, nut-
lin-3, a specific p53 activator, was employed to activate p53. 
Under such condition, the changes of apoptosis induction 
were measured and the results demonstrate that the apoptosis 
induction by PRRSV is decreased in the presence of nut-
lin-3, accompanied by reduced JNK activation [31]. These 
data suggest that p53 activation protects the host cells from 
PRRSV-induced apoptosis through inhibiting JNK-mediated 
apoptotic signaling.

Autophagy regulates virus replication 
and apoptosis

Autophagy is an intracellular cytoplasmic content (long-
lived proteins and damaged organelles) degradation process 
[52]. Autophagy has been found to play an important role in 
regulating multiple physiological processes including apop-
tosis induction [53]. Autophagy can either suppress apop-
tosis or promote cell death depending on the context [54]. 
The dysregulation of autophagy has been proposed to con-
tribute to the development of numerous diseases including 
vital infectious diseases [55]. Vital infection can cause either 
autophagy activation or inhibition in host cells. Regarding 
the influences of PRRSV infection on autophagy, a num-
ber of studies demonstrate that the numbers of autophago-
somes are elevated during PRRSV infection evidenced by 
the increase of double- or single-membrane vesicles, LC3 
fluorescence puncta and LC-3 I/II conversion [56–63]. Inhi-
bition of autophagosome formation by its inhibitor 3-meth-
yladenine (3-MA) or silencing LC3 gene by siRNA leads 
to decreased yield of PRRSV [56] and increased apoptosis 
[61]. These results suggest that the autophagy induction by 
PRRSV promotes virus replication and protects the host 
cells from the virus-induced apoptosis. Further mechanis-
tic investigations uncover that the autophagy induction by 
PRRSV exerts the pro-survival function associated with the 
formation of a complex between the autophagy-related gene 
Beclin1 and the pro-apoptotic protein Bad [61].
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The activation of PI3K/Akt pathway facilitates viral 
replication and inhibits PRRSV‑induced apoptosis

PI3Ks are heterodimeric lipid kinases that can be activated 
by receptor tyrosine kinases. The well-known downstream 
target for PI3K is AKT kinase which regulates various cel-
lular processes, such as cell growth, proliferation, differen-
tiation, transcription, translation, and apoptosis [64]. Akt 
exerts its anti-apoptotic and pro-survival effects through 
either inhibitory phosphorylation of some pro-apoptotic 
Bcl-2 family proteins such as Bax, Bad, and caspase-9, or 
activating some transcription factors which can up-regulate 
anti-apoptotic genes, such as CREB (cAMP response ele-
ment-binding protein), IKB (inhibitor of kappa B) kinase, 
Bcl-2, MDM2 (murine double minute 2), Forkhead family 
[65]. It has been well documented that viruses and viral pro-
teins interact with the PI3K/Akt signaling pathway during 
different steps of the viral life cycle, leading to effective viral 
replication [66]. A number of studies have demonstrated that 
the PI3K/Akt pathway is activated in response to PRRSV 
infection at the early stage [31, 59, 67–71]. The activa-
tion of PI3K/Akt is required for virus entry and promotes 
virus replication. Regarding the role of PI3K/Akt pathway 
in PRRSV-induced apoptosis, studies demonstrate that the 
Akt activation by PRRSV inhibited host cell apoptosis early 
in infection through negatively regulating the JNK pathway 
[31] and inhibitory phosphorylation of pro-apoptotic Bad 
[68]. Mechanistic investigations on PI3K/Akt activation 
by PRRSV reveal that both FAK [70] and EGFR [71] are 
induced by PRRSV, which in turn contributed to the activa-
tion of PI3K/Akt pathway.

Conclusion remarks

As discussed above, multiple signaling pathways have been 
suggested to be involved in regulating PRRSV-induced 
apoptosis in host cells (Fig. 1). These include Bcl-2 family 
protein-regulated mitochondrial pathway, TNFR1/Fas-medi-
ated death receptor pathway and the up-stream regulators 
of these pathways such as JNK, UPR, oxidative stress, p53, 
autophagy-related signals, and PI3K/Akt pathway. Under-
standing of the molecular basis involved in PRRSV-induced 
apoptosis will promote the development of mechanism-
based approach to manage this devastating infectious dis-
ease. To this end, a number of issues that need to addressed 
in future studies.

The mechanisms of JNK inhibition by p53

p53 plays a dual role not only in the regulation of cell death, 
but also in the modulation of redox. As mentioned above, the 
p53 activation protects the host cells from PRRSV-induced 

apoptosis through suppressing JNK activation. We hypoth-
esize that the p53 activation by PRRSV infection exerts 
anti-oxidant activity, which in turn leads to the inhibition of 
ROS-JNK axis. Alternatively, p53 may directly bind to JNK 
and inhibit its activation. The first hypothesis can be tested 
by measuring the changes of p53-regulated redox-related 
proteins such as MnSOD, GPX1, Sestrins in the presence or 
absence of the activated p53 in response to PRRSV infec-
tion. Immunoprecipitation can be employed to examine the 
direct interaction of p53 with JNK to determine the contribu-
tion of the second hypothesis.

The role of p62 in regulating PRRSV‑mediated 
apoptosis

p62 is a multifunctional adaptor protein implicated in reg-
ulating autophagy, apoptosis, and oxidative stress. As an 
autophagy substrate, autophagosome degradation inhibition 
leads to accumulation of p62. It has been shown that PRRSV 
infection suppresses the fusion between autophagosomes and 
lysosomes, leading to accumulation of autophagosomes [57]. 
This suppression is supposed to cause p62 accumulation, 

Fig. 1   Both Bcl-2 family protein-regulated mitochondrial pathway 
and TNFR1/Fas-mediated death receptor pathway are activated in 
response to PRRSV infection. The activation of oxidative stress, UPR 
and JNK triggers the activation of mitochondrial pathway, whereas 
the induction of p53, PI3K/Akt and autophagy inhibits PRRSV-
induced apoptosis via suppressing the activation of JNK or mitochon-
drial pathway (PRRSV porcine reproductive and respiratory syndrome 
virus, TNF tumor necrosis factor; ROS reactive oxygen species, UPR 
unfolded protein response, JNK c-Jun N-terminal kinase, EGFR epi-
dermal growth factor receptor, FAK focal adhesion kinase; arrow 
means activation; blunt line means inhibition; thick line means strong 
evidence; thin line means weak evidence)
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which may produce significant impact on PRRSV-induced 
apoptosis. Further studies may start with investigating the 
changes of p62 expression in response to PRRSV infection. 
If p62 is up-regulated by PRRSV, the functional role of p62 
can be evaluated via genetic manipulation of p62 expression.

In vivo validation

The most findings mentioned above have been reported in 
cell culture models only; validation of the in vitro findings 
is necessary to ensure the clinical relevance and therapeutic 
significance. For examples, the activation of p53, JNK, and 
PI3K/Akt was observed in in vitro, it would be desirable to 
determine the contribution of these signaling pathways in 
PRRSV-infected pig model.
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