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Abstract Currently, virus-based vectors, namely deriva-

tives of the adenovirus, are frequently used in a wide

variety of ex vivo or local gene therapeutic applications.

However, the efficacy of virus-based vectors in systemic

applications is presently still extremely limited. Complex

interactions of the various vector types with the patient’s

organism hinder successful vector deployment. Exemplary,

here we summarize barriers to systemic application of

Adenovirus-based vectors leading either to acute toxic

effects or rapid vector neutralization and discuss strategies

to overcome these barriers aiming to develop more efficient

vector types.
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Introduction

During the last decades major progress has been achieved

in the development of various safe and efficient virus-based

vector systems for a wide variety of therapeutic applica-

tions ranging from the treatment of genetic diseases and

malignant tumors to disease prevention by genetic vacci-

nation. Unfortunately, however, despite the admission and

availability of a few drugs based on nucleic acids in the

Western hemisphere, up to date the clinical success of

virus-based gene transfer vectors in humans has clearly

been limited.

Clinical successes have mainly been achieved in ex vivo

treatment strategies, which transduce patient-derived cells

in culture dishes and, thus, circumvent direct contact

between virus vector and patient (for example [1–4]). In

addition, local in vivo application of vectors in immune

privileged tissues was successful (for example [5–7]).

While by now virus-based vectors have proven to show

efficient and safe transduction of various cell types in many

ex vivo or in local treatments, the use of such vectors for

systemic delivery is still unsatisfactory. Of note, the

treatment of a wide variety of diseases affecting large

organ systems like skeletal muscle or liver and the treat-

ment of solid tumors and disseminated metastases requires

vector delivery through the blood stream. Various mecha-

nisms prevent pathogens to invade the human organism

and impose barriers severely hindering systemic, clinical

use of virus-based vectors. The human body’s defense

mechanisms often trigger acute toxicity, a significant

problem for successful in vivo gene delivery. The acute

toxicity narrows the therapeutic window of the vectors and

the underlying mechanisms such as opsonization, scav-

enging and mistargeting mediate unwanted vector seques-

tration. Only in genetic vaccination, immunogenicity of the

vector and involvement of immune cells is favorable to

some extent, as co-stimulant of immune responses to the

specific antigen product after vaccination.

Virus-based vector systems rely on virus surface pro-

teins that bind to cell surface receptors and often trigger

uptake and cellular reprogramming for intracellular trans-

port. In systemic applications, these virus proteins often

identify the vector as foreign substance to its host organ-

ism, leading to rapid clearance of the vector particles from
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the patient’s blood system. To increase chances of vector

particles to reach their target cells, vectors therefore need

to be engineered to either circumvent the host’s barriers or

to be shielded against attacks of the host’s defense mech-

anisms prior to systemic delivery.

Furthermore, while natural viruses exhibit a more or less

specific tropism for defined cells and tissues, the vectors

derived from them often need to be targeted to different

cells for the treatment of genetic or malignant diseases.

Therefore, the virus-specific tropism has to be ablated and

replaced by new functions ensuring highly specific and

efficient delivery.

Overall, to increase efficiency of the different virus-

based vectors in systemic applications, it is paramount to

study the complex molecular interactions of each vector

type with the host’s organism in great detail. This includes

but is not limited to the analysis of very early interactions

between vector and various blood components, tissue

penetration mechanisms and intracellular trafficking of

vectors in the target cell. As paradigm for the complexity

of early interactions of virus-based vectors within a

patient’s organism, we summarize here the current

knowledge on barriers to adenovirus (Ad)-based vectors in

systemic applications. Ad vectors are the most commonly

used vectors in gene therapeutic applications (see http://

www.abedia.com/wiley/vectors.php) and human aden-

ovirus type 5, concerning its interactions with host blood

and tissues, is probably the best described vector system up

to date. Understanding of barriers imposed by Ad5-host

interactions, and in particular the understanding of early

interactions between vector and blood, can certainly con-

tribute to engineer safe and efficacious virus-derived vec-

tors in general.

Barriers

Upon injection of Ad5 into the blood system, germline

encoded natural IgM antibodies of the innate immune

system can recognize and bind to highly repetitive struc-

tures of the virus surface [8, 9]. Subsequently, the immune

complexes of antibodies and the virions activate both the

classical and non-classical pathway of the complement

system. Thus, the opsonization of the virions leads to rapid

complement-mediated neutralization [8]. For Ad5 it has

been shown that after intravenous delivery, macrophages,

in particular Kupffer cells residing in the liver, rapidly

remove a very large portion of the injected virions from the

blood system [10]. Scavenger receptors have been identi-

fied, which are involved in the phagocytic uptake of Ad5

vectors into these cells [11]. This sequestration mechanism

is mainly responsible for the very low efficacy of Ad-based

vectors in systemic applications [12]. Importantly, the

interaction of the virions with macrophages in blood,

spleen, and liver is associated with acute toxic and hemo-

dynamic side effects [13, 14]. In addition to macrophage

cells, liver sinusoidal endothelial cells (LSECs) [15]

express specific scavenger receptors and appear to con-

tribute to vector elimination [16]. The extent, however, to

which this mechanism contributes to vector elimination, is

still under evaluation.

A further hurdle in systemic application of Ad-based

vectors is the ability of several adenoviruses to efficiently

bind to human erythrocytes [17] either via the Coxsackie

and Adenovirus Receptor (CAR) or the complement

receptor CR1 which both are expressed on the surface of

human erythrocytes [18]. This molecular interaction leads

to a very efficient sequestration of Ad-based vectors and

needs to be prevented to enable delivery through the blood.

Interestingly, this is a paradigm example for the impor-

tance to study virus-host interactions in appropriate model

systems: mouse erythrocytes do not express CAR and

studies with mouse blood consistently fail to predict the

human situation. It has to be kept in mind that the mouse is

a suitable model organism to study important aspects of

vector delivery, yet can only be used to answer a limited set

of questions. All neutralization pathways described so far,

work independent of specific antibodies and therefore

independent of prior exposure to Ad antigens.

A new barrier to successful systemic application of

virus-based vectors is raised after the first vector delivery

or already exists due to previous infection with the natural

virus: anti-vector antibodies generated by the adaptive

immune system [19, 20]. Preexisting antibodies against

adenovirus 5 are carried by a large percentage of the

world’s population [21, 22]. In sub-saharan Africa, e.g., up

to 90% of the population is seropositive for Ad5. In addi-

tion, it is likely that most applications of adenovirus-based

vectors will require repeated vector delivery, and, there-

fore, robust strategies to escape from Ad-specific antibod-

ies need to be developed.

Surprisingly, the mechanisms establishing the tropism of

Ad5 are only partially understood up to date. It has been

known since long that Ad5 exhibits a strong hepatocyte

tropism in various model organisms, but only in 2008 one

important molecular determinant for this hepatotropism has

been revealed. It is based on a high affinity interaction of

the virus particle with blood coagulation factor X (FX)

[23–25]. FX interacts with the hexon protein of Ad5 and

bridges the virus to heparin sulfate proteoglycans (HSPGs)

[23, 26–28]. HSPGs in fact are expressed on many different

cell types, but the extent of N- or O-sulfation on HSPGs in

the liver seems to be decisive for FX-mediated hepatocyte

transduction [27]. In this scenario no participation of the

primary CAR receptor is involved in transduction of hep-

atocytes. Additionally, recent results hint to further
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unknown pathways, independent of FX or CAR interaction,

that mediate hepatocyte transduction [8, 29, 30]. FX-

binding not only plays a role for the transduction of hep-

atocytes, but furthermore FX-binding recently has been

shown to also shield the vector against attacks by com-

plement, thus leaving the vector less vulnerable to com-

plement-mediated neutralization [8]. Therefore, impeding

FX-binding in order to reduce transduction of hepatocytes

can increase complement-mediated clearance of the vector

by the innate immune system. Taken together, these find-

ings, summarized in Fig. 1, give a glimpse into the com-

plexity of the network of vector-host interactions and show

that modification of vectors could affect not only one

pathway but could interfere as well with further vector-host

interactions leading to unwanted side effects.

For effective systemic application of Ad-based vectors,

it is mandatory to overcome all of the barriers mentioned

above. A single barrier like the sequestration by erythro-

cytes is probably sufficient to completely prevent systemic

vector delivery—independent of the genius with which the

other barriers have been overcome before. Therefore,

comprehensive strategies addressing all barriers at once

need to be developed and employed to create potent and

efficacious vectors based on adenovirus and other viruses.

At the same time suitable model systems should be chosen

to generate viable results.

Strategies

During the past years a number of different strategies have

been developed that can be used to circumvent the barriers

mentioned above. These strategies are genetic capsid

modifications, the use of different human and non-human

adenovirus types and chimeric vectors, as well as chemical

modification strategies. Barriers and strategies are sum-

marized in Table 1.

Genetic capsid modifications

Small genetic modifications of the adenovirus capsid can

be employed to insert ligands (often derived from phage

display screening) into the virus surface (for overview see

[41]). It has to be noted that such genetic modifications are

Fig. 1 Molecular interactions within the patient’s organism hinder efficient deployment of Ad-based vectors in systemic application
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often limited by structural constraints of the ligand motif

and the vector surface proteins. Therefore, typically, small

peptide stretches are inserted into flexible loops of different

capsid proteins [41]. Depending on the site of insertion,

motifs of up to 83 amino acids were successfully incor-

porated. Adenovirus vectors have been targeted, for

example, by inserting an integrin-binding RGD motif in the

flexible HI-loop of the fiber protein [42]. By inserting this

ligand peptide into the HI-loop of the fiber protein, gene

transfer to various CAR-deficient cell lines was signifi-

cantly improved in vitro. However, the overall number of

functional ligand motifs that were successfully inserted

into the Ad capsids is rather low, presumably due to the

size limitations. To circumvent these limitations so-called

adapter strategies have been developed. Here, fusion pro-

teins comprised of the soluble ectodomain (sCAR) of the

adenovirus receptor CAR and a ligand protein are produced

and incubated with the vector. Since the sCAR ectodomain

is capable of binding to the adenovirus fiber knob, the virus

in this way is non-covalently equipped with the ligand-

sCAR-fusion protein. Using a sCAR-EGF fusion protein

the virus could for example be targeted to the EGF receptor

[43, 44] and more recently to polysialic acid [45]. Although

not tested up to date, by blocking the fiber knob domain

with the sCAR-fusion protein, this strategy can presumably

prevent binding of the vectors to CAR on erythrocytes.

Alternatively and importantly, small genetic modifications

can also be used to ablate CAR- [46] and FX-binding [23].

However, small genetic modifications or adapter strategies

so far do not allow circumventing recognition by the

complement system and natural IgMs or preexisting IgGs.

In order to achieve this, modifications of larger areas of the

capsids have to be employed.

Different Ad types and chimeric vectors

Nature offers a wide variety of different human aden-

oviruses types ([ 70 types of human adenoviruses) and

also non-human adenoviruses of different origins. Thus,

one promising approach to potentially circumvent the

Table 1 Summary of barriers to systemic application of Ad-based vectors and strategies to develop efficient vectors overcoming these barriers

Barriers to systemic application of Ad-based vectors Strategies to overcome barriers

Recognition of Ad-based vectors by natural IgM antibodies of the innate

immune system [8, 9]

Chemical shielding [31–33]

Geneti-chemical shielding [34]

Use of different Ad types [35]

Chimeric vectors [35]

Complement-mediated neutralization of Ad-based vectors [8] Chemical shielding [31–33]

Geneti-chemical shielding [34]

Receptor-mediated phagocytic uptake of Ad-based vectors into Kupffer as well

as LSECs [10, 11]

Chemical shielding [31–33]

Geneti-chemical shielding [34]

Use of different Ad types [35]

CAR- or CR1-mediated binding of Ad-based vectors to human erythrocytes

[11, 18]

Chemical shielding [31–33]

Geneti-chemical shielding [34]

Genetic modification [18]

Neutralization of Ad-based vectors by preexisting humoral immunity [19, 20] Chemical shielding [31–33]

Geneti-chemical shielding [34]

Ad vectors based on different Ad serotypes

Prevention of FX-mediated hepatotropism [23] Chemical shielding [31–33]

Geneti-chemical shielding [34]

Generation of genetically modified FX binding-ablated Ad

vectors [23, 36, 37]

Targeting to specific cells and tissues Genetic modification [38–40]

Chimeric vectors [40]

Directed evolution [35]

Chemical shielding [31–33]

Geneti-chemical shielding [34]
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described barriers is to exploit nature’s diversity and

thoroughly analyze and describe the different adenoviruses.

As one example, chimpanzee adenoviruses have success-

fully been used as vectored vaccines [47–49]. Rare types

with a low seroprevalence can be delivered to patients at

least once to circumvent the barrier of preexisting immu-

nity to types with higher seroprevalence like Ad5. How-

ever, a systematic and comparative analysis of early virus-

blood interactions has not been performed up to date and

for many adenoviruses. Despite their successful vector-

ization, very little is known, in fact, about their biology.

Research on novel adenovirus types is an urgent matter and

greatly facilitated by innovative high-throughput direct

cloning and adenovirus genome engineering technologies

[50]. Therefore, it can be expected that rare adenovirus

types will play an important role for local and systemic

delivery in the future.

Currently, the use of chimeric vectors is an option to

combine advantageous features of the rare types with the

knowledge on adenovirus type 5. Roberts et al. demon-

strated that hexon chimeric Ad5-based vectors that had the

seven short hypervariable regions (HVRs) on the surface of

the Ad5 hexon protein replaced with the corresponding

HVRs from the rare adenovirus serotype Ad48, escaped

from preexisting immunity [51]. However, the extensive

modification was correlated with difficulties in production

of these vectors, a phenomenon that can often be observed,

when large genetic modifications of Ad5 capsids are per-

formed. The use of chimeric vectors can also be combined

with small genetic modifications for targeting. Behr et al.

targeted Ad5-based chimeric vectors bearing the fiber knob

domain of the rare type 41 by inserting a small peptide

ligand for the EphA2 receptor into different positions of the

chimeric fiber protein [38]. An extensive analysis on the

interaction of such vectors with blood still has to be

performed.

Another successful approach to generate chimeric vec-

tors was established by Kuhn et al. and termed ‘‘directed

evolution’’ [35]. The group pooled an array of seven ade-

novirus types and passaged the pools under conditions that

favored recombination between the types. Stringent,

directed selection on cancer cell lines was performed with

the aim to generate a potent oncolytic virus. In fact, a

promising oncolytic virus termed ColoAd1 was obtained

by this strategy. This group B virus (with a capsid based on

Ad11p) was shown to have a favorable haemocompatibility

profile with significant evasion from innate and adaptive

defense mechanisms in human blood compared to Ad5.

Chemical modifications

A very promising approach to overcome barriers for the

systemic delivery of adenovirus-based vectors is provided

by shielding the vector surface with synthetic or natural

polymers [52]. To achieve this, polymers like polyethylene

glycol (PEG) or poly-N-hydroxypropylmethacrylamide

(pHMPA) are chemically coupled to the surface of the

vector capsid [52]. This chemical reaction generates

stable covalent bonds typically between the surface amine

groups of the virus capsid proteins and a reactive group of

the respective polymer. Importantly, the chemical reaction

leaves the capsid intact and, thus, can maintain the natural

virus functions to some degree. The polymers are hydro-

philic and non-toxic and generate a shield around the virus

surface that can prevent interactions with cellular and non-

cellular blood components. The density of the shield is

controlled by the stoichiometry during the coupling reac-

tion and determines the extent of shielding effect [53].

Even more, by a chemical modification of the polymer it is

possible to incorporate ligands into the shield [31, 54]. Of

note, in contrast to genetic approaches, here full length

proteins [31, 54], carbohydrates [55], or peptides can be

used. Polymer-modified vectors have, in fact, been shown

to exhibit an altered tropism compared to adenovirus vec-

tors with unmodified capsids. For example, the liver trop-

ism can, depending on the size of the polymer, be ablated

and neutralization by antibodies can be prevented to a large

degree [31, 53, 56, 57]. At the same time, acute toxicity is

significantly dampened. Advanced polymer modifications

with charged polymers allow for evasion from binding to

FX, binding to erythrocytes [58], and can enable systemic

delivery to solid tumors in mouse xenograft models [59].

One disadvantage of chemical modifications is that a

delicate balance between sufficient shielding and main-

taining the virus’ natural potency to transduce/infect cells

has to be kept. Furthermore, it has been shown that the

position to which a ligand is attached on the virus surface

can impact on intracellular trafficking and gene transfer

efficiency [60, 61]. As a consequence, instead of cloaking

the whole virus particle with polymers, it can be advanta-

geous to couple only a few polymers to carefully selected

sites on the capsid. This can be achieved by a genetic

introduction of cysteine residues at selected positions of the

capsid. In a combined genetic and chemical approach (the

so-called geneti-chemical approach [54]), the cysteine

residues provide thiol groups for a specific chemical

modification with polymers or ligands [29, 34, 54, 62]. It

has been shown that this site-specific shielding significantly

improves the pharmacokinetics of the vectors, enables

evasion from macrophage scavenging and can prevent

binding of FX. In combination with additional minimal

genetic mutations that do not affect vector production (e.g.

CAR-binding ablation) potent vectors can be generated

[34]. Furthermore, strategies have been developed to cou-

ple polymers in a bio reversible form, releasing the poly-

mers upon entry of the vector into the cytoplasm [63, 64].
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Concluding remarks

Adenovirus type 5 belongs to the best characterized viruses.

Its extensive use as a vector in various model systems and in

the clinics has revealed a number of barriers that hinder

systemic delivery. A successful development of adenovirus

and other virus-based vectors that are suitable for systemic

application can only be achieved after a careful molecular

analysis of virus-host blood interactions. Since such analysis

is advanced for adenovirus type 5, this virus can be consid-

ered a paradigm. A multitude of different techniques and

technologies has been developed to improve adenovirus-

based vectors. Interestingly, almost all of these technologies

have already been applied to other vectors. Future develop-

ments may be guided by the knowledge obtained with ade-

novirus type 5 and may lead to efficacious oncolytic viruses,

genetic vaccines, and gene transfer vectors.
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