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Introduction

Bacteria from the genus Borrelia are vector-borne spiro-
chetes that can cause disease in animals and humans. Since 
the first borrelial description in the early 20th century, dif-
ferent species and strains, with distinct epidemiological 
and clinical aspects, have been reported. Currently, these 
organisms are divided into three main groups: (1) The Lyme 
group (LG): represented by the Borrelia burgdorferi sensu 
lato and transmitted exclusively by Ixodes ticks; (2) Relaps-
ing fever group (RFG): represented by species mostly 
vectored by Argasidae ticks, with some species being trans-
mitted by Ixodidae ticks or Pediculus humanus louse; and 
(3) Echidna-Reptile group (ERG): a recently described 
group, phylogenetically distinct from the former two, and 
transmitted by Ixodidae ticks (Margos et al. 2018; Trevisan 
et al. 2021a, b).

Some Borrelia species within the RFG group are known 
to be transmitted by hard ticks. Borrelia theileri is trans-
mitted by Rhipicephalus sp. ticks and initially reported in 
Africa, Australia and South America (Theiler 1905; Callow 
1967). Although this pathogen was first described in 1904 as 
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Abstract
Borrelia theileri is a tick-borne spirochete causative agent of fever, apathy and reduced food consumption in cattle. 
Molecular diagnosis has expanded the understanding of Borrelia theileri with new hosts and geographical locations being 
described. The present study aimed to describe the first molecular detection of B. theileri in wild tapirs (Tapirus terres-
tris) from South America. Blood DNA samples obtained from 99 tapirs sampled in Pantanal (n = 61) and Cerrado (n = 38) 
biomes were screened using a qPCR assay based on the 16 S rRNA gene of Borrelia sp. Positive samples in the qPCR 
assay were subjected to PCR assays to allow characterization of fragments from 16 S rRNA and flaB genes. Two (2/99; 
2.0%) animals from Pantanal biome were positive in the qPCR and one sample presented bands of expected size for the 
flaB protocol. Amplicons from this sample were successfully cloned and sequenced. In the phylogenetic analysis, Borrelia 
sp. from T. terrestris grouped together with B. theileri sequences previously detected in Rhipicephalus microplus ticks and 
cattle from Minas Gerais State in Brazil, Rhipicephalus geigyi from Mali, and R. microplus and Haemaphysalis sulcata 
from Pakistan. This finding contributes to our knowledge regarding susceptible hosts species for B. theileri. More studies 
are necessary to understand the potential effects of B. theileri on tapir’s health.
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a causative of fever, apathy and anorexia in cattle (Theiler 
1904), it has been also reported in horses (Theiler 1904; Van 
Heerden and Reyers 1984) and small ruminants (Theiler 
1904, 1905; Auoadi et al. 2017).

Molecular diagnosis has expanded the understanding 
of the epidemiology of B. theileri infections, allowing the 
description of new hosts and geographical locations for this 
agent. Up to now, this agent has been molecularly detected 
in raccoon dogs (Nyctereutes procyonoide) in Korea (Kang 
et al. 2018), impalas (Aepyceros melampus) in Zambia (Qiu 
et al. 2021) and rodents (Rattus rattus) in Thailand (Takham-
punya et al. 2021). Additionally, genotypes closely related 
to B. theileri were detected in sika deer (Cervus nippon), 
wild boars (Sus scrofa), and one raccoon (Procyon lotor) 
in Japan (Furuno et al. 2017). Regarding tick vectors, DNA 
from B. theileri was detected in a pool of Amblyomma and 
Rhipicephalus (Boophilus) ticks in Ethiopia (Cutler et al. 
2012) and in Rhipicephalus spp. ticks from Pakistan (Khan 
et al. 2023).

In South America, reports of B. theileri are restricted to 
ticks and cattle (Faccini-Martínez et al. 2022). Occurrence 
of this agent was molecularly confirmed in Rhipicephalus 
microplus collected from horses and cattle from southeast-
ern Brazil (Yparraguirre et al. 2007; Cordeiro et al. 2018). 
Moreover, detection is also reported in cattle blood samples 
from southeastern, midwest and northern Brazil (Paula et 
al. 2023; Figueiroa et al. 2023), Argentina (Morel et al. 
2019) and Colombia (Ramires-Hernández et al. 2022). To 
date, there are no reports of B. theileri in wildlife in South 
America. The present study aimed to describe the molecu-
lar detection of B. theileri in wild tapirs (Tapirus terrestris) 
from Pantanal region (Mato Grosso do Sul State) in Brazil.

Materials and methods

Sampling

Between 2013 and 2018, a total of 122 blood samples 
from free-living (n = 94) and road-killed (n = 5) wild tapirs 
were collected for health assessment purposes. Out of 
these animals, 61.6% (61/99) were sampled in Pantanal 
biome whereas 38.4% (38/99) were sampled in Cerrado 
biome (both biomes located in Mato Grosso do Sul State). 
All road-killed animals were sampled in Cerrado biome. 
Sampled animals were 49.5% (49/99) femalces and 50.5% 
(50/99) males, and 53.5% (53/99) adults (> 48 months old) 
and 46.5% (46/99) sub-adults (< 48 months old).

Sampling of free-living animals was performed dur-
ing tapir anesthesia for the installation of GPS collars by 
professionals from the “Iniciativa Nacional para a Conser-
vação da Anta Brasileira (INCAB-IPÊ)” (Lowland Tapir 

Conservation Initiative (LTCI-IPÊ). Detailed information 
about sampling procedures and study areas were described 
elsewhere (Mongruel et al. 2022a).

The study was approved by the Ethics Committee for 
Animal Experimentation of FCAV/UNESP (Faculty of 
Agricultural and Veterinary Sciences of the São Paulo State 
University) under protocol number 4558/20. The “Insti-
tuto Chico Mendes de Conservação da Biodiversidade 
(ICMBIO)” provided the required annual permits for the 
capture and immobilization of tapirs and collection of bio-
logical samples (SISBIO# 14,603). All protocols for the 
capture, anesthesia, handling, and sampling of tapirs have 
been reviewed and approved by the Veterinary Advisors 
of the Association of Zoos and Aquariums (AZA) — Tapir 
Taxon Advisory Group (TAG), and the Veterinary Commit-
tee of the IUCN SSC Tapir Specialist Group (TSG).

DNA extraction and amplification of mammals’ 
endogenous gene

DNA extraction was performed individually on each tapir 
blood sample, without making pools, using a commercial kit 
(InstaGene™ Matrix, Biorad®, Hercules, CA, USA), fol-
lowing the manufacturers’ instructions. Conventional PCR 
(cPCR) assays for the mammalian endogenous genes glyc-
eraldehyde-3-phosphate dehydrogenase (gapdh) (450 bp) 
(Birkenheuer et al. 2003) and interphotoreceptor retinoid-
binding protein (irpb) (227 bp) (Ferreira et al. 2010) were 
performed to ensure DNA recovery from blood samples. 
Samples that did not yield amplicons in either of the PCR 
protocols were excluded from the subsequent analysis.

Molecular assays

Screening of positive samples was performed using a quantita-
tive real-time (qPCR) assay based on the 16 S rRNA gene from 
Borrelia sp., with a detection limit of approximately 10–20 
copies of the fragment (Parola et al. 2011). Each DNA sample 
was independently evaluated in duplicates and samples that 
presented differences in Cq values higher than 0.5 were retested 
in triplicate. For the construction of the standard curve of each 
reaction, serial dilutions were performed at different concen-
trations (2.0 × 107 to 2.0 × 101 copies) of a plasmid encoding 
a conservative fragment of the 16 S rRNA gene from Borrelia 
sp. (pIDTSMART; Integrated DNA Technologies, Coralville, 
IA, USA). These plasmids were also used as positive controls. 
The number of plasmid copies was determined by the formula 
(XG/µL DNA/ [Plasmid Length (BP) × 660]) × 6. 22 × 1023 × 
plasmid copies/µL. The amplification efficiency (E) was calcu-
lated according to the slope of the standard curve using the for-
mula E = 10−1/slope (Bustin et al. 2009). Ultra-purified sterilized 
water (Nuclease-Free Water, Promega®, Madison, Wisconsin, 
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United States) was used as a negative control for each reac-
tion performed. The qPCR assays were carried out in a C1000-
CFX96 thermocycler (BIORAD, Hercules, CA, USA).

Positive samples in the qPCR assay were subjected to 
cPCR assays to allow characterization of fragments from 
16 S rRNA (Marti Ras et al. 1996) and flaB (flagellin) genes 
(Stromdahl et al. 2003). A positive sample for Borrelia 
anserina (Ataliba et al. 2007) was used as positive control 
and ultra-purified sterilized water (Nuclease-Free Water, 
Promega®, Madison, Wisconsin, United States) was used as 
a negative control for all reactions. Fragment sizes, primer 
sequences, qPCR hydrolysis probes and annealing tempera-
ture used herein are described in Table 1.

Cloning and sequencing assays

Amplicons obtained in the cPCR assays were cloned using 
pGEM®-T Easy System (Promega, Madison, WI, USA), 
following the manufacturer’s recommendations. DNA and 
vector concentrations used in the ligation reaction were 
determined to obtain an insert: vector ratio of 3:1. The DNA-
binding reaction consisted of adding 40 ng of insert (ampli-
con), 5 µL buffer, 1 µL of pGEM-T Easy vector, 1 µL of 
T4 Ligase enzyme and sterilized water q.s.p. Solutions were 
kindly mixed and incubated at 4 °C for 16 h. Then, 50 µL 
of competent Escherichia coli DH5α cells (109–1010 CFU/
ng DNA) was added to the 10 µL ligation reaction. The mix 
was kept in ice for 30 min, followed by thermal shock, where 
microtubes were placed into a water bath at 42 °C for 2 min. 
Then, 100 µL of SOC (Super Optimal broth with Catabolite 
repression – Tryptone; Yeast Extract; NaCl; KCl; MgCl2; 
MgSO4; glucose [ThermoFisher Scientific, Waltham, MA, 
USA]) was added, and cells were incubated at 37 °C for 
1.5 h, under the agitation of 200 rpm. Subsequently, 250 µL 

of this medium was added to Petri plates containing agar 
LB (Luria Bertani medium - Tryptone; Yeast Extract; NaCl; 
distilled water q.s. [ThermoFisher Scientific, Waltham, 
MA, USA]) medium prepared with 100 µg/mL ampicillin, 
40 µl X-gal (5-bromo-4-chloro-3-indolyl-β-Dgalactoside; 
0.026%) and 20 µL IPTG (isopropylthio-β-galactoside; 
0.82 mM). Plates were incubated at 37 °C for approximately 
20 h.

Colonies of bacteria containing the inserts (white colonies) 
were transferred to tubes containing 5 mL of broth LB medium 
and incubated at 37 °C for 20 h, followed by plasmid DNA 
extraction using Wizard® Plus SV Minipreps DNA (Promega, 
Madison, WI, USA). Purified plasmids were sequenced using 
the BigDye™ Terminator v3.1 Cycle Sequencing Kit (Thermo 
Fisher Scientific™, Waltham, MA, USA) and ABI PRISM 
3730 DNA Analyzer (Applied Biosystems™, Foster City, CA, 
USA) (Sanger et al. 1977), at the “Centro de Recursos Biológi-
cos e Biologia Genômica - CREBIO” (Faculdade de Ciências 
Agrárias e Veterinárias/FCAV, UNESP, Jaboticabal, SP, Bra-
zil). For sequencing, primers  G T A A A A C G A C G G C C A G-3′) 
and M13-R(5′- C A G G A A A C A G C T A T G A C-3′) flanking the 
multiple cloning site (M13) of the pGEM®-T Easy plasmid 
(Promega), which includes the target gene inserts, were used 
(Lau et al. 2010).

Phylogenetic reconstruction

Obtained sequences were first submitted to a screening 
test using Geneious 11.1.3 software (hhtp://www.geneious.
com) to evaluate the electropherogram quality and gener-
ate the consensus sequences. The BLASTn online program 
(National Center for Biotechnology Information, Bethesda, 
MD, USA (Altschul et al. 1990) was used to analyze the 
nucleotide sequences aiming to browse and compare with 

Table 1 Description of gene and size fragment, primer sequences, annealing temperature and reference of the qPCR and cPCR assays used in the 
present study
Gene and total 
fragment size

Primer Sequence Annealing 
temperature
(oC)

Reference

 16 S rRNA
 (qPCR)
 148 bp

Bor16S3-F 5’- A G C C T T T A A A G C T T C G C T T G T A G-3’ 60
Bor16S3-R 5’- G C C T C C C G T A G G A G T C T G G-4’ Parola et al. 2011
Probe Bor16S3P [6FAM]  C C G G C C T G A G A G G G T G A A C G G

 16 S rRNA
 (cPCR)
 1489 bp

1st Round FD3 (F) 5’- A G A G T T T G A T C C T G G C T T A G-3’ 55
T50 (R) 5’- G T T A C G A C T T C A C C C T C C T-3’

2nd Round FD3 (F) 5’- A G A G T T T G A T C C T G G C T T A G-3’ 56
16s-1 (R) 5’- T A G A A G T T C G C C T T C G C C T C T G-3’ Marti Ras et al. 1996

3rd Round 16s-2 (F) 5’- T A C A G G T G C T G C A T G G T T G T C G-3’ 56
T50 (R) 5’- G T T A C G A C T T C A C C C T C C T-3’

4th Round Rec4 (F) 5’- A T G C T A G A A A C T G C A T G A-3’ 54
Rec9 (R) 5’- T C G T C T G A G T C C C C A T C T-3’

flaB
 (cPCR)
 665 bp

FlaRL (F) 5’- G C A A T C A T A G C C A T T G C A G A T T G T-3’ 55 Stromdahl et al. 
2003

FlaLL (R) 5’- A C A T A T T C A G A T G C A G A C A G A G G T-3’

1 3

2769

http://www.geneious.com
http://www.geneious.com


Veterinary Research Communications (2024) 48:2767–2774

from the molecular assays conducted here were summarized 
in Table 2.

A ML tree was constructed based on a total alignment 
of 615 bp containing 37 homologue flaB sequences and 
TPM3 + F + G4 as an evolutionary model. Sequences of 
representatives from LG (B. burgdorferi – DQ016625) and 
REG (Borrelia turcica - AB109246; Borrelia tachyglossi 
- KY586966) were used as outgroups. Sequence obtained 
from T. terrestris grouped with B. theileri sequences 
detected in R. microplus ticks in Brazil (MG601737, 
EF141022), cattle from Brazil (OQ344270, OQ344269, 
OQ344268, ON191583), R. geigyi from Mali (KF569936), 
R. microplus from Pakistan (OR574986), R. microplus from 
cattle in Colombia (PP262609) and Haemaphysalis sulcata 
from Pakistan (OR574985). The B. theileri-clade presented 
a separation in two minor sub-clades with high bootstrap 
values (100) (Fig. 1).

Although 2/99 tapirs showed positive results in the qPCR 
protocol for Borrelia spp., amplification and sequencing of 
additional genes, and consequently confirmation of the agent, 
were possible for only one (1.01%; 1/99) positive tapir.

Discussion

We described herein the first evidence of B. theileri occur-
ring in a wild animal in Brazil. The lowland tapir is consid-
ered the largest terrestrial mammal from Brazil and the last 
representative of Neotropical mega-herbivores (Thoisy et 
al. 2010). Although this mammal species is currently found 
in four different biomes in the country, it is classified as vul-
nerable for extinction due factors linked to human activities 
(e.g. illegal hunting, wildfires, road-kills and land competi-
tion) (Medici et al. 2012).

Recently, lowland tapirs have been reported as hosts for 
different blood-borne and vector-borne agents, including 
Trypanosoma terrestris (Acosta et al. 2013), ‘Candidatus 
Mycoplasma haematoterrestris’, ‘Candidatus Mycoplasma 
haematotapirus’ (Mongruel et al. 2022a), piroplasmids 
(Gonçalves et al. 2020; Silva et al. 2021; Mongruel et al. 
2022b) and Bartonella sp. (Mongruel et al. 2023). This is 
the first detection of Borrelia spp. in animals of the genus 
Tapirus. Although serological studies conducted in Ger-
many evidenced the exposure to B. burgdorferi sensu lato 

sequences from GenBank international database (https://
www.ncbi.nlm.nih.gov/genbank/). Consensus sequences 
obtained in the current study and those retrieved from Gen-
Bank were aligned using a MAFFT online software (https://
mafft.cbrc.jp/alignment/server/) (accessed on 3 March 
2024). Phylogenetic inferences were based on Maximum 
Likelihood (ML) which was carried out using the IQ-TREE 
on ACCESS tool via CIPRES portal (https://www.phylo.
org, accessed on 3 March 2024) (Miller et al. 2010) and for 
both best-fit model (following Bayesian Inference Crite-
ria) determination and tree reconstruction. Clades’ support 
was evaluated using bootstrap analysis of 1000 repetitions. 
Trees were recovered and edited using FigTree v1.3.1. soft-
ware (Rambaut 2010).

Results

All DNA blood samples successfully amplified at least one 
of the tested endogenous genes and were considered suit-
able for the further analysis. Two (2/99; 2.0%) animals 
from Pantanal biome were positive in the qPCR for Bor-
relia spp. The Efficiency, R2, Y-intercept and Slope values 
of the qPCR assays ranged from 92.3 to 99.8%, 0.997 to 
1.000, 36.612 to 38.896 and − 3.349 to -3.520, respectively. 
Quantification values obtained for positive samples were 
described in Table 2.

The two positive samples in the qPCR assay were negative 
for the cPCR 16 S rRNA assay tested herein. Regarding the 
flab assay, only one sample (animal ID WE-P-1) amplified 
bands of expected size. Amplicons from this sample were 
successfully cloned and sequenced. A sequence of 593 bp 
from Borrelia spp. flaB gene was obtained and compared 
with sequences deposited in the GenBank database using 
the BLASTn software. The tapir-related sequence showed 
identity values of 99.66% (query cover: 99%; E-value: 
0.0) with a sequence from B. theileri detected in R. micro-
plus collected from a horse in Brazil (EF141022), 99.65% 
(Query cover: 96%; E-value: 0.0) with B. theileri from R. 
microplus collected from cattle in Colombia (PP262609) 
and 98.65% (Query cover: 100%; E-value: 0.0) with B. thei-
leria from cattle in Goiás State, Brazil (ON191583). The 
sequence identified in the present study was deposited in the 
GenBank database under access number PP259188. Results 

Table 2 Information (ID and location) of tapirs positive for Borrelia sp. and results obtained in qPCR for 16 S rRNA gene and cPCR for flaB gene
Animal 
ID

Location Sex/Age qPCR 16 S rRNA qPCR
Quantification
(fragment of 16 S rRNA copy numbers/µL)

Quantification cycle
(Cq)

cPCR flaB

WE-P-1 Pantanal Female/sub-adult + 1.020 × 101

9.412 × 100
32.86
32.98

+

NAO-P Pantanal Male/adult + 1.358 × 100

1.673 × 100
38.43
38.11

negative
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The 1.01% prevalence found in the present study is within 
the range reported by previous studies, including 1.0-
1.52% for cattle (Paula et al. 2023; Figueiroa et al. 2023), 
and 0.25-2.0% for R. microplus collected from horses and 
cattle (Yparraguirre et al. 2007; Cordeiro et al. 2018). Fur-
thermore, attempts to characterize additional target genes 
through cPCR was successful for only one positive sample 
and one molecular marker (flaB). These results might be due 
the low levels of bacteremia found in the sampled animals, 
evidenced by the low quantification values estimated by the 
qPCR assay.

(s.l.) in captive T. terrestris (Stoebel et al. 2003), the occur-
rence of cross-reactivity between antibodies produced by B. 
theileri and whole-cell B. burgdorferi antigens is described 
(Rogers et al. 1999) and must be considered during the 
interpretation of serological results using crude antigens. In 
this scenario, evidence of B. theileri exposure may be mis-
interpreted. In South America, the molecular screening of 
B. burgdorferi s.l. in Amblyomma spp. ticks collected from 
Andean tapirs (Tapirus pinchaque) from Ecuador resulted in 
negative results (Pesquera et al. 2015).

Molecular detection of B. theileri in Brazil has only 
been reported previously in cattle and R. microplus ticks. 

Fig. 1 A Maximum Likelihood tree constructed based on a 615 bp 
fragment of the flaB gene and TPM3u + F + G evolutionary model. 
Sequence from the present study is highlighted in bold. The clade 
formed containing Borrelia theileri sequences is highlighted in green. 

Sequences of B. burgdorferi (DQ016625), B. turcica (AB109246) and 
B. tachyglossi (KY586966) were used as outgroups (highlighted in 
blue). Only bootstraps values > 50 are shown
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to our knowledge regarding susceptible hosts species for B. 
theileri. More studies are necessary to understand the poten-
tial effects of B. theileri on tapir’s health.
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Clinical manifestations associated with B. theileri infec-
tion are usually non-specific. Classically, this pathogen has 
been described as a causative of fever (Theiler 1904) and 
other non-specific clinical signs, such as apathy, rough hair 
coat, and pallor of mucous membranes in cattle (Sharma 
et al. 2000; Cordeiro et al. 2018). A study with cattle from 
Cameroon demonstrated a statically significant correlation 
between B. theileri infection and anemia (Abanda et al. 
2019). Moreover, cattle presenting reduced milk produc-
tion and food consumption were found to be positive for B. 
theileri in Brazil (Figueiroa et al. 2023). However, animals 
with subclinical infection have also been reported (Paula 
et al. 2023). Co-infection with B. theileri and other vector-
borne agents have been reported reported favoring clinical 
alterations (Abanda et al. 2019; Figueiroa et al. 2023). The 
B. theileri-positive blood sample from the present study 
also amplified fragments from hemotropic Mycoplasma 
spp. (hemoplasmas) 16 S rRNA (Mongruel et al. 2022a), 
but the presence of clinical signs due to this coinfection is 
unknown.

The tick species R. microplus is described as the primary 
vector for B. theileri in South America (Faccini-Martínez 
et al. 2022). In fact, R. microplus collected from cattle and 
horses from Minas Gerais (Yparraguirre et al. 2007) and Rio 
de Janeiro (Cordeiro et al. 2018) states and infested cattle 
from Goiás (Paula et al. 2023), Minas Gerais and Pará states 
(Figueiroa et al. 2023) were reported to be infected by B. 
theileri in Brazil. Moreover, this tick species has also been 
reported infesting tapirs from Pantanal, as a consequence of 
land sharing between tapirs and cattle (Labruna et al. 2021).

The phylogenetic analysis confirmed the identity of 
the sequence detected within the B. theileri clade. More-
over, this clade was divided in two minor clades, with 
high support value (100): one containing B. theileri strain 
C5 (MG601737) and related sequences, and other one 
containing B. theileri strain BR (EF1401022) and related 
sequences, including the sequence obtained from a tapir. 
The sequence from strain B. theileri C5 was obtained from 
an engorged female R. microplus hemolymph. The tick was 
collected from apparently healthy bovines maintained in 
Rio de Janeiro State, Brazil (Cordeiro et al. 2018). Sequence 
from B. theileri BR strain was obtained from R. microplus 
collected from a horse in Minas Gerais State, Brazil (Ypar-
raguirre et al. 2007). This pattern of two major clades being 
formed was also observed in phylogenetic reconstructions 
inferred before using this same gene fragment (Paula et al. 
2023; Figueiroa et al. 2023; Khan et al. 2023). More stud-
ies are necessary to understand if there are any differences 
among strains regarding the division of the B. theileri clade 
observed here.

We report the first documented occurrence of B. theileri 
in a wild tapir from South America. This finding contributes 
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