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and the disease affects both human and animal health. The 
genus Anaplasma (order Rickettsiales, family Anaplasma-
taceae) includes the species of A. marginale, A. centrale, A. 
bovis, A. platys, A. ovis, A. capra and A. phagocytophilum, 
the last three of which cause infection in sheep (Friedhoff 
1997; Dumler et al. 2001; Liu et al. 2012).

Anaplasma capra is a tick-borne pathogen discovered for 
the first time in China in 2012 (Liu et al. 2012). In Northern 
China, Anaplasma organisms identified from asymptom-
atic goats considered to be pathogenic in humans and were 
provisionally named as Anaplasma capra in 2015 based on 
the molecular and phylogenetic data (Li et al. 2015; Liu et 
al. 2012). The clinical manifestation of the species has not 
been clarified, however, fever, headache, weakness, dizzi-
ness, myalgia, chills, rash, eschar, lymphadenopathy, gas-
trointestinal symptoms, and neck stiffness were observed in 
humans (Li et al. 2015). After the first detection of A. capra 
in goats in China, its presence has been detected in goats in 
seven other countries, such as France, Iran, South Korea, 

Introduction

Anaplasmosis is one of the emerging-tick borne diseases, 

  Kursat Altay
kaltay@cumhuriyet.edu.tr

1 Department of Parasitology, Faculty of Veterinary Medicine, 
Sivas Cumhuriyet University, 58140 Sivas, Türkiye, Turkey

2 Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas 
University, 720044 Bishkek, Kyrgyzstan

3 Department of Internal Medicine, Faculty of Veterinary 
Medicine, Bursa Uludag University, 16059 Bursa, 
TÜRKİYE, Turkey

4 Department of Public Health, Faculty of Health Sciences, 
Karamanoglu Mehmetbey University, 70100 Karaman, 
Turkey

5 Department of Parasitology, Faculty of Veterinary Medicine, 
Firat University, 23119 Elazig, Turkey

Abstract
In this study, the presence, prevalence, and genotypes of Anaplasma phagocytophilum, A. ovis, and A. capra in sheep 
were investigated based on 16 S SSU rRNA, groEL, and gtlA gene-specific polymerase chain reaction (PCR), respectively. 
The sequences of the genes were used for detection of the phylogenetic position of the species. Additionally, a restriction 
fragment length polymorphism (RFLP) were carried out for discrimination of A. phagocytophilum and related variants (A. 
phagocytophilum-like 1 and 2). The prevalence of Anaplasma spp. was found as 25.8% (101/391), while it was found that 
A. ovis, A. phagocytophilum-like 1, and A. capra are circulating in the sheep herds in Kyrgyzstan, according to the PCRs, 
RFLP and the partial DNA sequencing results. The positivity rates of A. phagocytophilum-like 1, A. ovis, and A. capra 
genotype-1 were 6.9, 22.5, and 5.3%, respectively. A total of 32 (8.2%) sheep were found to be mix infected. Moreover, 
phylogenetic analyses and sequence comparison with those available in the GenBank showed that A. capra formed two 
distinct genetic groups (A. capra genotype-1 and A. capra genotype-2). Considering the zoonotic potential of these spe-
cies, it may be necessary to make changes in the interpretation of anaplasmosis cases in animals and there is a need for 
further studies to determine the pathogenicity of the species/genotypes circulating in animals.
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Kyrgyzstan, Malaysia, Spain, and Türkiye (Koh et al. 2018; 
Jouglin et al. 2019; Wei et al. 2020; Miranda et al. 2021; 
Staji et al. 2021; Altay et al. 2022a, b; Remesar et al. 2022). 
The novel species has been detected in humans, sheep, 
cattle, dog, wild animals (e.g. Korean water deer (Hydro-
potes inermis argyropus), forest musk deer (Moschus ber-
ezovskii), takin (Budorcas taxicolor), Persian onegar (Equus 
hemionus onager), Reeves’s muntjacs (Muntiacus reevesi), 
serows (Capricornis crispus), and ixodid tick species such 
as Ixodes persulcatus, Dermacentor everestianus, Haema-
physalis longicornis, H. qinghaiensis, and Rhipicephalus 
microplus (Li et al. 2015; Fang et al. 2015; Yang et al. 2016; 
Qin et al. 2018; Guo et al. 2018, 2019; Amer et al. 2019; 
Han et al. 2019; Lu et al. 2022). Although the existing litera-
ture may interpret A. capra as a global pathogen, researches 
that will contribute to the understanding of its epidemiol-
ogy and genetic diversity are still required, as it is a newly 
defined species.

Anaplasma phagocytophilum causes human granulocytic 
anaplasmosis, canine granulocytic anaplasmosis, equine 
granulocytic anaplasmosis, and tick-borne fever, in humans, 
dogs, horses, and ruminants, respectively (Karshima et al. 
2022). As a result of recent phylogenetic analyses based 
on sequences of different genes such as 16 S SSU rRNA, 
gltA, and groEL, two A. phagocytophilum-related variants 
have been identified in cattle, Cervus nippon, and ixodid 
ticks from Japan, and in Hyalomma asiaticum and small 
ruminants from China. These variants were described as 
A. phagocytophilum-like 1 and A. phagocytophilum-like 2, 
respectively (Ohashi et al. 2005; Kawahara et al. 2006; Jil-
intai et al. 2009; Yoshimoto et al. 2010; Kang et al. 2014; 
Yang et al. 2015; Ben Said et al. 2015, 2017).

Anaplasma ovis is the most prevalent Anaplasma spe-
cies of sheep in the world, which also infects goats and wild 
ruminants (Friedhoff 1997; Dumler et al. 2001). Anaplasma 

ovis is transmitted by Rhipicephalus bursa and other ticks in 
the Old World, while Dermacentor species are vectors of A. 
ovis in the western United States (Friedhoff 1997). Although 
there is some evidence suggesting that A. ovis may cause 
zoonotic infections like A. phagocytophilum, these are 
very limited and need to be clarified. To date, A. ovis DNA 
has only been detected in a symptomatic human patient in 
Cyprus (Chochlakis et al. 2010) and an asymptomatic per-
son in Iran (Hosseini-Vasoukolaei et al. 2014).

In this study, the presence, prevalence, and genotypes 
of A. phagocytophilum, A. ovis, and A. capra were investi-
gated in sheep from Kyrgyzstan based on 16 S SSU rRNA, 
groEL, and gtlA gene-specific polymerase chain reaction 
(PCR), restriction fragment length polymorphism (RFLP) 
and sequencing.

Materials and methods

Collection of blood samples and DNA extraction

This study was conducted in five regions (Chuy, Talas, Jalal-
Abad, Naryn, Issyk-Kul) of Kyrgyzstan (Fig. 1). Blood 
samples from sheep were collected between June, 2017 and 
September, 2018 from 34 sheep flocks. A total of 391 blood 
samples were taken into collection tubes with EDTA from 
randomly selected 22 different sheep flocks. Between 9 and 
20 blood samples were collected from each flock. The ani-
mals were clinically healthy and at least 8 months age sheep 
and stored at -20 °C, until DNA isolation.

Total genomic DNA was extracted from EDTA-treated 
blood samples using commercial extraction kit (PureLink 
Genomic DNA kit, Cat. No.: K1820-02, Invitrogen, Carls-
bad, USA), according to the manufacturer’s instructions. 
During the DNA extraction, positive (A. capra positive 

Fig. 1 Location and regions of 
Kyrgyzstan. Sampling regions 
were shown with triangles
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sheep blood sample, Accession number: OK267268, Altay 
et al. 2022b) and negative (DNase-RNase-free sterile water, 
Cat No.: 129,114, Qiagen®, Germany) samples were used 
in order to avoid false positive or negative results. Extracted 
total DNA samples were diluted with 200 µl DNA elution 
buffer and stored at -20 °C until use.

Polymerase chain reaction (PCR)

In order to investigate the presence of A. phagocytophilum 
and related variants (A. phagocytophilum-like 1 and 2), 
A. ovis, and A. capra in sheep from Kyrgyzstan, the DNA 
of 391 blood samples were screened for 16 S SSU rRNA, 
groEL, and gltA genes by PCR, respectively. The primers 
used in this study are listed in Table 1.

The PCR assays were performed as described before 
(Kawahara et al. 2006; Haigh et al. 2008; Li et al. 2015; 
Yang et al. 2016), and the genomic DNA of A. phagocytoph-
ilum (GenBank accession no: JF807995, Altay et al. 2014), 
A. ovis (HE580282, Altay et al. 2014)d capra (MW672115, 
Altay et al. 2022a) were used as the positive controls, and 
DNase-RNase-free sterile water (Cat No.: 129,114, Qia-
gen®, Germany) was used as the negative control in the 
PCRs.

PCR products were loaded on 1.6% agarose gel contain-
ing ethidium bromide and visualized under UV transillumi-
nator. The DNA extraction, PCR, and gel electrophoresis 
were performed in separate compartments of the laboratory 
to minimize the risk of contamination.

Discrimination Anaplasma phagocytophilum and 
related variants (A. phagocytohilum-like 1 and 2) 
based restriction of 16 S SSU rRNA genes with XcmI 
and BsaI

A polymerase chain reaction-restriction fragment length 
polymorphism (PCR-RFLP) was performed to discriminate 
between A. phagocytophilum, A. phagocytophilum-like 1 
and 2. After a 641/642 bp of the 16 S SSU rRNA gene of 
A. phagocytophilum and/or related variants (like 1 and 2) 
were amplified with SSAP2f and SSAP2r primers, the PCR 
products were digested with XcmI and BsaI enzymes as pre-
viously described (Ben Said et al. 2017; Aktas and Colak 
2021).

The expected RFLP band profiles of A. phagocytophilum 
digested with XcmI are 344 and 297 bp. XcmI does not cut 
A. phagocytophilum-like 1 and 2. On the other hand, the 
expected RFLP band profiles of A. phagocytophilum-like 
2 digested with BsaI are 219 and 422/423 bp. BsaI does 
not cut A. phagocytophilum and A. phagocytophilum-like 
1. In the A. phagocytophilum-like 1 and 2 mix infections, 
band profiles of 219, 422/423 and 641/642 bp are expected 
in BsaI restriction (Ben Said et al. 2017; Aktas and Colak 
2021). The confirmation of RFLP results were carried out 
with the sequence analysis.

Sequencing and phylogenetic analysis

The 21 of A. capra, three of A. phagocytophilum-like 1, and 
two of A. ovis PCR positive samples were sequenced. To 
perform sequence analysis, the PCR products were puri-
fied from agarose gel using a commercial gel extraction kit 
(PCR Clean-Up & Gel Extraction Kit, GeneDireX®, Cat.
No.: NA006-0300), according to the manufacturer’s recom-
mendations. The SSAP2f/r and the inner primer pairs listed 
in Table 1 used for sequencing of 16 S SSU rRNA gene 
of A. phagocytophlum-like 1 and gltA gene of A. capra, 
respectively. A part of 16 S SSU rRNA gene of A. ovis were 
sequenced using one set of primers (16S8FE and B-GA1B) 
which is specific 492–498 bp fragment of the 16 S SSU 
rRNA gene, spanning the V1 region of Anaplasma and 
Ehrlichia species (Schouls et al. 1999).

Sequencing was performed using ABI 3730XL analyzer 
(Applied Biosystems, Foster City, CA) and BigDye Termi-
nator v3.1 Cycle sequencing kit (Applied Biosystems, Fos-
ter City, CA).

The consensus sequences in this study were determined 
using the MUSCLE algorithm of MEGA-X software 
(Kumar et al. 2018). These consensus sequences were com-
pared with sequences present in the GenBank to determine 
nucleotide similarities with the BLAST algorithm. The 

Table 1 Primers used for amplification of the 16 S SSU rRNA, groEL, 
and gltA gene of A. phagocytophilum and related variants (A. phagocy-
tohilum-like 1 and 2), Anaplasma ovis and Anaplasma capra, respec-
tively
Target 
gene

Primer 
name

Primer sequence (5’-3’) Species Refer-
ence

16 S 
SSU 
rRNA

SSAP2f GCTGAATGT 
GGGGATAATTTAT

A.phago-
cytophilum 
and related 
variants

Kawa-
hara 
et al. 
2006

SSAP2r ATGGCTGCTTCCTTT 
CGGTTA

groEL JH0011 TAAAAGCCAAGGAG-
GCTGTG

A.ovis Haigh 
et al. 
2008JH0012 TTGCTCTCCTCGAC-

CGTTAT
gltA Outer-f GCGATTTTAGAGT-

GYGGAGATTG
A.capra Li et 

al. 
2015Outer-r TACAATACCGGAGTA-

AAAGTCAA
Inner-f TCATCTCCTGTTG-

CACGGTGCCC
Yang et 
al. 2016

Inner-r CTCTGAATGAACAT-
GCCCACCCT
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Results

Prevalence and distribution of Anaplasma spp. in 
sheep

The result of PCR and RFLP of 391 samples revealed the 
presence of A. phagocytophilum-like 1, A. ovis and A. capra 
in sheep in Kyrgyzstan. The prevalence and frequency of 
A. phagocytophilum-like 1, A. ovis and A. capra is shown 
in Table 2. Overall prevalence of Anaplasma species in 
sheep was found to be 25.8% (101/391) by three different 
species-specific PCR. The most abundant species was A. 
ovis (88/391, 22.5%) followed by A. phagocytophilum-like 
1 (27/391, 6.9%) and A. capra (21/391, 5.3%). Only one 
Anaplasma species was found in 69 sheep, whereas mixed 
infections with two or three species were detected in 32 
sheep in this study. A total of 15 sheep were infected with 
both A. phagocytophilum-like 1 and A. ovis, eight sheep 
were infected with both A. ovis and A. capra whereas six 
sheep were infected with both A. phagocytophilum-like 1 
and A. capra and three sheep were infected with the three 
species.

Discrimination of Anaplasma phagocytophilum 
and related variants A. phagocytophilum-like 1 and 
2

In this study, A. phagocytophilum or related variants were 
detected in 27 samples by PCR (Table 2). All of the 27 
PCR products were analyzed with RFLP using XcmI and 
BsaI restriction enzymes. A. phagocytophilum-like 1 was 
detected in all 27 sample by PCR-RFLP, while A. phagocy-
tophilum and A. phagocytophilum-like 2 were not detected.

To confirm the RFLP results, randomly selected three 
representative samples were sequenced. These sequences 
were submitted to the Genbank, and deposited with acces-
sion numbers: OM540435-OM540437. The sequences 
were 99.83–100% similar to A. phagocytophilum-like 1 
sequences available in the GenBank. The A. phagocyto-
philum-like 1 sequence obtained in this study were 100% 
identical to those of A. phagocytophilum-like 1 detected 
in sheep from Tunisia (KM285230), cattle from Türkiye 
(GU223365), goat from China (OL678408) and Sika deer 
(Cervus nippon) from Japan (JM055357).

Analysis of the gtlA gene sequences for 
determination of A. capra genotypes

All the positive samples (21 samples) were sequenced and 
aligned with A. capra sequences present in the GenBank 
and then all the sequences were deposited in the GenBank, 
as accession numbers: OM100820-OM100840.

sequences from this study were submitted to the GenBank 
database and their accession numbers were obtained.

Phylogenetic analyzes of the sequences identified in this 
study were performed using other gltA and 16 S SSU rRNA 
nucleotide sequences of Anaplasma species available in the 
GenBank. The phylogenetic tree was carried out with maxi-
mum likelihood analysis in Mega X (Kumar et al. 2018). 
The best-fit model for maximum likelihood was considered 
as the Kimura-2 parameter model for gltA and 16 S SSU 
rRNA genes (Kimura 1980) using the Find Best-Fit Sub-
stitution Model in Mega X (Kumar et al. 2018). Bootstrap 
values were performed with 1,000 replicates (Fig. 2).

Table 2 Distribution and frequency of Anaplasma species detected in 
sheep from Kyrgyzstan (n:391)

Number 
of positive 
samples

Anaplasma species
A. phagocyto-
philum-like 1

 A.ovis A.capra

3 + - -
62 - + -
4 - - +
15 + + -
8 - + +
6 + - +
3 + + +

Total 101 (25.8%) 27 (6.9%) 88 (22.5%) 21 (5.3%)

Fig. 2 Phylogenetic tree based on the gltA gene sequences of A. capra 
(OM100820-OM100840) using the maximum likelihood method. 
Numbers at the nodes represent the bootstrap values with 1000 rep-
licates. The evolutionary history was inferred by using the Maximum 
Likelihood method and Kimura 2-parameter model (Kimura 1980). 
Scale bar represents 0.20 substitutions per nucleotide position. Rick-
ettsia ricketsii (Accession number: U59729) was used as an outgroup 
in the tree. Evolutionary analyses were conducted in MEGA X (Kumar 
et al. 2018)

 

1 3

1274



Veterinary Research Communications (2022) 46:1271–1279

deer, swamp deer (Rucervus duvaucelii), Siberian roe deer 
(Capreolus pygargus), takin, Reeve’s muntjac, Forest musk 
deer, D. everestianus, Korean water deer, cattle, and sheep, 
while 68–70 nucleotides differences were observed between 
the sequences from dog, cattle, sheep, goat, human, H. qing-
haiensis H. longicornis, and R. microplus (Fig. 3).

Phylogenetic analysis

The phylogenetic analysis based on the gltA gene revealed 
that A. capra was separated into two clusters, and A. capra 
identified in this study clustered within red deer, swamp 
deer, Siberian roe deer, takin, Reeve’s muntjac, Forest musk 
deer, D. everestianus, Korean water deer, cattle, and sheep 
(Fig. 2).

Anaplasma phagocytophilum-like 1 variant isolated in 
the present study clustered a distinct group with those of 
previously published sequences of A. phagocytophilum-like 
1 (Fig. 4).

In this study, we also determined a partial sequence of 
16 S SSU rRNA gene of A. ovis to validate the PCR results. 
Two sequences of A. ovis were deposited in the GenBank 
under the accession numbers of OM453952 and OM453953. 
The BLAST and phylogenetic analysis of the sequences 
showed that the A. ovis sequences obtained in this study 
were in full compliance with the A. ovis sequences present 
in the Genbank (data not shown).

Discussion

Tick-borne diseases such as anaplasmosis have enormous 
negative effects on the livestock industry almost all over 
the world (Kocan et al. 2010). The prevalence of TBDs 
like anaplasmosis may vary according to multiple factors, 
including sampling seasons, differences in animal feeding 
and husbandry, presence and abundance of ticks and other 
vectors, sampling area (especially climatic and ecological 
factors), host resistance, and sample processing methods 
(Torina et al. 2008; Kocan et al. 2010; Belkahia et al. 2014). 
In this study, the overall prevalence of anaplasmosis in 
sheep was found to be 25.8% (101/391). The prevalence at 
the species level of A. ovis, A. phagocytophilum-like 1 and 
A. capra genotype-1 were determined to be 22.5, 6.9 and, 
5.3%, respectively.

Anaplasma capra is a newly described species which 
has zoonotic character and can infect a wide range of hosts. 
In this study, we investigated the presence and prevalence 
of A. capra in sheep, and genotypes of the species were 
documented for the first time. The results (5.3%) in this 
study were compared with other countries, the prevalence 
of A. capra was lower than that previously found in sheep 

The gltA gene sequences of 21 positive samples obtained 
in this study showed a complete consensus. However, 
BLAST analysis showed that the gtlA sequences of A. capra 
obtained in this study were found 86.01–100% similar to the 
174 A. capra sequences present in the GenBank. There was a 
high homology (98.33–100%) between sequences obtained 
in this study and 27 gltA sequences of A. capra present in 
the GenBank. In contrast, a low homology was determined 
(86.01–86.24%) with 147 sequences present in GenBank. 
Detailed information about nucleotide similarity rates 
between A. capra genotypes was given in Table 3. Addi-
tionally, the sequence alignment results showed that only 
0–7 nucleotides differences emerged between sequences 
obtained from the present study and the sequences from red 

Table 3 The homolog rates between A. capra sequences obtained from 
this study and other A. capra based the gltA gene sequences present in 
GenBank
Accession 
number

Host Country Homol-
ogy 
rates

References

MH084719 Swamp deer France 100% Jouglin et al. 
2019

MH084720 Red deer France 100% Jouglin et al. 
2019

MH094751 Siberian roe 
deer

China 98.70% Wang et al. 
2019

MH192360 Takin China 98.70% Yang et al. 
2018

MH192362 Forest musk 
deer

China 98.52% Yang et al. 
2018

MH192363 Reeve’s 
muntjac

China 98.33% Yang et al. 
2018

LC432155 Korean 
water deer

South 
Korea

98.56% Amer et al. 
2019

MG940872 Derma-
centor 
everestianus

China 98.39% Han et al. 2019

OK267267 Cattle Türkiye 99.25% Altay et al. 
2022b

OK267272 Sheep Türkiye 99.08% Altay et al. 
2022b

MT721147 Cattle South 
Korea

86.24% Miranda et al. 
2021

MG932657 Goat China 86.04% Peng et al. 
2018

KM206274 Human China 86.03% Li et al. 2015
MG869279 Sheep China 86.03% Guo et al. 2018
MH940871 Haema-

physalis 
qinghaiensis

China 86.03% Han et al. 2019

MH029895 Haema-
physalis 
longicornis

China 86.03% Qin et al. 2018

MW428303 Rhipi-
cephalus 
microplus

China 86.03% Lu et al. 2022

MK838609 Dog China 86.01% Shi et al. 2019
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collected from clinically healthy animals and no ticks were 
collected from sheep in the sampling process. The patho-
genicity of A. capra is not clear among animal host, and 
a research conducted by Jouglin et al. (2019) showed that 
A. capra can persist in red deer for four months. The per-
sistently infected animals may serve as reservoirs for vec-
tors, and these animals are important in the epidemiology of 
the pathogens (Kocan et al. 2010; Brown and Barbet 2016). 
In this study, animals infected with A. capra were clini-
cally healthy, and probably these animals were persistently 
infected with A. capra.

With the increase in the number of the hosts in the 
countries where A. capra is detected by molecular studies, 
the sequence registration rate in the GenBank of this spe-
cies also increases. Thus, it is possible to compare differ-
ent A. capra samples genetically. In the present study, 21 
A. capra PCR positive samples were detected by the gltA 
gene sequences. The phylogenetic and BLAST analyses, 
including the A. capra sequences identified in this study and 
sequences present in the GenBank revealed that A. capra 
is divided into two different geno-groups (A. capra geno-
type-1 and A. capra genotype-2) (Figs. 2 and 3). A relation-
ship between these geno-groups, the host, or the region from 
which they were isolated, could not be determined. While 
the similarity rates of 27 A. capra samples in the first group 
and sequences obtained in this study were 98.33–100%, the 
147 A. capra sequences in the second group differ signifi-
cantly from this group and the similarity rate decreases to 
86.01–86.24%. Although the difference between the two 
groups was significant, the homology within the groups was 
quite high (Table 3). A. capra genotype-1 and A. capra gen-
otype-2 are clearly distinguished from each other accord-
ing to the gltA gene sequences compared to other gene 
sequences such as 16 S SSU rRNA and groEL (Unpublished 
data). We think that the naming of these two groups can be 

(16.3%) and goats (12.3%) from China (Yang et al. 2017), 
Korean water deer (13.8%) from Korea (Amer et al. 2019), 
dogs (12.1%) from China (Shi et al. 2019). The A. capra 
prevalence determined in this study was higher than in cattle 
(0.3%) and goats (0.3%) from Korea (Miranda et al. 2021), 
deer (swamp and red deer) (4.5%) from France (Jouglin 
et al. 2019), and cattle (0.3%) from Kyrgyzstan (Altay et 
al. 2022a), but was close to that found in roe deer (5.8%) 
from Spain (Remesar et al. 2022). This work was the first 
to reveal the presence of A. capra in Kyrgyzstan sheep, and 
it will contribute to the understanding of the epidemiology 
of this species in the world. However, further research is 
needed to determine its vectors and the pathogenicity of the 
novel Anaplasma species. In this study, all samples were 

Fig. 4 Phylogenetic tree based on the 16 S SSU rRNA gene sequences 
of A. phagocytophilum- like 1 (OM540435-OM540437) using the 
maximum likelihood method. Numbers at the nodes represent the 
bootstrap values with 1000 replicates. The evolutionary history was 
inferred by using the Maximum Likelihood method and Kimura 
2-parameter model (Kimura 1980). Scale bar represents 0.0050 substi-
tutions per nucleotide position. Anaplasma capra (Accession number: 
LC432126) was used as an outgroup in the tree. Evolutionary analyses 
were conducted in MEGA X (Kumar et al. 2018)

 

Fig. 3 Nucleotide differences in 
the same positions among the 
gltA sequences from Anaplasma 
capra (594 bp)
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