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Abstract
Paratuberculosis is a worldwide chronic enteric disease of ruminants, caused by Mycobacterium avium subsp. paratubercu-
losis (MAP). While MAP has been widely investigated all around the world, little is known about the different strains that 
circulate in each country. This study describes the genetic diversity of MAP isolates from different bovine and deer herds 
from Argentina, analyzed by Multiple-Locus Variable number tandem repeat Analysis (MLVA), as well as the phylogenetic 
relatedness between geographically distant isolates through Whole Genome Sequencing (WGS) and core-genome analysis. 
A total of 90 MAP isolates were analyzed. The results showed seven different MLVA genotypes, with almost 75% of them 
belonging to pattern INMV 1, described in all the herds studied. WGS results suggested the presence of a common INMV 1 
strain circulating throughout the country. Our results allow confirming the coexistence of different strains in time and space 
and the mixed infections identified in some animals. These observations suggest the absence of animal monitoring prior to 
introduction to the herds and the need for a control program in the country. This study represents the first to report WGS of 
MAP strains in Argentina.
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Introduction

Paratuberculosis (PTB) or Johne’s disease is a widespread 
intestinal disorder that causes chronic enteritis. The disease 
is mostly associated to domestic ruminants such as cattle 
(Gopi et al. 2022; Kumar et al. 2020), sheep (Traveria et al. 
2013), deer (Palmer et al. 2019; Paolicchi et al. 2001), goats 
(Fiorentino et al. 2012) and camelids such as alpaca (Sal-
gado et al. 2016), but it is also associated with other wild 
and domestic species such as rabbits (Beard et al. 2001; Fox 
et al. 2018; Shaughnessy et al. 2013), foxes (Matos et al. 
2014) and cats (Kukanich et al. 2013). Argentina has the 
fifth-largest cattle herd worldwide, with great production of 
meat and dairy products (Espeschit et al. 2017). PTB causes 
high economic losses for farmers and is thus an important 
issue for the country (Moreira and Tosi 1995).

The climate and soil conditions of Argentina determine 
that most of the cows are located in the Pampas region, in 
the central-east region of the country, where the seropreva-
lence of PTB ranges from 7.2% to 19.6% (Paolicchii et al. 
2003). In contrast, the seroprevalence of PTB in Tierra del 
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Fuego, the southernmost province of Argentina, is unknown 
and has been considered a bovine tuberculosis-free region 
since 2011 (SENASA 100/2011 resolution), an uncommon 
characteristic in the continent. The potential reason for this 
is that for the past 12 years, no cattle have been introduced 
and animals are born and raised inside this province.

The etiological agent of PTB is Mycobacterium avium 
subsp. paratuberculosis (MAP). This pathogen has a 
strong association to human Crohn’s disease (Singh et al. 
2016; Timms et al. 2016). MAP is one of the most com-
mon non-tuberculous mycobacteria and a member of 
the Mycobacterium avium complex. The most frequent 
route of transmission is the fecal–oral (Gopi et al. 2020), 
but vertical transmission has also been reported (Vasini 
Rosell et al. 2020; Whittington and Windsor 2009). A 
molecular typing technique based on Mycobacterial 
Interspersed Repetitive Unit (MIRU) and Variable Num-
ber Tandem Repeat (VNTR) loci has been developed to 
analyze the genetic polymorphisms among MAP strains 
(Thibault et al. 2007). This technique, also called Mul-
tiple-Locus Variable number tandem repeat Analysis 
(MLVA), is a simple and rapid procedure consisting of 
eight amplifications of different loci and their respective 
runs in agarose gels to show variations in length (num-
ber of repeats) in each locus. This technique could also 
be applied directly to clinical samples, something that is 
particularly desirable for MAP because of the very slow-
growing nature of this organism. Although more accurate 
methods to type microorganisms are available, this MIRU-
VNTR protocol has been the most used worldwide to type 
MAP strains to date (Biet et al. 2012; Fernandez-Silva 
et al. 2011; Gioffre et al. 2015; Imperiale et al. 2017; 
Inagaki et  al. 2009; Radomski et  al. 2010; Stevenson 
et al. 2009; Thibault et al. 2007). On the other hand, the 
Whole Genome Sequencing (WGS) technology can gen-
erate whole genome sequences within a reasonable time 
frame and provide an extreme resolution of the diversity. 
However, although the costs associated with WGS have 
decreased over time, they are still unaffordable for large-
scale studies in developing countries as Argentina.

Based on the above, the aim of this study was to analyze 
the genetic diversity of MAP isolates obtained from bovine 
and deer herds in Argentina by MLVA and to describe the 
phylogenetic relatedness between geographically distant iso-
lates through WGS and core-genome analysis.

Materials and methods

MAP isolates

A total of 90 MAP isolates (Supplementary Table 1) 
obtained between 1990 and 2017 were selected from 

the collection of the Bacteriology Unit of the National 
Institute of Agricultural Technology (INTA)-Balcarce, 
Argentina. Archived samples corresponding to cattle 
(n = 85) and deer (n = 5) and isolated from different 
samples (milk, feces, organs, or tissues) were originally 
obtained by convenience sampling. Isolates were chosen 
to maximize geographical diversity within the dataset. 
The isolates chosen were both from the Pampas region 
(Buenos Aires, Córdoba, Santa Fe, and La Pampa prov-
inces), considered one of the most productive areas of 
the country, and from the southernmost and northern-
most provinces (Salta and Tierra del Fuego respectively), 
where according to the National Service of Animal 
Health (SENASA 2017), productivity is lower (Fig. 1).

DNA extraction and MAP confirmation

Samples were incubated in Herrold’s egg yolk medium sup-
plemented with mycobactin and pyruvate at 37 °C for at least 
2 months until growth. Once colonies were grown, a loop 
was taken and suspended in sterile distilled water. The cells 
were lysed by heat shock at 99 °C for 1 h (Mixing block, 
Bioer) and then centrifuged at 10,000 g for 5 min. Next, 2 
µL of the supernatant was used as template for the PCR reac-
tions. The identity of the isolates was confirmed by IS900-
PCR in 1% agarose gel electrophoresis (Collins et al. 1993). 
High-quality genomic DNA was obtained using mini spin 
columns (Qiagen DNeasy® Blood & Tissue kit), following 
the kit instructions. DNA quality was tested using the Take3 
plate in an Epoch Microplate Spectrophotometer (BioTek).

Genotyping by MLVA

MLVA genotyping was used to test eight different MIRU-
VNTR loci, as previously described (Thibault et al. 2007). 
The loci investigated were VNTR292, MIRUX3, VNTR25, 
VNTR47, VNTR3, VNTR7, VNTR10, and VNTR32. The 
primers and PCR conditions were as previously suggested 
(Thibault et al. 2007), with minor modifications. The mix-
ture consisted of 1X buffer (10 mM Tris–HCl pH 9, 50 mM 
KCl, 0.1% Triton X-100, 2.5 mM MgCl2), 1 µM of each 
primer, 0.2 mM of each dNTP and 1.25U GoTaq polymer-
ase (Promega). The mixture for MIRUX3 was supplemented 
with 2 µL of MgCl2 per reaction, and mixtures for VNTR 
47, 3, 7, 10 and 32 were supplemented with dimethyl sul-
foxide and betaine (Sigma). The annealing temperatures 
were as previously described (Thibault et al. 2007), with 
the exception of VNTR 47, in which, according to a touch-
down protocol, the annealing temperature was decreased 
by 1 °C during the first ten cycles from 69 °C to 59 °C and 
then set at 64 °C for 35 cycles, and VNTR 292, in which 
the annealing temperature was decreased by 2 °C and set at 
56 °C (Gioffre et al. 2015). The PCR products were revealed 

1122 Veterinary Research Communications (2022) 46:1121–1129



1 3

with 3.5% agarose gel electrophoresis using a 100-bp DNA 
marker (INBIO Highway) and a 50-bp DNA marker (Pro-
mega) depending on the size of the expected product. A 
database from the National Institute of Agronomic Research 
in France (INRA) was consulted to search the INMV pat-
tern/type derived from the numerical profile of each isolate 
(http://​mac-​inmv.​tours.​inra.​fr/). DNA from MAP strain 
ATCC 19,698 (INMV 2) was included as a control.

Discriminatory power

The allelic diversity (D) of each locus and the global dis-
criminatory power of the complete MLVA scheme were 
determined using the Hunter and Gaston discriminatory 
index (Hunter 1990; Hunter and Gaston 1988):

where

D = 1 −
1

N(N − 1)

s
∑

j=1

xj(xj − 1)

N	� is the number of unrelated strains tested,

S     �is the total number of different types, and

xj	� is the number of isolates belonging to the jth type. The 
index was calculated using the online software: http://​
insil​ico.​ehu.​es/​mini_​tools/​discr​imina​tory_​power/, Uni-
versity of the Basque Country, Spain.

The relationship between the profiles was determined 
using the goeBURST algorithm (goeburst.phyloviz.net/) 
(Francisco et al. 2009). For this, clonal complexes were 
defined as MLVA linked through single-locus variants. The 
MLVA genotype associated with most single-locus variants 
is considered the founder pattern.

WGS and phylogenetic analysis

The following four of the 85 cattle isolates were selected: 
Map 907-k32 (INMV 1), B35-S34 (INMV 1) and I47-S28 
(INMV 2), all three from Buenos Aires, which represents 

Fig. 1   Geographical origin of 
the isolates and number of herds 
sampled by province
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the more productive region of the country, and Map L80 
(INMV 1) from Tierra del Fuego. High-quality DNA was 
obtained as described above. Paired-end Nextera XT librar-
ies were constructed and sequenced in a MiSeq sequencer 
(2 × 250 bp, Illumina). A quality trimming step was applied 
to raw reads by using Trimmomatic (Bolger et al. 2014). 
De novo assembly was performed using SPAdes v3.11.1 
(Bankevich et al. 2012). Contigs were oriented using Mauve 
(Darling et al. 2004; Rissman et al. 2009) and the genome of 
M. avium subsp. paratuberculosis-K10 (GenBank accession 
number: SAMN02604086) was used as reference.

Fifty-four MAP whole-genome sequences were down-
loaded from GenBank (Supplementary Table 2) to provide 
a global phylogenetic analysis. Roary (http://​sanger-​patho​
ngens.​github.​io/​Roary) (Page et al. 2015) was used to build 
a pangenome including the four Argentinian strains, with a 
threshold of sequence identity ≥ 90%. Core-genome multi-
ple sequence alignment was performed using PRANK and 
a maximum likelihood phylogenetic tree was generated 
using RAxML v8.2.11 (Stamatakis 2014). Node support 
was evaluated with 1,000 bootstraps. The phylogenetic tree, 
geographical location source, and MLVA type were visual-
ized using iTOL v5 (Letunic and Bork 2016).

MLVA of foreign isolates was performed in silico. 
MAP whole-genome sequences from the NCBI database 
were analyzed with the following three different tools to 
obtain a more accurate result: Unipro UGENE (Okone-
chnikov et al. 2012), Primer Map (http://​www.​bioin​forma​
tics.​org/​sms2/​primer_​map) and in silico PCR amplifica-
tion tool (http://​insil​ico.​ehu.​es/​mini_​tools/​PCR/). The 
hybridization of the eight MIRU-VNTR primer pairs and 
the putative product size of each locus were evaluated.

Results

MLVA genotyping

IS900-PCR confirmed all the selected isolates as MAP. 
MLVA of our study sample yielded seven MAP genotypes. 

The dominant subtype, INMV 1 (n = 68), was present in 
all the herds sampled. Other genotypes present included 
INMV 2 (n = 6), INMV 33 (n = 5), INMV 3 (n = 4), INMV 
16 (n = 2) and INMV 13 (n = 1) (Table 1). For three iso-
lates from Pergamino and one from Chivilcoy (both locali-
ties from Buenos Aires province), the analysis of locus 292 
showed two bands corresponding to alleles 3 and 4. The 
overall loci analysis suggested that these animals could be 
infected with two different strains, supported by the pres-
ence of both INMV 1 and INMV 2 genotypes in the herd, as 
observed in Table 2.

One out of four of the MAP isolates from Pehuajó (Bue-
nos Aires province) showed the pattern INMV 13, which 
occurs exclusively in that locality. In the same way, MAP 
isolates from Las Colonias (Santa Fe province) represented 
only INMV 16 type (Table 1 and Fig. 2).

Finally, seven of the twenty-five herds analyzed presented 
more than one pattern (28%). All these herds showed differ-
ent patterns in the same year, indicating the coexistence of 
strains with different genotypes.

Allelic diversity and discriminatory power

The discriminatory power (D) was calculated with 37 non-
epidemiologically related isolates and reached 0.536. With 
regards to the discriminatory power of each locus, loci X3, 
3, and 32 showed no allelic diversity, whereas locus 292 
showed the highest D value with 3 different alleles. These 
results, shown in Table 2, are in concordance with other 
studies (Gioffre et al. 2015; Imperiale et al. 2017).

A cluster analysis was performed to study the relationship 
among MLVA genotypes. The GoeBURST analysis deter-
mined that INVM 2 is the primary founder and all other five 
genotypes are derived from this genotype.

WGS and phylogenetic analysis

The core-genome phylogenetic tree clearly showed the 
presence of two lineages: one clustering the classical cat-
tle type (C-type) strains and the other clustering the sheep 

Table 1   Distribution of INMV 
genotypes classified by the 
number of herds and MAP 
isolates. Data are expressed as 
numbers and percentage over 90 
isolates

INMV group Number of Tandem repeats at eight MIRU-
VNTR loci

Number of 
herds (%)

Number of 
MAP isolates 
(%)

Host

292 X3 25 47 3 7 10 32

INMV1 4 2 3 3 2 2 2 8 30 (100) 68 (74.73) C, D
INMV2 3 2 3 3 2 2 2 8 3 (12) 6 (6.59) C
INMV3 3 2 3 3 2 2 1 8 2 (8) 4 (4.4) C
INMV 13 2 2 3 3 2 2 2 8 1 (4) 1 (1.1) C
INMV 16 3 2 3 3 2 5 2 8 1 (4) 2 (2.2) C
INMV 33 3 2 5 2 2 2 2 8 2 (8) 5 (5.49) C
INMV 1/2 4/3 2 3 3 2 2 2 8 2 (8) 4 (4.4) C
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type (S-type) strains (Fig. 3). All the strains sequenced 
in this study belong to the C-type lineage, where two 
branches could be differentiated. One of them grouped 8 
out of 45 C-type strains from India, South Korea, Egypt, 
and the USA, whereas the other grouped most of the 
C-type strains (37/45). Strains of ovine origin (n = 6) were 
clustered under the same group (S-type) along with two 
strains from camelid hosts. This could be explained by 
horizontal transmission from sheep to other ruminants. 
The four Argentinian strains from our study were clus-
tered into the broad branch of C-type strains. However, 
the INMV 1 strains were grouped together and separated 
from the other Argentinian INMV 2 strain. The INMV 
2 strain studied was related to strains from the USA, 
Germany and Portugal. The in silico MLVA could be 
achieved for 19 out of 54 strains. Despite the incomplete 
data, overall results suggest that MLVA does not appear 

to be in accordance with the clustering obtained with the 
phylogenetic tree.

The statistics of the four Argentinian strains are shown in 
Supplementary Table 3.

Discussion

This study describes the analysis by MLVA and WGS of 90 
MAP strains from Argentina, introducing MAP isolates from 
deer for the first time. The MLVA revealed the presence of 
nine different genotypes in Argentina, with a higher preva-
lence of INMV 1 over others (Gioffre et al. 2015; Imperiale 
et al. 2017 and this study). The prevalence of INMV 1 in the 
region was also reported on a systematic review from Latin 
America and the Caribbean (Correa-Valencia et al. 2021), 
together with INMV 2 and INMV 11. In this study, INMV 3 

Table 2   Allelic frequency of 
tandem repeats in each MIRU-
VNTR over 68 isolates. Isolates 
with INMV 1/2 were excluded 
from this analysis

Allelic frequency of tandem repeats in each MIRU-VNTR

MIRU-
VNTR 
locus

No of isolates with TR copy no Allelic diversity

0 1 2 3 4 5 6 7 8 9

292 1 8 25 0.48
X3 36 0.00
25 34 2 0.11
47 2 34 0.11
3 36 0.00
7 35 1 0.06
10 2 34 0.11
32 36 0.00

Fig. 2   GoeBURST clustering of 
INMV patterns. Different colors 
represent different locations
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was described in the country for the first time, while INMV 
5, INMV 8 and INMV 11, previously reported by Imperiale 
et al. (2017) and Gioffre et al. (2015), were not present in 
any of the 90 isolates. Differences could be due to the fact 

that these four genotypes were found in a low percentage and 
in few herds, making it more difficult to isolate and possibly 
not as widespread as others. Genotype INMV 1 seems to be 
distributed all over the country, and has even reached the 

Fig. 3   Core genome-phylogeny of MAP, Whole-genome sequences obtained in this study are highlighted in light blue. The source, origin, and in 
silico MLVA are included. Accession numbers of all genomes are listed in Supplementary tables 2 and 3
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southernmost province, Tierra del Fuego. This was unex-
pected and of particular interest because Tierra del Fuego 
has been an isolated region considered free of tuberculosis 
since 2011 (SENASA resolution 100/2011) and because this 
is the first case of PTB reported in that region. Core-genome 
phylogenetic analysis demonstrated a close phylogenetic 
relationship between this southern isolate and others. This 
strain from Tierra del Fuego was isolated from a dairy cow 
with clinical PTB, also confirmed by strong positive results 
by ELISA serology. After diagnosis, this animal was culled 
and samples were taken to the laboratory where MAP was 
isolated and genotyped. This is likely an instance of recent 
introduction of a carrier animal to the province. However, 
the management practices in the area do not support this 
hypothesis. Thus, an intermediate host such as wildlife is 
possible (Corti et al. 2021), although underreporting of the 
disease in this region cannot be ruled out.

The main criticism around MLVA typing is the limited reso-
lution between isolates and that the polymorphisms detected do 
not necessarily reflect the phylogenetic relationships between 
strains (Ahlstrom et al. 2015; Bryant et al. 2016). Despite this, 
the MLVA approach allowed us to describe some features of the 
productive system of Argentina. Seven of the twenty-five herds 
analyzed presented more than one strain, which is evidence 
of the genetic diversity of strains within herds. These herds 
showed different patterns in the same year, confirming that the 
simultaneous presence of multiple MAP genotypes is frequent, 
as reported previously (Gioffre et al. 2015; Perets et al. 2022). 
Moreover, a co-infection with two strains within the same ani-
mal was also observed in four isolates from two different herds. 
The coexistence of different strains in the herds strongly sug-
gests the absence of animal monitoring prior to the introduction 
(Ahlstrom et al. 2016). This represents a major risk factor for 
infection in herds and could be easily explained by the absence 
of a control program over the time in the country. The deer 
herds studied shared a common feeding area with beef cows, a 
farming practice that could have led to interspecies infection. 
Previous reports of similar MAP genotypes from deer and cat-
tle in co-grazing conditions provides evidence for interspecies 
transmission (Fritsch et al. 2012). The results obtained in the 
present study support the idea that there is no relation between 
the host and genotype and that MAP can infect a wide variety of 
species, making its eradication from a herd even more difficult 
(Shaughnessy et al. 2013).

A frequent concern about MLVA genotyping is the stabil-
ity of the markers and whether this technique can be trusted 
for epidemiological studies. A previous study showed dif-
ferent genotypes from the same vaccine strain coming from 
different laboratories or batches, not only with MLVA, but 
also with IS900-RFLP (Thibault et al. 2007). Further stud-
ies tested genetic stability under controlled conditions, both 
in vitro and in vivo, and proved that MIRU-VNTR alleles 
remain stable after several passages (Kasnitz et al. 2013), 

not only for MAP isolates, but also other mycobacteria like 
Mycobacterium tuberculosis (Savine et al. 2002). In this 
regard, the use of these MIRU-VNTR loci is plausible, at 
least for short-term analysis. A bibliographical search sug-
gests different dynamics of the strains circulating between 
Argentina and Europe. In Argentina, the frequency of pat-
terns is clearly biased to INMV 1 (Barandiaran et al. 2015; 
Imperiale et al. 2017), whereas in Europe the INMV 2 is 
prevalent (Biet et al. 2012; Stevenson et al. 2009; Thibault 
et al. 2007). This observation could be explained by the dif-
ferent genetic structures of the dominant MAP genotypes, 
the breed of the host, or the combination of both factors.

An alternative to prevent expansion of the disease is the 
adoption of test-and-cull-based control strategies. How-
ever, it must be considered that the presence of wild ani-
mals infected with MAP in the environment could hinder 
the success of control programs, since animals eliminate 
the bacteria in feces, representing a persistent and wide-
spread source of infection (Fox et al. 2018). This empha-
sizes the importance of considering wild animals as res-
ervoirs of the infection in the different environments of 
Argentina, as diverse as the Pampas and Patagonia regions. 
Molecular typing tools could help to support these pro-
grams and thus contribute to maintaining the herd health 
status and strengthening the regional economies of devel-
oping countries as Argentina. This study represents the first 
report of whole-genome sequences of MAP in Argentina.
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