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Abstract
This study investigated the effect of adding platelet-rich plasma (PRP) in semen extender prior cryopreservation on post-thaw 
quality, kinematics, and in vivo fertility of fertile and subfertile buffalo spermatozoa. Eleven buffalo bulls were classified 
based on their conception rate (CR) into fertile (n = 8, CR > 55%) and subfertile (n = 3, CR < 35%) groups. Ejaculates were 
collected with artificial vagina, pooled, and dispensed into 6 aliquots, diluted with Tris-egg yolk-glycerol extender supple-
mented with different proportions of PRP [0% (control), 5%, 10%, 15%, 20%, and 25%] followed by cryopreservation using 
standard procedures. Post-thaw sperm quality, kinematics, antioxidant activity, cryosurvival rate, and in vivo fertility were 
compared between fertile and subfertile groups and among proportions of PRP within each group. The results showed that 
15% PRP greatly (P < 0.001) improved sperm characteristics, average path velocity, and curvilinear velocity of the subfertile 
group. Interestingly, 5%, 10%, and 15% PRP greatly (P < 0.001) reduced malondialdehyde content and improved enzymatic 
(glutathione peroxidase and superoxide dismutase) and total antioxidant capacity in fertile and subfertile groups. However, 
these three proportions of PRP significantly (P < 0.001) improved the cryosurvival rate of the subfertile group; only 15% 
PRP greatly improved CR of subfertile (60.83% vs. 34.17%) animals to be comparable with that of fertile ones treated with 5 
(59.17%) and 10% (60.83%) PRP. In conclusion, adding 15% PRP to semen extender before cryopreservation is recommended 
to improve post-thaw quality, antioxidant activity, and in vivo fertility of buffalo semen particularly of the subfertile animals.
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Introduction

Semen cryopreservation is a simple and practical assisted 
reproduction technique that has been employed worldwide 
to improve the reproductive efficiency of both domestic and 

pet animals. Understanding the mechanisms and challenges 
of bovine semen cryopreservation is an essential prerequisite 
for the success of artificial insemination on a commercial 
basis (Upadhyay et al. 2021). Freezing–thawing procedures 
have been induced some sperm structural and functional 
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damages, such as reduced sperm motility and damage of 
sperm membranes (Gómez-Torres et al. 2017).

Osmotic stress, cold shock, and intracellular ice crystals 
formation, as well as oxidative stress, are implicated in this 
cryodamage (Yeste 2016). As a result, new protective tech-
niques have been investigated and modified, such as adjusting 
buffalo semen extenders by incorporating antifreeze protein 
(Qadeer et al. 2015), antioxidant (Awan et al. 2018), cryopro-
tectant (Almadaly et al. 2019), fatty acid (Ejaz et al. 2020), 
and cholesterol-loaded cyclodextrins (Bishist et al. 2021) to 
ameliorate this inevitable cryodamage. Similarly, animal serum 
(Marco-Jiménez et al. 2006), and platelet-rich plasma (PRP; 
Bader et al. 2020; Yan et al. 2021) were added to European 
eel semen extender and human semen extender, respectively to 
reduce freezing–thawing damage.

PRP has dense granules containing serotonin, ATP, and 
calcium, as reported by Yamakawa and Hayashida (2019). 
These granules are important in the acceleration and control 
of wound healing. Besides, PRP containing α granules that 
have many secretory proteins, which strongly influence the 
healing process such as platelet-derived growth factor, trans-
forming growth factor–β, endothelial growth factor, and fibro-
blast growth factor (FGF) as well as insulin-like growth factors 
(IGF-1 and IGF-2, Chicharro-Alcántara et al. 2018). Notably, 
almost all these aforementioned factors have a positive impact 
on sperm cell quality and fertility (Yan et al. 2021).

Seminal IGF-1 secreted from the Leydig cell and Sertoli 
cell (Roser 2001) has a pivotal role in the spermatogenesis and 
steroidogenesis processes (Lee et al. 2016). There are many 
interesting findings concerning the relationship between high 
IGF-1 concentration in either serum or seminal plasma (SP) 
and male fertility. For instance, it yielded greater fertility in 
stallions (Macpherson et al. 2002), correlated to sperm quality 
and fertility in humans (Lee et al. 2016), and improved sperm 
motility and membrane integrity in buffalo bull (Kumar et al. 
2019, 2021). Thus, quantification of IGF-1 concentration in 
either serum or SP might be beneficial to predict sperm cell 
quality and fertility (Rasheed et al. 2019).

Although bovine semen possesses a natural defense mecha-
nism against oxidative stress, it is thought to be unable to prevent 
lipid peroxidation caused by the cryopreservation process (Patel 
et al. 2016). Further, buffalo spermatozoa are more vulnerable 
to thermal changes associated with freezing and thawing proce-
dures (Rastegarnia et al. 2013), and oxidative stress (El-Khawa-
gah et al. 2020) as well. The incorporation of antioxidants into 
semen extender to neutralize free radicals has been succeeded 
to preserve the metabolic activity and cellular viability of bull 
(Tvrdá et al. 2016), and buffalo (Awan et al. 2018) spermatozoa. 
Based on all these premises, this study aimed to investigate the 
potential effects of adding different proportions of PRP in the 
semen extender before cryopreservation on post-thaw sperm 
characteristics and kinematics, as well as antioxidant activity 
and in vivo fertility of fertile and subfertile buffalo semen.

Materials and methods

All chemicals used were bought from Sigma-Aldrich (St. 
Louis, MO, USA) and were of high purity unless otherwise 
stated.

Experimental animals

In this trial, eleven mature (3 – 4 years old) healthy Egyptian 
buffalo (Bubalus bubalis) bulls were used. Animals were 
classified according to their conception rate (CR) obtained 
following insemination of 330 estrus females during the 
breeding season (September–2019 to March–2020) using 
their freshly processed frozen-thawed straws, into fertile 
(n = 8, CR > 55%) and subfertile (n = 3, CR < 35%, Kumar 
et al. 2012). Also, three hundred and sixty Egyptian buffalo 
cows (4 – 5 years old) with a history of normal calving were 
used for in vivo fertility experiments (September–2020 to 
March–2021) using our frozen-thawed straws supplemented 
or non-supplemented with different proportions of PRP.

All Animals were kept in open yards in Mehalet-Mousa 
Research Station, Kafrelsheikh, Egypt (latitude 31° 06' N 
and longitude 30° 56' E) and fed concentrated food mix-
ture plus roughages according to National Research Council 
(NRC 2001) requirements.

Semen collection and evaluation

Ejaculates were collected twice per week at 07:00 − 08:00 
am using an artificial vagina (40 °C to 42 °C) for 12 consec-
utive weeks (24 ejaculates/animal). Directly after collection, 
the collected ejaculates were observed for color, consist-
ency, and hygienic quality, as well as, ejaculate volume was 
determined. Unhygienic semen samples, and any sample of 
abnormal color and/or consistency were excluded. Sperm 
concentration was estimated (1 ×  106/mL) using a density 
spectrophotometer (SDM-5, Minitub, GmbH, Germany) 
where an aliquot of semen was diluted (1:100) with 0.9% 
sodium chloride (Rashid et al. 2015).

Sperm motility, kinematics, and viability

A computer-aided sperm motion analyzer (CASA; Ham-
ilton–Thorne Biosciences, Beverly, MA, USA) system 
was used to measure sperm motility and kinematics. 
Fast > 80 m/s, medium > 60 m/s, slow > 20 m/s, and static 
speed standards were used to calculate sperm motilities. 
Eight microscopic fields were randomly selected and evalu-
ated by the CASA system for each evaluation. From each 
ejaculate, an aliquot (5 μL) of semen was loaded into a pre-
warmed (37 °C) clean Makler chamber and observed with 
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a 100 × objective to evaluate total motility (%), progressive 
motility (%), average path velocity (VAP, μm/s), straight lin-
ear velocity (VSL, μm/s), curvilinear velocity (VCL, μm/s), 
straightness (STR, %), linearity (LIN, %) and wobble coef-
ficient (WOB, %, El-Khawagah et al. 2020). Eosin-nigrosin 
stained semen smear was examined to estimate the propor-
tion of viable spermatozoa (Mortimer 1994). Two hundred 
spermatozoa were examined under an oil immersion lens 
(1000 ×) where those with white heads were presented as a 
percentage (%) of sperm viability.

Functional plasma membrane integrity

The hypo-osmotic swelling test (HOST) was used to assess 
the functional integrity of the sperm plasma membrane in 
either fertile or subfertile buffalo bulls (Kumar et al. 2015). 
In detail, 100 μL of semen was suspended in 1000 μL hypo-
osmotic solution (150 mOsm/kg; 0.735 g sodium citrate and 
1.351 g fructose in 100 mL Milli-Q water) and incubated 
in a water bath of 37 °C for 30 – 60 min. After incubation, 
sperm tail bending/coiling was assessed by putting 2 μL of a 
well-mixed sample onto a warm slide (38 °C), covered by a 
pre-warmed coverslip, and observed under a phase-contrast 
microscope at 400 × magnifications. After incubation, sperm 
cells with coiled and/or enlarged tails were judged to have 
functional plasma membranes (HOST-positive). The pro-
portion of spermatozoa with abnormal tail morphology was 
determined before HOST and subtracted from the propor-
tion of HOST-positive spermatozoa to obtain the true % of 
HOST-positive spermatozoa.

Acrosome integrity

The fluorescein isothiocyanate-conjugated peanut aggluti-
nin (FITC-PNA) smear staining method was used to deter-
mine acrosome integrity, as described before (Almadaly 
et al. 2012). Briefly, an aliquot (10 μL) of semen was fixed 
for 30 min at room temperature with 4% paraformalde-
hyde, then diluted (1:10) with PBS containing 0.1% poly-
vinyl alcohol and 0.1% polyethylene glycol. Five µL of 
fixed spermatozoa was smeared, air-dried, and permeabi-
lized with 1% (v/v) Triton X-100 at room temperature for 
5 min; then allowed to dry before staining with FITC-PNA 
(20 μg/mL in PBS) in dark space for 30 min at room tem-
perature. Stained smears were rinsed with PBS, air-dried, 
and covered with a coverslip before examination under a 
phase-contrast microscope with fluorescence illumination 
(Olympus, Tokyo, Japan). Intact-acrosome sperm display-
ing more intense, uniform, and demarcated green fluores-
cence in the acrosomal cap, whereas sperm cells showing 
less intense and/or ill-defined fluorescence or even no fluo-
rescence, were classified as damaged-acrosome (Almadaly 
et al. 2012).

Preparation of platelet‑rich plasma (PRP)

On the day of semen collection and under complete asep-
tic condition, PRP was harvested from fresh whole blood 
drawn from the jugular vein of clinically healthy, mature, 
and fertile 5 buffalo bulls. The blood was collected into 
10 mL capacity sterile tubes, containing sodium citrate 
(BD Vacutainer®, Becton Drive, Franklin Lakes, NJ, 
USA; Giraldo et al. 2015). As soon as possible, the col-
lected blood samples were centrifuged at 300 g for 5 min at 
room temperature to separate red blood cells, and then the 
collected plasma was re-centrifuged at 700 g for 17 min to 
collect pure PRP without white blood cells (Nazari et al. 
2016).

Determination of IGF‑1 concentration 
in the collected PRP

The concentration of IGF-1 in PRP collected from fertile and 
subfertile groups was quantified using an immuno-radiomet-
ric assay kit (Immunotech SAS, Marseille Cedex, France) 
after acid–ethanol extraction (16 h at 4 °C) as described by 
Echternkamp et al. (1990) with an intra-assay coefficient of 
variation of 9.2%.

Semen dilution and cryopreservation

One day before semen cryopreservation, Tris-egg yolk-glyc-
erol diluent consisted of 3.028 g Tris, 1.678 g citric acid, 
1.0 g fructose, 20% (v/v) egg yolk, 7% (v/v) glycerol and 
antibiotics; 1 mg/mL streptomycin sulfate, and 1000 IU/mL 
penicillin G sodium was prepared, centrifuged (at 3310 g for 
20 min) and the intermediate portion was collected, kept at 
4 °C overnight and used for semen dilution (Almadaly et al. 
2019) during the cryopreservation procedures.

Immediately after semen collection, the collected ejacu-
lates of either fertile (n = 8) or subfertile (n = 3) group were 
pooled and divided into six equal fractions, and then diluted 
to 80 ×  106 sperm/mL with the intermediate portion of Tris-
egg yolk-glycerol extender supplemented with PRP at differ-
ent proportions: 0% (control), 5%, 10%, 15%, 20% and 25%. 
After being gradually cooled (equilibrated) to 4 °C for 4 h; the 
diluted semen was packed in 0.25 mL polyvinyl labeled straws 
(IMV, L'Aigle, France) with a suction pump in a cold cabinet 
(Minitub, Germany). The straws were frozen at –140 °C in a 
programmed biofreezer (Mini Digit-cool, ZH 400, IMV tech-
nologies, L'Aigle, France) before being immediately immersed 
in liquid nitrogen at –196 °C for storage (Dalal et al. 2018).

Preparation of frozen straws supplemented with differ-
ent proportions of PRP was repeated for 7 occasions. After 
at least 2 weeks of frozen storage, frozen straws (3 straws/
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proportion of PRP/animal group/replicate for 4 replicates) 
were immersed in a water bath of 39 °C for exactly 1 min, 
thoroughly dried, and gently evacuated in 1.5 mL micro-
centrifuge tube (Almadaly et al. 2019) to be examined for 
post-thaw sperm characteristics and kinematics.

Frozen‑thawed semen evaluation

Sperm motility, kinematics, and viability

Five μL of semen was loaded in a pre-warmed (37 °C) 
clean Makler chamber for motility and kinematics analyses 
using the CASA system as described above in the evalua-
tion of fresh semen (El-Khawagah et al. 2020). Also, sperm 
viability was determined according to Mortimer (1994) as 
described in fresh semen evaluation.

Functional sperm plasma membrane integrity

Likewise, functional plasma membrane integrity of fro-
zen-thawed fertile and subfertile buffalo spermatozoa was 
assessed using HOST as described in fresh semen evaluation 
according to Kumar et al. (2015).

Cryosurvival rate

Using the formula: 100 × post-thaw total motile sperm/pre-
freeze total motile sperm, the cryosurvival rate of frozen-
thawed fertile and subfertile buffalo spermatozoa was esti-
mated (Nagata et al. 2019).

Acrosome integrity

Similarly, acrosome integrity of frozen-thawed spermatozoa of 
either fertile or subfertile buffalo bulls was evaluated in FITC-
PNA stained semen smear as described in fresh semen evalu-
ation in line with our earlier report (Almadaly et al. 2012).

Antioxidant activity and lipid peroxidation

Both fresh (500 μL) and frozen-thawed (three straws per 
each % of PRP were pooled/animal group) semen were cen-
trifuged at 1000 g for 10 min at room temperature. The col-
lected supernatants were used (No. of replicates = 5) for the 
estimation of total antioxidant capacity (TAC), glutathione 
peroxidase (GPx), superoxide dismutase (SOD), and malon-
dialdehyde (MDA) activity as per instruction of kit manu-
facturer (Cayman Chemicals Company).

Total antioxidant capacity

As previously stated, TAC was measured using an antioxi-
dant assay kit provided by Cayman Chemicals Company 

(Michigan, USA; Lone et al. 2016). In brief, 10 μL of stand-
ard or sample in duplicate + 10 µL of metmyoglobin + 150 
µL of chromogen were added to each well in the plate. To 
initiate the reaction, a multichannel pipette was used to add 
40 µL of hydrogen peroxide to the plate, which was then 
covered and incubated at room temperature for 5 min. After 
incubation, the absorbance was measured with a plate reader 
at 750 nm, and the TAC (Mm) of the samples was calculated 
using the equation obtained from the linear regression of the 
standard curve as described by Lone et al. (2016).

Glutathione peroxidase activity

GPx activity was determined using the Cayman GPx assay 
kit (Cayman Chemicals Company) as described by Kumar 
et al. (2015). Briefly, to each well in the plate add 100 μL of 
assay buffer, 50 μL of the co-substrate mixture, and 20 μL 
standards/samples, then add 20 μL of cumene hydroperoxide 
to initiate the reaction. A plate reader was used to record the 
absorbance at 340 nm per min for at least 5 min. Using the 
GPx standards, the standard curve was drawn, and the GPx 
activity (nmol/min/mL) for each sample was calculated.

Superoxide dismutase activity

Using the Cayman SOD assay kit, SOD activity was deter-
mined according to Kumar et al. (2015). In each well, 200 
μL of the diluted radical detector and 10 μL of standards/
samples were added, followed by 20 μL of diluted xanthine 
oxidase, and the plate was incubated for 20 min at room 
temperature with gentle shaking. Thereafter, using the SOD 
standards, the standard curve was plotted and the activity of 
SOD (U/mL) for each sample was determined.

Malondialdehyde content

MDA content was estimated using the TABARS assay kit 
(Cayman Chemicals Company) following the methodology 
of Kumar et al. (2015). In brief, 100 μL of samples/stand-
ards + 100 μL of sodium dodecyl sulfate solution + 4000 μL 
color reagent was added into a clean test tube. The tubes 
were maintained in crushed ice for 10 min after being incu-
bated in a boiling water bath for 60 min. At 4 °C, the suspen-
sion was centrifuged for 10 min at 1600 g. Following that, 
150 μL of suspension were placed into a colorimetric plate, 
and the absorbance was measured at 535 nm. The MDA 
standards were used to plot the standard curve, and the MDA 
content (μM/mL) of each sample was determined.

In vivo fertility experiment

A total of 360 healthy pluriparous cyclic buffalo cows 
received (i.m; Day 0) the first dose of prostaglandin  F2α 
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 (PGF2α; 750 pg Cloprostenol sodium, Estrumate, Berkham-
sted, England). Throughout the day and night, 48 h follow-
ing  PGF2α injection, all animals were monitored for signs 
of estrus. Estrus buffalo cows were ultrasound scanned for 
the presence of graffian follicle (GF ≥ 12 mm) before being 
inseminated twice (one on detection of GF, and the other 
12 h later) using our frozen-thawed straws supplemented 
with different proportions of PRP.

On Day 11, non-estrus buffalo cows received the second 
dose of  PGF2α (Borchardt et al. 2017). Likewise, treated 
females were observed for estrus signs and inseminated twice 
using frozen-thawed straws supplemented with different pro-
portions of PRP. All inseminated buffalo cows were ultra-
sound scanned using the linear probe on day 45 post-insemi-
nation for pregnancy diagnosis. The fertility data were based 
on 6 proportions (0% × 60 buffalo cows, 5% × 60 buffalo cows, 
10% × 60 buffalo cows, 15% × 60 buffalo cows, 20% × 60 buf-
falo cows, and 25% × 60 buffalo cows) of PRP supplemented 
frozen-thawed straws for either fertile or subfertile groups.

Statistical analyses

The data were tabulated as the mean ± SEM. Using the Gen-
eral Linear Model procedures of SAS (2004), the obtained 
results were subjected to two-way ANOVA. Differences 
among means were tested using the Range Multiple tests of 
Duncan (1955). All proportions were subjected to arcsine 
transformation before being analyzed by Chi-square (χ2) 
test. Yij = U + Ai + eij was the statistical model, where Yij 
denoted observed values, U denoted overall mean, Ai denoted 
animal groupings, and eij denoted random error. At P < 0.05, 
differences were considered significant in all analyses.

Results

IGF‑1 concentration in PRP of fertile and subfertile 
buffalo bulls

IGF-1 concentrations of PRP were extremely higher in 
fertile (P < 0.001; 1654 ± 26.09  ng/mL) than subfertile 
(1350 ± 14.61 ng/mL) buffalo bulls as depicted in Fig. 1.

Sperm characteristics and kinematics of fertile 
and subfertile buffalo bulls

As presented in Tables 1 and 2, all sperm characteristics 
(total motility, progressive motility, viability, membrane 
integrity, and acrosome integrity) and the majority of sperm 
kinematics (VAP, VSL, VCL, and STR) of either fresh or 
frozen-thawed semen were greater (P < 0.01) in the fer-
tile group than their counterparts in the subfertile group. 

Meanwhile, LIN and WOB were similar between fertile and 
subfertile groups in either fresh or frozen-thawed semen 
(Table 2).

Effect of PRP on post‑thaw sperm quality 
and kinematics of fertile and subfertile buffalo bulls

Neither sperm characteristics (Table 1) nor sperm kin-
ematics (Table 2) were affected by adding 5, 10, and 15% 
PRP in semen extender before cryopreservation of fertile 
spermatozoa. Whereas, in the subfertile group, the effect 
of PRP tend to be a dose-dependent effect where 5% 
improved membrane integrity only; 10% PRP improved 
all sperm characteristics, except acrosome integrity, and 
only the VAP variable of sperm kinematics; moreover, 
15% PRP greatly improved (P < 0.001) all sperm charac-
teristics, VAP and VCL variables of sperm kinematics. 
Surprisingly, both 20 and 25% PRP did not improve either 
sperm characteristics or sperm kinematics of the fertile 
group, but in the subfertile group, the latter proportion 
negatively affected (P < 0.001) total motility, progressive 
motility, VAP, VSL, and VCL as shown in Tables 1 and 2.

Antioxidant activity of fresh and frozen‑thawed 
fertile and subfertile buffalo semen

The values of TAC, GPx, and SOD in either fresh or 
frozen-thawed semen of the fertile group were greater 
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Fig. 1  IGF-1 concentration (mean ± SEM) in PRP of fertile and 
subfertile buffalo bulls. The concentration of IGF-1 in PRP col-
lected from both fertile and subfertile buffalo bulls was determined 
using an immuno-radiometric assay kit (Immunotech SAS, Marseille 
Cedex, France). Bars with different superscripts differ significantly at 
P < 0.05
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than their counterparts in the subfertile group as pre-
sented in Table 3. On the other hand, MDA content in 
either fresh or frozen-thawed semen of the subfertile 
group was greater than their counterparts in the fertile 
group (Table 3).

Effect of PRP on antioxidant activity 
of frozen‑thawed fertile and subfertile buffalo 
semen

As shown in Table 3, in either fertile or subfertile groups, 
adding 5, 10, and 15% PRP in the extender medium before 

Table 1  Fresh semen characteristics and post-thaw quality (mean ± SEM) of frozen-thawed fertile and subfertile buffalo spermatozoa supple-
mented with different proportions of PRP

Within the same row means of frozen-thawed semen quality bearing one common superscript were similar at P < 0.05
Within the same column, means bearing asterisk within the same parameter of either fresh or frozen-thawed semen were significantly different at 
P < 0.05
PRP Platelet-rich plasma, F Fertile, SF Subfertile

Parameter Fertility group Fresh semen Frozen-thawed semen

Proportion of PRP

0 5 10 15 20 25

Total motility 
(%)

F 76.43 ± 1.46* 60.76 ± 1.47a* 61.71 ± 1.35a 61.64 ± 1.93a 62.00 ± 1.82a 58.81 ± 1.20a* 57.74 ± 1.45a*

SF 66.80 ± 1.34 53.97 ± 1.52bc 57.21 ± 1.68b 61.51 ± 1.63a 61.86 ± 0.76a 50.95 ± 1.44dc 48.63 ± 1.31d

Progressive 
motility (%)

F 72.73 ± 0.83* 53.56 ± 0.70ab* 55.01 ± 0.99a* 54.58 ± 0.83a 55.34 ± 1.19a 51.96 ± 0.59b* 51.33 ± 0.52b*

SF 62.87 ± 0.82 49.86 ± 0.30b 52.07 ± 0.59b 54.22 ± 1.05a 55.12 ± 0.98a 46.63 ± 0.88c 43.20 ± 0.61d

Viability (%) F 90.91 ± 1.20* 77.88 ± 0.68a* 79.21 ± 1.65a* 78.71 ± 1.49a 79.20 ± 1.96a 76.90 ± 1.65a* 74.90 ± 1.64a*

SF 78.70 ± 1.34 68.20 ± 1.54cd 70.15 ± 1.09bc 75.15 ± 1.80ab 75.83 ± 2.01a 65.26 ± 1.56d 63.68 ± 1.70d

Intact-mem-
brane (%)

F 73.67 ± 1.22* 48.33 ± 1.45a* 47.16 ± 1.95a* 48.00 ± 1.59a* 47.83 ± 1.99a 48.33 ± 0.76a* 44.83 ± 1.30a*

SF 60.17 ± 1.57 37.16 ± 0.90c 41.00 ± 0.85b 41.83 ± 0.70b 47.16 ± 0.90a 36.83 ± 0.90c 34.83 ± 1.24c

Intact-acro-
some (%)

F 93.67 ± 0.84* 71.66 ± 1.49ab* 71.50 ± 1.25ab* 73.16 ± 1.81a* 73.50 ± 1.72a 68.50 ± 0.76b* 70.33 ± 1.02ab*

SF 85.83 ± 0.94 64.33 ± 0.88bc 66.16 ± 0.79b 65.00 ± 1.18bc 69.33 ± 0.88a 63.50 ± 0.76bc 62.33 ± 0.98c

Table 2  Sperm kinematics (mean ± SEM) of fresh semen and frozen-thawed fertile and subfertile buffalo spermatozoa supplemented with differ-
ent proportions of PRP

Within the same row means of frozen-thawed sperm kinematics bearing one common superscript were similar at P < 0.05
Within the same column, means bearing asterisk within the same parameter of either fresh or frozen-thawed semen were significantly different at 
P < 0.05
PRP Platelet-rich plasma, VAP Average path velocity, VSL Straight linear velocity, VCL Curve linear velocity, STR Straightness, LIN Linearity, 
WOB Wobble, F Fertile, SF Subfertile

Parameter Fertility
group

Fresh semen Frozen-thawed semen

Proportion of PRP

0 5 10 15 20 25

VAP (µm/s) F 75.10 ± 1.03* 68.77 ± 1.15a* 69.73 ± 1.85a* 68.43 ± 2.00a 70.00 ± 1.23a 66.87 ± 1.38a* 65.95 ± 1.74a*

SF 67.81 ± 1.12 61.52 ± 1.16bc 63.33 ± 1.29ab 66.36 ± 0.89a 66.49 ± 1.27a 58.74 ± 0.94cd 57.04 ± 0.96d

VSL (µm/s) F 27.39 ± 0.66* 22.22 ± 0.35abc* 22.85 ± 0.88abc* 23.73 ± 1.11a* 23.18 ± 0.90ab* 20.93 ± 0.41bc* 20.55 ± 0.30c*

SF 21.68 ± 0.99 17.51 ± 0.64ab 18.70 ± 0.68a 19.61 ± 0.78a 19.95 ± 1.10a 16.30 ± 0.71bc 15.10 ± 0.63c

VCL (µm/s) F 93.90 ± 1.09* 86.56 ± 1.85a* 86.81 ± 1.59a* 86.26 ± 1.47a* 88.26 ± 2.00a* 82.99 ± 1.34a* 83.48 ± 1.82a*

SF 78.88 ± 1.43 72.04 ± 1.21bc 72.90 ± 1.06bc 74.52 ± 0.95ab 76.37 ± 1.17a 69.55 ± 1.28cd 66.81 ± 1.10d

STR (%) F 36.45 ± 0.45* 32.28 ± 0.58ab* 32.76 ± 0.81ab* 34.76 ± 1.62a* 33.09 ± 0.96ab 31.33 ± 0.61b* 31.26 ± 0.93b*

SF 31.94 ± 1.20 28.45 ± 0.79ab 29.52 ± 0.82ab 30.10 ± 1.11a 29.96 ± 1.37a 27.72 ± 0.99ab 26.44 ± 0.84b

LIN (%) F 29.59 ± 1.10 26.97 ± 1.36a 26.43 ± 1.39a 27.60 ± 1.56a 26.47 ± 1.49a 25.27 ± 0.82a 24.69 ± 0.78a

SF 27.59 ± 1.56 24.47 ± 1.08a 25.73 ± 1.19a 26.37 ± 1.24a 26.19 ± 1.64a 23.50 ± 1.18a 22.63 ± 1.05a

WOB (%) F 80.10 ± 2.02 79.76 ± 3.07a 80.63 ± 3.54a 79.58 ± 3.43a 79.77 ± 2.96a 80.79 ± 2.87a 79.24 ± 3.08a

SF 86.12 ± 2.16 85.53 ± 2.21a 87.01 ± 2.39a 89.06 ± 0.86a* 87.21 ± 2.48a 84.68 ± 2.69a 85.52 ± 2.31a
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cryopreservation significantly (P < 0.001) increased the 
values of TAC, GPx, and SOD than their counterparts in 
frozen-stored samples without PRP (0%). Besides, following 
15% PRP supplementation, the values of TAC, GPx, SOD, 
and MDA in the subfertile group were comparable (P > 0.05) 
with their counterparts in the fertile group. Meanwhile, 5, 
10, and 15% PRP significantly decreased MDA content in 
comparison with the control (0% PRP) in either fertile or 
subfertile groups. Unexpectedly, 20 and 25% PRP signifi-
cantly (P < 0.001) decreased the values of TAC, GPx, and 
SOD, while increasing MDA content compared with their 
corresponding values following 15% PRP supplementation 
in either fertile or subfertile groups (Table 3).

Cryosurvival rate and in vivo fertility 
of frozen‑thawed fertile and subfertile buffalo 
spermatozoa

As depicted in Fig. 2, adding 5, 10, and 15% PRP into the 
extender medium used for cryopreservation of the subfer-
tile buffalo spermatozoa greatly (P < 0.001) improved their 
cryosurvival rates in comparison with those of 0, 20, and 
25% PRP, and also with their counterparts of fertile sperma-
tozoa. Unfortunately, all proportions of PRP did not improve 
cryosurvival rates of the fertile group meanwhile 25% PRP 
significantly (P < 0.001) decreased cryosurvival rate of the 
subfertile group as compared to that of the control (Fig. 2).

Incorporation of 5, 10, and 15% PRP into the semen 
extender before cryopreservation yielded a dose-dependent 
increase in CR% with greater in vivo fertility following 
insemination with 15% PRP-supplemented frozen-thawed 
straws of either fertile (67.50 ± 1.71% vs. 57.5 ± 1.71%) or 

subfertile (60.83 ± 0.40% vs. 34.17 ± 2.01%) buffalo bulls. 
On contrary, using 20% or 25% PRP-supplemented frozen-
thawed straws in the insemination of estrus buffalo cows 
yielded low CR% with or without significant difference in 
comparison with the control straws of fertile and subfertile 
groups, respectively (Fig. 3).

Table 3  Antioxidant activity (mean ± SEM) of fresh and frozen-thawed fertile and subfertile buffalo spermatozoa supplemented with different 
proportions of PRP

Within the same row means of frozen-thawed semen antioxidant parameters bearing one common superscript were similar at P < 0.05
Within the same column, means bearing asterisk within the same parameter of either fresh or frozen-thawed semen were significantly different at 
P < 0.05
PRP Platelet-rich plasma, TAC  Total antioxidant capacity, GPx Glutathione peroxidase, SOD Superoxide dismutase, MDA Malondialdehyde

Parameter Fertility group Fresh semen Frozen-thawed semen

Proportion of PRP

0 5 10 15 20 25

TAC (Mm) F 2.20 ± 0.11* 1.36 ± 0.03d* 1.55 ± 0.03c* 1.90 ± 0.03b* 2.46 ± 0.08a 1.23 ± 0.05d 1.05 ± 0.03e*

SF 1.73 ± 0.08 1.18 ± 0.03d 1.37 ± 0.04c 1.65 ± 0.04b 2.31 ± 0.05a 1.16 ± 0.04d 0.88 ± 0.05e

GPx (nmol/min/
mL)

F 23.67 ± 1.22* 15.00 ± 0.37d* 19.00 ± 0.37b* 21.67 ± 0.42a* 22.17 ± 0.40a 18.67 ± 0.89b 16.83 ± 0.60c

SF 19.83 ± 0.87 12.83 ± 0.31d 16.83 ± 0.48b 20.17 ± 0.40a 20.83 ± 0.48a 16.33 ± 0.76bc 15.17 ± 0.48c

SOD (U/mL) F 58.50 ± 1.17* 31.00 ± 0.52c* 35.66 ± 0.66b* 37.17 ± 0.91b 42.67 ± 0.95a 25.00 ± 0.68d 20.66 ± 0.33e

SF 51.83 ± 0.60 29.00 ± 0.37d 33.66 ± 0.42c 35.83 ± 1.04b 41.00 ± 0.82a 23.83 ± 0.54e 19.66 ± 0.42f

MDA (μM/mL) F 1.00 ± 0.07 1.41 ± 0.18b 1.00 ± 0.05c 0.76 ± 0.06c 0.43 ± 0.10d 1.58 ± 0.09b 2.11 ± 0.05a

SF 1.60 ± 0.09* 1.88 ± 0.05b* 1.25 ± 0.12c* 0.91 ± 0.04d 0.58 ± 0.09e 1.83 ± 0.08b* 2.41 ± 0.07a*
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Fig. 2  Effect of PRP on cryosurvival rate of frozen-thawed fer-
tile and subfertile buffalo spermatozoa. Cryosurvival rate of fer-
tile and subfertile buffalo spermatozoa frozen stored with or with-
out PRP was calculated from the following equation: Cryosurvival 
rate = 100 × post-thaw total motile sperm/pre-freeze total motile 
sperm. Means bearing one similar superscript were similar (P ≥ 0.05)
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Discussion

In the present study, sperm characteristics and kinematics, 
as well as antioxidant activity of fresh and frozen-thawed 
fertile and subfertile buffalo spermatozoa cryopreserved 
in the presence of different proportions of PRP were 
compared. In either fresh or frozen-thawed semen, sperm 
characteristics as well as VAP, VSL, VCL, and STR were 
greater in the fertile buffalo bulls than subfertile ones, sup-
porting the findings of Singh et al. (2016) who reported 
that the proportion of motile spermatozoa, as well as the 
values of VAP, VSL, and VCL in bulls of high fertility, 
were higher than those of low fertility. Furthermore, our 
findings revealed that proportions of intact-acrosome and 
intact-plasma membrane in the fertile animals were greater 
than their counterparts in subfertile animals which might 
be one of the plausible reasons for this clear difference 
in their in vivo fertility. These findings corroborated the 
findings of Hirose et al. (2020), who demonstrated that an 
intact plasma membrane and intact acrosome are required 
for oocyte penetration and successful fertilization.

Doubtless, freezing and thawing procedures disturb 
sperm membranes and reduce sperm motility, viability, and 
fertility (Kumar et al. 2019). Moreover, buffalo spermato-
zoa seem to be more sensitive to freezing–thawing dam-
age leading to reduced post-thaw motility and subsequently 
low fertility (Selvaraju et al. 2016). According to our find-
ings, frozen-thawed semen has low sperm characteristics, 
kinematics, and antioxidant activity as compared to fresh 
semen, this might be related to cryopreservation-associated 
stressors (osmotic, dilution, and oxidative) and subsequent 
functional, and structural changes which inhibit glycolysis 
and ATP production (Yeste 2016; Gómez-Torres et al. 2017).

To the best of our knowledge, our study is unique to 
determine the effect of PRP on post-thaw quality and in 
vivo fertility of frozen-thawed buffalo spermatozoa. Herein, 
we found that the addition of 15% PRP before cryopreser-
vation of subfertile spermatozoa improved their post-thaw 
sperm characteristics and some of their sperm kinematics. 
This might be attributed to the buffering effect of PRP that 
prevents osmotic shock as its protein component mechani-
cally protects sperm membranes by lowering the risk of 
crystallization or melting during the various steps of the 
cryopreservation process (Taher-Mofrad et al. 2020). Also, 
this protective function of PRP might be attributed to the 
presence of multiple bioactive components in PRP according 
to Saucedo et al. (2015) who found that FGF, a component 
of PRP, increases the phosphorylation of FGF receptors 
on sperm flagella and activates the extracellular signal-
regulated kinase and protein kinase B signaling pathways, 
resulting in a significant increase in the proportions of total 
and progressive sperm motility, as well as some sperm kin-
ematics. In line with our study, Hernández-Corredor et al. 
(2020) have been proven that the inclusion of PRP in ram 
semen improves sperm motility and morphometry, the action 
of FGF, which enhances sperm motility, contributes to this 
improvement.

Another possibility for this improvement in post-thaw 
sperm quality and function especially of subfertile buffalo 
bulls might be attributed to antioxidant activities of IGF-1 
(Selvaraju et al. 2016) which is a major component in PRP 
that has been proven to improve sperm plasma membrane 
and acrosomal membrane integrities as well as DNA stabil-
ity of human spermatozoa (Yan et al. 2021). IGF-1 increases 
intracellular calcium ions concentrations by improving cal-
cium transport, resulting in increased sperm progressive 
motility (Miah et al. 2008), and also has an important role 
in the energy metabolism of buffalo spermatozoa (Selvaraju 
et al. 2009). Moreover, it reduces cryopreservation-induced 
damage through maintaining sperm membrane proteins such 
as calmodulin, dermcidin, and acrosomal membrane-associ-
ated proteins (Selvaraju et al. 2016).

Based on our result that found IGF-1 concentration in 
PRP collected from fertile buffalo bulls is ranged from 
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Fig. 3  Effect of PRP on conception rate of frozen-thawed fertile 
and subfertile buffalo spermatozoa. Pluriparous buffalo cows were 
received (i.m; Day 0) the first dose of prostaglandin  F2α  (PGF2α; 
750  pg Cloprostenol sodium, Estrumate, Berkhamsted, England). 
Exactly, 48  h after  PGF2α injection all animals were observed for 
estrus signs. Estrus buffalo cows were ultrasound scanned for the 
presence of graffian follicle (GF ≥ 12 mm) before being inseminated 
twice (one on detection of GF, and the other 12  h later) using our 
frozen-thawed straws supplemented with different proportions of 
PRP. On Day 11, non-estrus buffalo cows received the second dose 
of  PGF2α (750 pg Cloprostenol sodium), observed for estrus signs and 
ultrasound scanned for the presence of GF, and then finally insemi-
nated twice (one on detection of GF, and the other 12 h later) using 
frozen-thawed straws supplemented with different proportions of 
PRP. Means bearing one similar superscript were similar (P ≥ 0.05)
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1295 to 2009 ng/mL with an average of 1652 ng/mL. Thus, 
adding 15% PRP (≈ 250 ng/mL IGF-1) to buffalo semen 
improved post-thaw quality and/or in vivo fertility in the 
current study, similar to Kumar et al. (2019), who found 
that adding 250 ng/mL IGF-1 to buffalo spermatozoa before 
cryopreservation improved their post-thaw motility, longev-
ity, and membrane integrity. Hence, it is recommended to 
measure IGF-1 concentration in PRP before adding it to the 
semen extender. Notably, herein, PRP collected from subfer-
tile buffalo bulls has lower IGF-1 levels than that collected 
from fertile animals which assumes that IGF-1 concentra-
tion in PRP might be associated with male fertility at least 
in buffalo bulls.

Even though, 20 and 25% PRP should be containing 
higher concentrations of IGF-1 compared to 15% PRP; both 
failed to improve sperm quality and function of either fer-
tile or subfertile animals which might be attributed to the 
fact that higher proportions of PRP containing higher serum 
concentrations that leading to head-to-head agglutination of 
spermatozoa in accord with Dong et al. (2007). This should 
be the most plausible reason because 25% PRP adversely 
affects motility (total and progressive), velocity (VAP, VSL, 
and VCL), and cryosurvival rate (which is motility-depend-
ent) of subfertile buffalo spermatozoa without any effect on 
their viability, membrane integrity, and acrosome integrity.

PRP has an antioxidant and anti-apoptotic effect on mam-
malian cells; it also can aid muscle recovery by regulating 
antioxidant enzymes and reducing radiation-induced kid-
ney histological abnormalities (Lai et al. 2016). Our results 
revealed that adding 15% PRP to semen extender before 
cryopreservation significantly increased TAC, GPx, and 
SOD levels, and decreased MDA content either in fertile 
or subfertile buffalo semen, but negatively affected when 
increased to 20 and 25% PRP suggesting that PRP has a 
potent antioxidant activity in accord with Bader et al. (2020) 
who had proved that adding 2% PRP was capable to reverse 
the negative effect of  H2O2-induced oxidative stress on 
human spermatozoa but, no difference was noted when PRP 
concentration was increased to 5%, and when the concentra-
tion was further enhanced to 10% showing decreased per-
centages of viability, progressive, total motile spermatozoa 
and a higher percentage of dead spermatozoa compared to 
control (P < 0.001) group. Our findings, as well as those of 
Bader et al. (2020), are consistent with Bucak et al. (2007), 
who concluded that antioxidant additives had cryoprotec-
tive activity on sperm in moderate doses, but that higher 
doses of antioxidant additives would result in a hypertonic 
property of extender, impairing sperm functions. Also, Yan 
et al. (2021) found that human semen supplemented with 
lower proportions of PRP has a low level of reactive oxygen 
species and patent mitochondrial membrane.

Cryosurvival rate is more accurate in determining post-
thaw sperm quality than either total motility or progressive 

motility (Saleh et al. 2018). Fertile and subfertile buffalo 
semen varies widely in terms of freezability outcome 
(Nagata et al. 2019), herein, adding either 10 or 15% PRP 
before cryopreservation successfully ameliorates such vari-
ation through improving cryosurvival rate of subfertile buf-
falo spermatozoa. This striking finding highlights the nov-
elty of adding PRP before cryopreservation of subfertile 
spermatozoa, at least in buffalo bulls.

It is worth noting that, in the current study PRP improves 
in vivo fertility (in terms of CR%) of fertile and subfertile 
buffalo spermatozoa which suggests that, the effect of PRP 
might be also expressed on the female genitalia because 
Pasch et al. (2021) found that PRP has anti-inflammatory 
and regenerative capabilities that have been used to treat 
degenerative changes in the endometrium of subfertile 
mares. Furthermore, PRP has antimicrobial properties to 
reduce the chances of uterine infection after breeding and 
it improves immune response which is likely one of the 
major factors contributing to enhancing embryonic sur-
vival and consequent greater embryonic recovery obtained 
in mare (Segabinazzi et al. 2021). Furthermore, PRP has 
been proven to reduce intrauterine adhesions and improve 
ovarian reserve (Yazhini and Kanchana 2021), as well as 
increase pregnancy and live birth rates in women (Sharara 
et al. 2021). All these promising results reveal that 15% 
PRP containing ≈ 250 ng/mL IGF-1 is the optimal propor-
tion to improve post-thaw quality and function of frozen-
thawed buffalo spermatozoa which could be the originality 
of this study.

Conclusion

In summary, adding 15% PRP into the extender medium 
used for cryopreservation of buffalo spermatozoa is recom-
mended to ameliorate their post-thaw sperm characteristics, 
kinematics, antioxidant activity, cryosurvival rate, and in 
vivo fertility, particularly of subfertile spermatozoa. This 
study opens a new area of research on the subfertility of 
frozen-thawed spermatozoa in farm animals.
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