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Abstract
The Cerrado, a Neotropical savanna, is the second largest vegetation domain in Brazilian territory and presents a gradient 
of physiognomies. Among the savanna formations, the cerrado stricto sensu stands out. The responses of woody species of 
the cerrado related to increased CO2 concentration ([CO2]), as predicted by global climate change, may differ among distinct 
leaf persistence groups. Elevated [CO2] could enhance the resprouting capacity of woody species, which might intensify 
encroachment in grasslands, such as the cerrado stricto sensu. We investigated the influence of elevated [CO2] (eCO2) on 
vegetative growth, root non-structural carbohydrates (NSC), and biomass allocation pattern among roots, stems, and leaves 
in two deciduous and three evergreen cerrado woody species. We carried out the experiment in open-top chambers with five 
young individuals of cerrado woody species under ambient [CO2] (aCO2) and eCO2 of 430 and 700 ppm, respectively. Meas-
urements occurred in young plants with 294, 379, and 466 days old, i.e., after 104, 189, and 276 days of eCO2 exposition. 
While the species under aCO2 decreased the NSC in roots on the 189th day, the plants under eCO2 did not show a decrease 
over time. The deciduous species under eCO2 showed higher RGR at the beginning of the experiment (104 days) than the 
evergreens species under eCO2. Also, the eCO2 promoted fast leaf development in four out of five studied species (except 
Anadenanthera peregrina). The characteristics analyzed among the species could demonstrate that the deciduous grown 
under eCO2 presented higher relative growth rate and root/stem ratio than the species with evergreen habit.
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Introduction

Human activities have increased CO2 concentration [CO2] 
in the atmosphere, intensifying global climate change 
(IPCC 2019). Rising [CO2] and atmospheric warming 
would change species distribution and abundance (Sique-
ira and Peterson 2003; Van der Putten et al. 2010; Bellard 
et al. 2012; Peterson et al. 2019; Pecl et al. 2017; Nunez 

et al. 2019), and regional variations in productivity pat-
terns (Nowak et al. 2004; Newingham et al. 2013). In C3 
woody species, it is expected that one of the main effects 
of increase in [CO2] occurs close to the light compensa-
tion point of photosynthesis, making plants more efficient 
at low light intensity (Ainsworth and Long 2005). Increases 
are expected in the light-driven photochemical reactions in 
C3 species growing under elevated (eCO2), when photosyn-
thesis is limited by the amount of active Rubisco (Li et al. 
2009). In addition, in C3 species  growing under eCO2 an 
increase in water use efficiency, decreased transpiration, and 
stomatal conductance is expected (Ainsworth and Rogers 
2007). Under appropriate water and nutrient availability in 
the soil, the increase in [CO2] promotes the growth of woody 
species (Ainsworth and Long 2005; Souza et al. 2016). In a 
general context, woody species growing under eCO2 would 
show increased root growth, a higher concentration of non-
structural carbohydrates in the roots, and improved ability 
to resprout after disturbances (Hoffman et al. 2000; Kgope 
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et al. 2010; Manea and Leishman 2019) than plants grow-
ing under ambient [CO2] (aCO2). Therefore, it is essential 
to investigate the effects caused by climate change, mainly 
the increase in [CO2], on the resprouting potential of cerrado 
woody species.

Resprout capacity is an essential functional trait deter-
mining plant responses and vegetation dynamics after dis-
turbances, such as fire, which shape most savannas (Clarke 
et al. 2016). The capacity to resprout after the fire is related 
to the accumulation of carbohydrates and nutrient reserves 
that need recharging between burn events (Hoffman et al. 
2000; Franco et al. 2014). In response to the disturbance, 
plants can die because they do not have the capacity or 
resources to replace the foliage through protected meris-
tems, or they can resprout using underground reserves in the 
roots, such as the non-structural carbohydrates and nitrogen 
(Clarke et al. 2013). The atmospheric [CO2] is known to 
have high effects on plant carbohydrate status (Korner and 
Miglietta 1994; Bassirirad et al. 1996; Read and Morgan 
1996; Cruz et al. 1997). Furthermore, the increased [CO2] 
in the atmosphere would change plant resource allocation 
patterns and resprouting capacity (Clarke et al. 2016; Manea 
and Leishman 2019). Kgpoe et al. (2010) in a study with 
two  Acacia species found an increased  C allocation to non-
structural carbohydrates storage along a [CO2] gradient. In 
addition, the resprouting ability and root non-structural car-
bohydrates of a tropical savanna tree, Kielmeyera coriacea 
Mart & Zucc., were significantly greater under eCO2 and 
nutrient enrichment (Hoffmann et al. 2000). Manea and 
Leishman (2019) analyzed the effect of increasing [CO2] on 
the resprout capacity of 16 woody and grass species from 
temperate regions. Woody and grass species grown under 
eCO2 showed an increase in biomass production. However, 
only woody species showed a higher accumulation of non-
structural carbohydrates in roots under eCO2, and increased 
root biomass (Manea and Leishman 2019), indicating 
improved resprout capacity.

Savanna ecosystems cover about 20% of the terrestrial 
land surface (Kgope et al. 2010). The Cerrado, a Neotropical 
savanna, is the second largest vegetation domain in Brazilian 
territory and presents a gradient of physiognomies, rang-
ing from grasslands to tree forests rich in endemic species 
(Coutinho 2006; Overbeck et al. 2015; Durigan and Ratter 
2016). Among the savanna formations found in this veg-
etational domain (Batalha 2011), the cerrado stricto sensu 
stands out, being characterized by the abundance of woody 
species, with different degrees of leaf deciduity and by a 
herbaceous stratum rich in different growth forms (Eiten 
1972). In Cerrado, the influence of climate change on veg-
etation dynamics is more dramatic because half of the origi-
nal vegetation area has been converted by anthropic activi-
ties (Myers et al. 2000; Klink and Machado 2005; Franco 
et al. 2014; Lapola et al. 2014; Hughes 2017). The global 

climate change in the Cerrado could modify interspecific 
competition for limited resources (such as water and nutri-
ents), changing the vegetation structure (Melo et al. 2018). 
Cerrado plant species are expected to lose more than half 
of their distribution range under the pessimistic scenario 
(RCP8.5) of climate change and  lande use (Velazco et al. 
2019). Understanding the response of Cerrado vegetation 
to climate change implies investigating the effect of eCO2 
on the growth, development, and resprouting of woody spe-
cies (Souza et al. 2016; Melo et al. 2018; Maia et al. 2019). 
These responses could be different between species grouped 
by leaf functional traits (Souza et al. 2009a, b, 2011; Borges 
and Prado 2018).

Interactions among photosynthesis, photorespiration, and 
respiration processes would likely define how much carbon 
is available for plant growth and resprouting after drought 
or fire events (Franco et al. 2014). Some studies have found 
that CO2 stimulates resprouting following defoliation (Fajer 
et al. 1991;  Pearson and Brooks 1996; Wilsey et al. 1997; 
Maia et al. 2019). Oliveira et al. (2021), found a positive 
response to eCO2 in plants of Chrysolaena obovata (Less.) 
M. Dematt.,a C3 species native from cerrado. The plants 
grown under eCO2 showed higher growth, photosynthetic 
rate, aerial biomass production, underground rhizophore 
biomass, and consequently higher carbohydrate produc-
tivity than plants under aCO2. Souza et al. (2016) found 
higher biomass production, growth, leaf area ratio, and net 
photosynthesis in Hymenaea stigonocarpa Mart. ex Hayne, 
Solanum lycocarpum A. St.-Hil., and Tabebuia aurea (Silva 
Manso) Benth. & Hook. f. ex S. Moore, growing under 
eCO2. However, all these studies did not analyze the pos-
sible differential responses among species with distinct leaf 
persistence in cerrado vegetation due to climate change. 
Species with different leaf persistence could show differ-
ent responses to eCO2 due to distinct ecological strategies. 
Deciduous woody species showed a more acquisitive strat-
egy, maximizing uptake and use of resources (Ouédraogo 
et al. 2013; Souza et al. 2020). On the other hand, ever-
greens show a more conservative strategy to resource use 
(Ouédraogo et al. 2013; Souza et al. 2020). Thus, rising 
[CO2] could result in different ecophysiological responses 
among species with distinct leaf persistence.

The objective of the present study was to evaluate the 
influence of eCO2 on vegetative growth, biomass alloca-
tion, and resprouting potential in deciduous and evergreen 
woody species from Cerrado. We predicted that eCO2 would 
increase plant biomass, vegetative growth, and non-struc-
tural carbohydrates in the roots of all species. The higher 
non-structural carbohydrates allocation to the root system 
could increase the potential for resprouting of cerrado 
woody species, which would benefit them mainly after dis-
turbance (Souza et al. 2016; Manea and Leishman 2019). 
These changes would help the establishment of cerrado 



481Plant Ecology (2024) 225:479–490	

woody species in native areas under the new climatic con-
ditions. We also predicted a higher investment in the aerial 
growth of deciduous species grown under eCO2 as these 
species show faster shoot growth (synchronous leaf produc-
tion) at the end of the dry season (Damascos et al. 2005; 
Damascos 2008; Souza et al. 2009a, b) to maximize growth 
in the next rainy season. However, evergreens could show 
few changes, as these species have an immediate consump-
tion of the current resource throughout the year (Damascos 
et al. 2005; Damascos 2008; Souza et al. 2009a, b), being 
more conservative in the growth.

Materials and methods

Study area and open‑top chambers

The experiment was carried out in open-top chambers 
(OTC, Figure  S1) located at the Federal University of 
Viçosa, campus Florestal, Minas Gerais, Brazil (19º52´29´´ 
S and 44º25´12´´ W).We use OTC built with rectangular 
modules with side doors facilitating data collection (Silva 
2010; Souza et al. 2016). The air intake in the chambers was 
controlled through an air injection system composed of a 
centrifugal fan, with a 20 cm diameter propeller and 50 mm 
diameter perforated PVC tubes. In this system, the air flow 
from the fan was directed into the chambers through PVC 
tubes. To enrich the atmosphere of the chambers with CO2 
during the experiment, CO2 storage cylinders with a capacity 
of 25 kg each were used. The primary flow of CO2 into the 
chambers was regulated by a special pressure gauge (White 
Martins—R201C). The flow was regulated and directed to 
the chambers through high pressure hoses (500 psi). Plants 
were exposed to elevated [CO2] during the day (6:00 am 
to 6:00 pm) and monitored with a CO2 meter (Testo 535). 
Inside OTCs, fans worked during the day, avoiding excess 
moisture and temperature rise inside OTCs. The OTCs 
were monitored periodically by measuring air temperature 
(thermo-hygrometer, model INCOTERM 7666.02.0.00).

Plant material and soil properties

The five native species studied were classified according 
to their corresponding leaf persistence group (Souza et al. 
2009a, b; Souza et al. 2011; Borges and Prado 2014): decid-
uous (DE) Anadenanthera peregrina var. falcata (Benth.) 
Altschul and Tabebuia aurea (Silva Manso) Benth & Hook. 
f. ex. Moore, and evergreen (EV) Hymenaea stigonocarpa 
Mart. Ex Hayne, Stryphnodendron adstringens Mart., and 
Stryphnodendron polyphyllum Mart.

Anadenanthera peregrina var. falcata (Benth.) Alts-
chul, popularly known as angico-do-cerrado, belongs to the 
Fabaceae family and is a tree species that can reach 15 m in 

height (Silva et al. 2020). Tabebuia aurea (Manso) Benth. 
& Hook f. ex S. Moore, species native to Brazil belonging 
to the Bignoniaceae Family, occurs in the Amazon Region, 
Northeast, Midwest, and Southeast, in several vegetation for-
mations, being popularly known as paratudo, caraíba, ipê-
do-cerrado (Lorenzi 2002; Santos et al. 2019). Hymenaea 
stigonocarpa Mart.ex Hayne, known as jatobá-do-cerrado, 
jutaí, jatobá-capo, jatobá-de-cascafina, jitaí or jutaicica, 
being common in the open formations of the cerrado and 
campo cerrado (Lorenzi 1992). Stryphnodendron adstrin-
gens (Mart.), known as barbatimão, has a wide geographic 
distribution, occurring from Pará, through the central pla-
teau, to Minas Gerais and São Paulo (Felfili et al. 1999). 
Stryphnodendron polyphyllum Mart. is a plant with 4–6 m 
high, deciduous, heliophyte, pioneer and characteristic of 
the cerrado, whose distribution extends from the cerrado of 
Central Brazil to Paraná and Mato Grosso do Sul (Lorenzi 
2000).

The soil used for the species growth was typical of cer-
rado areas in the State of Minas Gerais (Haridasan et al. 
2000). The chemical characteristics were: pH in H2O = 6.1; 
H + Al = 3.54 cmol.charge/dm3; Al3+  = 1.83 cmol.charge/
dm3; Ca2+  = 0.33 cmol.charge/dm3; Mg2+  = 0.07 cmol.
charge/dm3; P = 0.8  mg/dm3; K = 8  mg/dm3; Sum of 
bases = 0.42 cmol.charge/dm3; Cation exchange capac-
ity = 3.96 cmol.charge/dm3; effective cation exchange 
capacity = 2.25 cmol.charge/dm3; Aluminum saturation 
index = 81.20%, and base saturation index = 10.68%. Soil 
analysis was carried out in the Agricultural Chemistry Labo-
ratory of the Minas Gerais Institute of Agriculture (IMA).

Pre‑germination treatment and experimental 
design

Seeds of A. peregrina, T. aurea, H. stigonocarpa, S. adstrin-
gens, and S. polyphyllum were treated with 2% sodium 
hypochlorite, for five minutes (De Lemos Filho et al. 1997; 
Botelho et al. 2000; Cabral et al. 2003; Miranda et al. 2012) 
and then washed with water. The following species were 
mechanically scarified to break the physical dormancy of 
seeds: H. stigonocarpa, S. adstringens, and S. polyphyllum. 
Seeds of all species germinated on filter paper, in a germina-
tion chamber Solab (SL.225). Seeds of H. stigonocarpa, S. 
adstringens, and T. aurea remained at alternating tempera-
tures of 25–30 °C (night and day, respectively) and 12 h of 
photoperiod (Botelho et al. 2000; Cabral et al. 2003) and the 
seeds of S. polyphyllum and A. peregrina at constant light 
and temperatures of 30 °C (De Lemos Filho et al. 1997; 
Miranda et al. 2012). After germination, the seedlings were 
transferred to 8.0 L plastic pots filled with soil. The treat-
ment with eCO2 started when the seedlings were 190 days 
old.
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Young plants were assigned in two treatments with dif-
ferent [CO2]: 25 plants of each species divided in four OTC 
growing under elevated CO2 (eCO2, ~ 700 ± 5.10 ppm) and 
25 plants of each species divided in four OTC growing under 
ambient CO2 (aCO2, ~ 430 ± 7.20 ppm, without CO2 enrich-
ment).The plants in both CO2 treatments were daily watered.

Leaf area, and leaf, stem, and root dry mass

The morphological measurements were taken in four individu-
als of each species in each CO2 treatment in each measurement 
date (n = 4 individuals per species in each treatment). These 
measurements were carried out when the young plants were 
294, 379, and 466 days old and growing under eCO2 for 104, 
189, and 276 days. All leaves were separated from the stem and 
petioles and then scanned in black and white with the help of 
a table scanner to determine leaf area. Subsequently, the leaf 
area was calculated using the Image-Pro 5.0 software (Media 
Cybernetics, Inc., Silver Spring, MD, USA). The root length 
(measurement of the largest root) was determined with a 30 cm 
millimeter plastic ruler. The dry mass of each stem was deter-
mined after removing all buds and leaves when the leaf mass 
was also determined (the same leaves detached from the stems 
to leaf area determination). Leaves, stems, and roots were dried 
in an oven (Tecnal TE-394/3, Piracicaba, São Paulo, BR) at 
60 °C for 72 h (Pérez-Harguindeguy et al. 2013) and had their 
masses measured using an analytical balance (Shimadzu- 
BL Series—20H, Tokyo, Japan). The total dry mass was the 
sum of the dry masses of root, stem, and leaves in the same 
individual.

Growth indices and vegetative morphometry

After determining the morphological traits, the following 
growth indices were calculated: relative growth rate (RGR, g 
g−1 days−1), leaf area index (LAI, cm2 days−1), leaf area ratio 
(LAR, total leaf area/total dry mass, cm2 g−1), specific leaf 
area (SLA, total leaf area/total leaf dry mass, cm2 g−1), and 
root/stem ratio (RSR, root dry mass/stem dry mass, g g −1)  
in four individuals of each species in each treatment and 
measurement date.

Relative growth rates (RGR, g g−1 days−1) were calcu-
lated using the following equation:

Leaf area index (LAI, cm2 days−1) were calculated using 
the following equation:

RGR= (1∕ total drymass at time 1)

∗
[

(total drymass at time 2) − (total drymass at time 1)∕ (time 2)
]

LAI= [(total leaf area at time 1) + (total leaf area at time 2)] ∗ (1∕2)

The leaf number (LN), stem length (SL, cm), and stem 
diameter (SD, cm) were monitored weekly throughout the 
experiment, up to 283 days after the beginning of the experi-
ment (DBE) in 25 individuals of each species in each [CO2]. 
We analyzed the leaf development in five leaves from five indi-
viduals (n = 5 plants per species in each treatment) to determine 
the leaf expansion interval (LEI, days) and leaf expansion rate 
(LER, cm days−1). The length and width of each marked leaf 
(or leaflet) were monitored weekly. When the leaf stabilized 
the growth, the LEI was determined. Using the leaf expansion 
interval, we estimated LER by dividing the stabilized leaf area 
by the leaf expansion interval (LER = LEA/LEI).

Non‑structural carbohydrates

The same individuals used for growth measures were used to 
quantify non-structural carbohydrates (NSC) in the roots using 
the sulfuric phenol method (Dubois et al. 1956). 0.5 g of root 
dry biomass was ground with liquid nitrogen, then mixed in 
ethanol 80% (5 ml) and incubated in a water bath at 75 °C for 
30 min. Afterward, the sample was quickly placed on ice. Sub-
sequently, the material was centrifuged at 3000×g for 15 min 
then the supernatant was collected. This procedure was per-
formed twice. We collected 1 ml of the supernatant from the 
alcoholic extraction and incubated it in a water bath at 75 °C. 
The evaporates were hydrolyzed in 1 ml of distilled water, 
added 1 ml of hydrochloric acid (HCL 2.5N), and placed in a 
water bath at 100 °C for 60 min. After 60 min, this material 
was placed on ice for 10 min and centrifuged at 10000 rpm 
for 5 min. We collected 0.1 ml of extraction solution with new 
tubes with more 0.9 ml of deionized water and added 0.5 ml 
of 5% phenol solution and 2.5 ml of 96% sulfuric acid in each 
tube. After 10 min, the tube content was incubated in a water 
bath at 25–30 °C for 20 min. The absorbance reading was per-
formed on a spectrophotometer (Shimadzu, Model UV-1800 
120 V Tokyo, Japan) with a wavelength of 490 nm. We cal-
culate the amount of total carbohydrate present in the sample 
solution using the standard graph.

Non-structural carbohydrates were calculated using the fol-
lowing equation:

Data analysis

Principal component analysis (PCA) was performed with all 
variables: total leaf area (TLA), root length (RL), leaf dry 
mass (LDM), stem dry mass (SDM), root dry mass (RDM), 
total dry mass (TDM), relative growth rate (RGR), leaf area 

Absorbance corresponds to 0.1ml of the test=� mgof glucose

10ml contains= (� × 10mg of glucose)∕0.1

=% of total carbohydrate present
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index (LAI), leaf area ratio (LAR), specific leaf area (SLA), 
root/stem ratio (RSR), non-structural carbohydrates (NSC), 
leaf number (LN), stem length (SL), stem diameter (SD), 
leaf expansion interval (LEI), and leaf expansion rate (LER). 
For PCA analysis, we utilized the average values of each 
variable in every species and CO2 treatment.

We calculated the mean and standard deviation for all 
physiological, morphological, and morphometrical param-
eters. The Shapiro–Wilk test was used to evaluate the normal 
distribution in each dataset. The data which did not show 
normal distribution (RGR, NSC, LER) were log-trans-
formed. Afterward, the Levene test was used to verify vari-
ance homogeneity. For TDM, RGR, LAI, SLA, RSR, and 
NSC, we used Mixed Design Analysis of Variance (MIXED 
ANOVA) with two factors and repeated measures, consider-
ing species and [CO2] between-subjects factors and time as 
within-subject factor. We used a posteriori Tukey’s posthoc 
test to investigate significant differences (p < 0.05) between 
the means of the species, [CO2], and time interval (days 
after the beginning of the experiment, DBE). For LER, we 
used Analysis of variance (two-way ANOVA), and a poste-
riori Tukey’s test was also applied to investigate significant 
differences (p < 0.05) between the means of the species and 
[CO2]. All analyses were performed in the R program, ver-
sion 3.0.0 (R Core Team 2019).

Results

Principal component analysis

The ordination diagram resulting from the principal com-
ponent analysis (PCA) summarized 77% total variation 
of the data in the first two dimensions (Dim1 and Dim2), 
with 45% and 32% variation explained by Dim1 and Dim2, 
respectively (Figure 1). EV H. stigonocarpa independent of 
[CO2] had a positive relationship with the characteristics: 
LDM, SDM, RDM, TDM, LEA, RGR, LAI, SLA, RSR, 
LAR, LN, SL, SD, and LEI and were distributed along Dim1 
(Figure 1). The distribution of EV species S. polyphyllum 
and S. adstringens were more influenced by RL and LER 
(Figure 1). The PCA ordination diagram indicated that spe-
cies were separated by growth characteristics in relation to 
CO2 concentration (~ 430 and ~ 700 ppm).

Leaf responses to eCO2

Deciduous A. peregrina and evergreen H. stigonocarpa 
independent of [CO2], showed a significant increase in 
the specific leaf area (SLA) at the middle of the experi-
ment (189th day, Fig. 2a, F-test = 7.62, p < 0.05) than 
other species. Leaf area index (LAI) peaked at the middle 
of the experiment (189th day) under eCO2 compared to 

the beginning (104th day) and at the end of the experi-
ment (276th day, Fig. 3b, F-test  = 3.70, p < 0.05 interac-
tion between CO2 and DBE). The species did not show 
significant differences in LAI between [CO2] in the same 
DBE (Fig. 3b). S. polyphyllum and S. adstringens plants 
in eCO2 showed higher leaf expansion rate (LER) than 
their plants in aCO2 (Table 1, F-test = 8.90, p < 0.05). 
Also, S. polyphyllum and S. adstringens in eCO2 showed 
higher LER than plants of other species in eCO2 (Table 1, 
F-test = 8.90, p < 0.05).

Root responses to eCO2

There was a decrease in non-structural carbohydrates (NSC) 
at the middle of the experiment (189th day) under aCO2 
(Fig.  2e, F-test  < 0.0001, p < 0.05 interaction between 
CO2 and DBE). However, under eCO2 there were no sig-
nificant differences in NSC across species over time 
(Fig. 3a). However, at the middle of the experiment (189th 

Fig. 1   Principal component analysis (PCA) showing the distribution 
of all features according to the five Cerrado woody species growing 
under ambient (430 ppm) and elevated (700 ppm) CO2 concentrations 
in open-top chambers. LDM Leaf dry mass, SDM stem dry mass, 
RDM root dry mass, TDM total dry mass, TLA total leaf area, RL 
root length, RGR​ relative growth rate, LAI leaf area index, LAR leaf 
area ratio, SLA specific leaf area, RSR root/stem ratio, NSC non-struc-
tural carbohydrates, LN leaf number, SL stem length, SD stem diam-
eter, LEI leaf expansion interval, and LER leaf expansion rate. 1 = A. 
peregrina 700  ppm, 2 = A. peregrina 430  ppm, 3 = H. stigonocapra 
700 ppm, 4 = H. stigonocapra 430 ppm, 5 = S. adstringens 700 ppm, 
6 = S. adstringens 430 ppm, 7 = S. polyphyllum 700 ppm, 8 = S. poly-
phyllum 430  ppm, 9 = T. aurea 700  ppm, 10 = T. aurea 430  ppm. 
Dimensions 1 and 2 are responsible for 45.4% and 31.8% of the total 
data variation, respectively
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day) the species under eCO2 showed higher NSC (Fig. 3a, 
F-test < 0.0001, p < 0.05 interaction between CO2 and DBE) 
than under aCO2.

Individual‑level responses to eCO2

All species showed greater total dry mass (TDM) at the mid-
dle of the experiment (189th day) remained higher at the 
end of the experiment (276th day, Fig. 4a, F-test = 23.06, 
p < 0.05), regardless of [CO2].

The individuals of deciduous species, A. peregrina and 
T. aurea, under eCO2 at beginning of the experiment (104th 
day) showed higher relative growth rate (RGR, Fig. 5a) 
than their plants under eCO2 at the middle of the experi-
ment (189th day). Furthermore, A. peregrina and T. aurea 
plants (Fig. 5a, F-test = 3.01, p < 0.05 interaction among 
CO2, species, and DBE) under eCO2 at beginning of the 
experiment (104th day) showed higher RGR than all spe-
cies under eCO2 at beginning of the experiment (104th day). 
Also, A. peregrina and T. aurea plants (Fig. 5a, F-test = 3.01, 
p < 0.05 interaction among CO2, species, and DBE) under 
eCO2 at the beginning of the experiment (104th day) showed 
higher RGR than their plants under aCO2 at beginning of the 
experiment (104th day).

T. aurea plants at the middle of the experiment (189th 
day) under aCO2 showed a higher root/stem ratio (RSR) 
than their plants under aCO2 at beginning (104th day) 
and at the end of the experiment (276th day) Fig.  5b, 
F-test < 0.0001, p < 0.05 interaction among  CO2, spe-
cies, and DBE). At end of the experiment (276th day), T. 
aurea plants under eCO2 showed higher RSR than plants 
of the other species under eCO2 (Fig. 5b, F-test < 0.0001, 
p < 0.05 interaction among CO2, species, and DBE). Also, 
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T. aurea plants under aCO2 at the middle of the experiment 
(189th day) showed a higher RSR than plants of the other 
species under aCO2 (Fig. 5b, F-test < 0.0001, p < 0.05 
interaction among CO2, species, and DBE). At the mid-
dle of the experiment (189th day) T. aurea plants under 
aCO2 showed a higher RSR than their plants under eCO2 
(Fig. 5b, F-test < 0.0001, p < 0.05 interaction among CO2, 
species, and DBE).

All significances and interactions between species and 
DBE, and correlation matrix of principal component analy-
sis were presented in the supplementary material (Table S1,  
S2, and S3).

Discussion

Our results confirmed contrasting strategies for resource 
allocation and growth rate in woody species of distinct leaf 
persistence groups growing under eCO2. Under eCO2, the 
higher relative growth rate of the deciduous species (T. 
aurea and A. peregrina) in the first harvest, with a decrease 
in the next harvest, was probably due to the rapid accumula-
tion of leaf mass at the beginning of exposure to eCO2, fol-
lowed by a decline over time. There is an expectation that the 
increase in [CO2] will stimulate the initial growth of woody 
species. Poorter and Navas (2003) observed that fast-grow-
ing species responded better to the increase in [CO2] than 
slow-growing species. However, Lloyd and Farquhar (1996) 
presented an alternative hypothesis, suggesting that slow-
growing species tend to consume a pronounced proportion 
of their daily CO2 assimilation in maintenance respiration. 
In our results we found more acquisitive strategies in decidu-
ous trees, surpassing evergreen ones with more conservative 
strategies under eCO2 in the short term, supporting Poorter 
and Navas (2003). Thus, evergreens could be more respon-
sive to eCO2 in the long-term because of the more conserva-
tive strategy of acquisition and resource use (Niinemets et al. 
2011; Krishna and Garkoti 2022). However, deciduous cer-
rado species could show advantages over evergreens under 
eCO2 due to their fast growth and more acquisitive resource 
use strategy (Krishna and Garkoti 2022).

The faster leaf expansion found out of five species under 
eCO2 allowed the leaves to mature quickly. This ecological 
strategy of rapidly expanding the leaves developed under 
eCO2 maximizes carbon gain to the whole plant in less time, 
so the entire photosynthetic apparatus is ready and mature 
to carry out photosynthesis at high levels during the leaf life 
span (Reich et al. 1991; Edwards et al. 2014). Only the ever-
green species S. polyphyllum and S. adstringesns showed 
a higher leaf expansion rate under eCO2 than under aCO2. 
This shift in the amount of leaf area produced by day could 
accelerate the leaf development and becoming these leaves 
mature faster over time. However, this faster leaf develop-
ment could desynchronize leaf production to the increase in 
rain and temperature over the growing season.

Deciduous and evergreen Cerrado species studied in 
our experiment growing under eCO2 in 189 DBE showed 
an increase in stem and leaf dry mass, total leaf area, and 
non-structural carbohydrates than deciduous and evergreen 
species growing under aCO2 at 189 DBE. This result is con-
trary to the results found by Curtis and Wang (1998), Reich 

Table 1   Mean values ± standard deviation of leaf expansion rate 
(LER), in five Cerrado woody species growing under ambient 
(430 ppm) and elevated (700 ppm) CO2 concentrations  in open-top 
chambers

Capital letters compare differences between [CO2] in the same spe-
cies. Lowercase letters compared differences between species in the 
same [CO2] (p < 0.05, Tukey’s test). n = 5 leaves per species. PG phe-
nological group, d days

PG Species CO2 LER (cm d−1)

Deciduous A. peregrina 430 ppm 1.03 ± 0.95 Aa
700 ppm 0.81 ± 0.73 Ab

T. aurea 430 ppm 0.18 ± 0.06 Aa
700 ppm 0.47 ± 0.50 Ab

Evergreens H. stigonocarpa 430 ppm 0.48 ± 0.23 Aa
700 ppm 0.53 ± 0.29 Ab

S. adstringens 430 ppm 0.47 ± 0.75 Ba
700 ppm 3.71 ± 3.99 Aa

S. polyphyllum 430 ppm 1.11 ± 1.19 Ba
700 ppm 2.32 ± 3.77 Aa
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Fig. 4   a TDM = total dry mass in five Cerrado woody species grow-
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trations in open-top chambers. Symbols represent averages (n = 4), 
and bars indicate standard deviation. Capital letters compare signifi-
cant differences between days after the beginning of the experiment 
(DBE) (p < 0.05, Tukey’s test)
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and Hobbie (2014), Reich et al. (2014), and Terrer et al. 
(2018), that at eCO2, growth in poor soil (as the soil used 
in our experiment) reduces biomass gain in woody species 
due to low soil nutrient availability. However, in a previous 
study, Souza et al. (2016) investigated the ecophysiologi-
cal responses of three woody species from the Cerrado to 
the eCO2 and found increased biomass production. This 
response indicates the ability to uptake resources in this 
deciduous and evergreen species, even growing in poor soil 
and a relatively short time of exposure to greater CO2 avail-
ability. Furthermore, according to Reich et al. (2006), in 
the early developmental stages, even in poor soils, the high 
stimulus of biomass production may be more a characteristic 
of seedlings than of adult plants. In addition, Fox (1978), 
defined that a plant is efficient in the absorption and use of 
phosphorus when it produces a large amount of dry matter 
per unit of time and area, even when the environment (e.g., 
soil used in our study) has less phosphorus available for 
maximum productivity as found in our study.

The change in root/stem ratio only observed in the decidu-
ous T. aurea, with a decrease in the biomass accumulation in 
roots at the expense of stems under eCO2, could impair the 
competitive capacity of this species for water and nutrients 
in the soil with other woody and herbaceous species (Melo 
et al. 2018). This change in biomass allocation in favor of 
stems seems more frequent in cerrado woody plants (Souza 
et al. 2016; Melo et al. 2018) compared gramineous plants. 
The higher biomass allocation favoring the shoots could ben-
efit the species in light capture among dense gramineous 

strata in Cerrado areas (Melo et al. 2018). However, high 
efficiency of resource uptake from the soil is of great impor-
tance in cerrado areas because the seedlings and young 
woody plants need to capture water and nutrients in compe-
tition with efficient root systems of grass species (Oliveira 
et al. 2005). In the Cerrado, which is a domain marked by 
seasonal rainfall, it is commonly proposed that trees develop 
deep root systems that provide access to deeper, more humid 
layers of the soil (Rossato et al. 2013). Furthermore, Cerrado 
trees are capable of adjusting their hydraulic architecture and 
water characteristics (Bucci et al. 2005, 2008) to minimize 
seasonal imbalances. Therefore, the greater investment in 
growth of the aerial part than the belowground part in plants 
growing under eCO2 indicates a change in the biomass allo-
cation pattern (Melo et al. 2018) which can make it difficult 
for savanna trees to resist the increase in seasonal droughts 
resulting from climate change (IPCC 2019).

All species studied showed similar responses in non-
structural carbohydrates in roots. Although the roots did 
not increase the NSC under eCO2, it guaranteed the main-
tenance of the levels during the initial growth of all spe-
cies compared to the lower values at 189 DBE in aCO2 
plants. Even without an increase over time, maintaining 
a stock of non-structural carbohydrates in the roots could 
benefit these species after disturbances such as fire events 
or loss of aerial parts by herbivory. However, according 
to Manea and Leishman (2019), eCO2 could increase the 
woody species encroachment in grassland environments. 
According to Bond and Midgley (2000), the enhanced 
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potential to resprout in woody plant species under eCO2 
may also contribute to the invasion of these plants in pas-
tures after events such as fire and herbivory. This poten-
tial change could favor the invasion of native (and alien) 
species over field formation, modifying the floristic and 
functional diversity of the Cerrado.

In the future, the establishment of woody seedlings in 
cerrado physiognomies would be strongly associated with 
CO2 plant responses and the subsequent competitive effect 
of grass species in these systems (Manea and Leishman 
2015; Melo et al. 2018). Also, it is necessary to take into 
account that these species have a long life cycle, and there-
fore, the time required for exposure to eCO2 to produce 
significant effects on carbohydrate accumulation may be 
longer than the one observed in our work. However, it is 
important to investigate the interactions between increased 
[CO2], regrowth capacity, and vegetative growth in woody 
species from the Cerrado, as these factors may have an 
impact on the global carbon cycle and on responses to 
climate change (Bradley and Pregitzer 2007). Therefore, 
long-term studies are needed using, for example, open-air 
CO2 enrichment technologies (FACE), and experiments 
in open-top chambers (OTC) with trees cultivated with 
interaction of stresses and in small places with an element 
of competition or forests stands around natural sources 
of CO2 to increase the knowledge base on ecosystem 
responses to elevated atmospheric CO2. Also, understand-
ing the regrowth capacity associated with carbon alloca-
tion and storage in woody plants growing under eCO2 is 
fundamental for the development of dynamic models for 
Cerrado vegetation in the face of climate change.
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