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Abstract Habitat conversion is one of the major

threats for biodiversity conservation and viability of

natural populations. Thus, habitat disturbance alters

distinct ecological processes, such as plant reproduc-

tive success and diaspore fate. In this study, we

determined the effects of seasonally tropical dry

forests (STDFs) conversion by anthropogenic distur-

bance by assessing diaspore fate of Enterolobium

contortisiliquum. We compared 20 adult trees present

in a STDFs preserved area and 20 adult trees present in

a human-converted area. In general, diaspore fates

from both areas were similar, i.e., there was no

difference in the reproductive success of trees in

STDFs and human-converted area. Habitat distur-

bance did not affect the length or width of fruits; only

fruit thickness was larger in trees of STDFs habitat.

None of the biometric seed measures differed between

different habitat conditions. Likewise, the number of

undamaged seeds, aborted seeds, pre-dispersal pre-

dated seeds, and seed production were independent of

habitat conditions. Besides, we did not observe any

effect of habitat disturbance on germination percent-

age. However, seeds from preserved STDFs germi-

nated faster than seeds from the human-converted

area. Even though the effects of human-modified

habitats on the diaspore fate have already been

studied, tree species exhibit different responses to

habitat conversion regarding seed predation, seed

dispersal, seed germination, and seedling establish-

ment. Overall, our results show that habitat distur-

bance does not affect the diaspore fate of E.

contortisiliquum. This study also highlights the

importance of remnants trees in converted landscapes

as the population’s connectors which maintain plant–

animal mutualistic and antagonistic interactions that

mitigate the effects of habitat disturbance.
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Introduction

Deforestation is the major threat to biodiversity

conservation and the viability of natural populations

(Saunders et al. 1991; Sala et al. 2000; Haddad et al.

2015). Biodiversity preservation in disturbed habitats

requires an understanding of the effects of landscape

change on community dynamics (Burkey 1993;

Aguilar et al. 2012) since forest conversion may

change species composition and abundance, thus

altering ecological processes, such as mutualistic and

antagonistic animal–plant interactions (Saunders et al.

1991; Aizen and Feinsinger 1994a; Debinski and Holt

2000; Emer et al. 2018, 2019; Marjakangas et al. 2019;

Hooper and Ashton 2020). Habitat conversion by

anthropogenic changes alters the optimal conditions

for the long-term persistence of native plant species

(Ashworth and Martı́ 2011; Galetti et al. 2013)

because it affects animal populations that interact

with in many stages of plants’ life cycles (Dirzo and

Miranda 1991; Aizen and Feinsinger 1994b).

Due to the intimate interactions with pollinators and

seed dispersers, the reproductive success of many

plant species has been negatively affected by habitat

conversion (Aizen and Feinsinger 1994b; Haddad

et al. 2015; Browne and Karubian, 2018; Emer et al.

2018; Hooper and Ashton 2020). For instance, habitat

conversion has negative consequences for plant

genetic diversity (Aguilar et al. 2006, 2008; Rosas

et al. 2011; Browne and Karubian 2018), since in

disturbed habitats, the abundance of pollinators

decreases, and selfing increases, resulting in inbreed-

ing depression (Aguilar et al. 2006, 2008, 2012, 2019;

Eckert et al. 2009; Breed et al. 2015; Broadhurst

2015). Hence, the quantity and/or quality of progen-

itors are reduced (Aizen and Feinsinger 1994b;

Ghazoul et al. 1998; Cascante et al. 2002; Hooper

and Ashton 2020). Additionally, habitat conversion

negatively affects diaspore fate by reducing fruit and

seed set (Ghazoul et al. 1998; Fuchs et al. 2003;

Quesada et al. 2004; Kolb 2008; Hooper and Ashton

2020), reducing seed germination (Menges 1991;

Bruna 1999; Cascante et al. 2002; Ashworth and

Martı́ 2011), and decreasing seed predation (Cascante

et al. 2002; Chacoff et al. 2004; Burgos et al. 2008;

Herrerı́as-Diego et al. 2008; Mendes et al. 2016).

Indeed, seed predation can be a specific antagonistic

interaction, such as observed for Fabaceae family and

bruchids (Coleoptera), in which about 85% of seed

predation rate is caused by this insects (Johnson 1985).

Due to this strong interaction, habitat alteration may

affect plant demography, since landscape changes

decrease the diversity and abundance of beetle species

(Didham et al. 1998). However, contradictory results

were found for seed predation, and no differences in

predation rates by bruchines were detected in the palm

Attalea humili (Andreazzi et al. 2012) located in large

and small Atlantic Forest remnants. Even an increase

of seed predation in fragment patches in relation to

continuous forests was reported in the tree species

Prunus avium and Viburnum lantana (Kollmann and

Buschor 2003). Altogether, these selective pressures

may determine plant reproductive success and affect

population recruitment (Crawley 2000).

Over the last decade, many researchers investigated

the effects of habitat disturbance on diaspore fate by

assessing both mutualistic and antagonistic interac-

tions (Aizen and Feinsinger 1994a, b; Ashworth and

Martı́ 2011; Skogen et al. 2016; Morrison and

Mendenhall 2020). However, different plant species

have distinct responses to habitat disturbance (Chen

et al. 2017; Newbold et al. 2019), and the existing

evidence do not show clear patterns for the effects of

habitat disturbance on plant reproductive success

(Aizen and Feinsinger 1994a, b; Costin et al. 2001;

Ghazoul 2005; Ashworth and Martı́ 2011; Skogen

et al. 2016). It has been proposed that tropical trees

could be more adaptable and resilient to habitat

conversion as a result of their longevity, high intra-

population genetic diversity, and high rates of pollen

movement (White et al. 2002; Hamrick 2004; Deacon

and Cavender-Bares 2015).

Most of the studies that assessed diaspore fate

response under habitat disturbance have involved

evergreen species, but a better understanding is needed

for trees from Seasonally Tropical Dry Forests

(STDFs) (but see Aizen and Feinsinger 1994a, b;

Rocha and Aguilar 2001b; Ashworth and Martı́ 2011;

Souza-Silva et al. 2015). Despite the large tropical

distribution and importance of STDFs, these ecosys-

tems are endangered by anthropogenic activities

(Murphy and Lugo 1986; Janzen 1988; Sánchez-

Azofeifa et al. 2005, 2009; Espı́rito-Santo et al. 2009;

Dupin et al. 2018), with a deforestation rate of 12% in

Latin America from 1980 and 2000 (Miles et al. 2006).

STDFs soils are often fertile (Murphy and Lugo 1986),

and the conversion of these forests into pasture and

agricultural landscapes has been increasing in the last

123

526 Plant Ecol (2021) 222:525–535



decades (Mass 1995; Espı́rito-Santo et al. 2009; Dupin

et al. 2018; Clemente et al. 2020).

In this study, we assessed the effects of STDFs

conversion into agricultural and pasture environments

on diaspore fate of Enterolobium contortisiliquum

tree. For this purpose, we compared fruit and seed

morphometry, seed production, abortion, predation,

and germination between trees from preserved and

human-converted STDFs. We hypothesized that

STDFs conversion would negatively affect diaspore

fate, since in disturbed STDFs, individuals of E.

contortisiliquum are under stressful environmental

conditions. Thus, they would produce narrower fruits

with less and smaller seeds. We also expect higher

seed predation intensity and abortion percentages, and

lower germination rates.

Methods

Study species

Enterolobium contortisiliquum (Vell.) Morong is a

Neotropical leguminous tree frequently found in

Brazilian STDFs (Oliveira-Filho 2006). Although

reproductive studies about E. contortisiliquum do not

exist, it seems that the species is pollinated by moths,

hawk moths, other small nocturnal insects, and even

by diurnal bees, as already registered for E. cyclo-

carpum, which has similar flower morphology (Janzen

1982; Rocha and Aguilar 2001a; Frankie et al. 2004;

Hamrick and Apsit 2004). Flowering occurs during a

short period, from September to October, while fruits

ripen between June and July. The species has endo-

zoochoric dispersal that occurs just after fruit ripening.

Rodents, such as agoutis, are the seed dispersers

(Moreira et al. 2015). Mature fruits and seeds of E.

contortisiliquum resemble other Enterolobium spe-

cies. Fruits are smooth, shiny, indehiscent, and deep

brown, as in E. cyclocarpum (Janzen 1982), and seeds

are hard, ovoid, and brown (Link and Costa 1995).

Fruit development lasts over almost one year and seed

dispersal occurs over the dry season, before the

flowering period. Thus, mature fruits are resultant

from the pollination of the previous year, as observed

in E. cyclocarpum (Frankie et al. 2004).

Pre-dispersal seeds of E. contortisiliquum are

predated by the larvae of Merobruchus bicoloripes

(Coleoptera: Bruchidae) (Pic 1930) (Link and Costa

1995; Morandini and Viana 2009). Bruchid females

oviposit on or near the fruits. When the eggs hatch, the

larvae enter through the pericarp and go into the seeds,

where they develop. The insect completes its life cycle

consuming one or more seeds and emerges from the

fruit as adult (Janzen 1969). The ingestion of E.

contortisiliquum pods is harmful to cattle, causing

photosensitivity reactions and abortion (Bonel-Ra-

poso et al. 2008; Costa et al. 2009; Olinda et al. 2015).

As a result, most farmers cut the trees near their

ranches, as the fruiting period occurs during the dry

season, coincident with low forage availability for

cattle. Therefore, E. contortisiliquum is under threat

due to habitat conversion and selective cutting (Mor-

eira et al. 2015).

Study area and sampling design

The study was conducted in northern Minas Gerais

State (southeastern Brazil), in the surroundings of

Lapa Grande State Park (LGSP) (ca. 16�420S,
43�560W), a protected area with 15.000 ha. The

climate in the region is characterized by marked dry

winters from May to September and rainy summers,

from November to March. The predominant climate is

tropical semiarid (Aw in Köppen’s classification) with

average rainfall ranging from 700 to 1200 mm and

average temperature among 21 and 25 �C (Antunes

1994). The vegetation of LGSP is composed of

cerrado and STDFs. According to Portillo-Quintero

and Sánchez-Azofeifa (2010) about 52% of Brazilian

STDFs have already been converted to some sort of

human activity. In northern Minas Gerais, estimates

indicate that 18% of STDFs has been replaced of

agriculture, silviculture, and extensive cattle ranching

(Rodrigues 2000; Espı́rito-Santo et al. 2009; Dupin

et al. 2018), which has resulted in an altered matrix

with scattered trees. We studied 20 reproductive trees

in a preserved STDFs area (inside LGSP limits) and 20

reproductive trees in the park surroundings, which is

characterized by a converted landscape of agriculture

and pasture with some scattered E. contortisiliquum

trees. We measured the height and diameter at breast

height (DBH) of the 40 sampled trees. The minimum

distance between E. contortisiliquum individuals was

5 m. In a radius of 10 m around each studied tree, we

counted the individuals of E. contortisiliquum trees

and other tree species (see Supplementary Table S1).
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Fruit and seed morphometry

The study was conducted during the fruiting period

(July) of 2011. On each reproductive tree, we collected

between 26 and 30 mature fruits surrounding the tree

crown. These fruits were produced by natural polli-

nation in the previous year. We determined the fruit

morphometrics by measuring length (in the longitudi-

nal direction), width (in the transverse direction), and

thickness of the fruit pericarp using a digital caliper

(mm). After that, fruits were opened, and all seeds

were extracted to assess seed morphometry, as previ-

ously described for fruits. Due to the irregular shape of

aborted seeds, they were excluded from morphometric

measures.

Seed production

For each fruit, we counted the number of undamaged

seeds, the number of aborted seeds, the number of pre-

dispersal predated seeds by bruchid beetles, and the

total number of seeds produced (i.e., the sum of all

previous categories). Seeds without injuries were

considered potentially viable (undamaged seeds).

The seeds were considered aborted when exhibited

irregular shape with a brown and dry endosperm

(Cascante et al. 2002). Bruchid beetle damage was

identified by the characteristic hole left on seeds when

adult beetle emerges (Janzen 1977).

Seed germination

To verify if the habitat disturbance affects the

percentage and the time of seed germination, we

collected a sample of 10 seeds per tree from each

habitat condition (200 seeds per habitat). Seeds used in

this experiment were undamaged, as described above.

These 400 seeds were subjected to scarification by

carefully sanding the seed cover to break seed

dormancy. After that, seeds were placed in Petri

dishes covered with a sheet of filter paper and

moistened with distilled water. Then, seeds were

incubated in a germination chamber (B.O.D. type)

under 12 h photoperiod with controlled temperature of

25 �C on dark and 30 �C on the light. All Petri dishes

were observed at 24 h intervals for 30 days and seeds

were considered germinated once the radicle protru-

sion was observed. Mean germination time (MGT)

was obtained by the equation: MGT =
P

(n 9 d)/N,

where n is the number of seeds germinated on each

day, d is the number of days from the beginning of the

test, and N is the total number of seeds germinated at

the end of the experiment (Ellis and Roberts 1981).

Data analyses

To test how habitat disturbance affects fruit and seed

morphometrics, we used generalized linear mixed

model (GLMM) with Gaussian error distribution and

lmer function for R (lme4 package; Bates et al. 2015).

We built separate models for each response variable.

Our models included habitat condition (preserved

SDTF or converted area) as the predictor variable with

a fixed effect and sampled tree as a random effect. The

response variables were (1) length, (2) width, and (3)

thickness of fruits and seeds.

To determine the effect of habitat disturbance on

seed production, we used GLMM models with Bino-

mial error distribution and logit link function and

glmer function (lme4 package; Bates et al. 2015). Our

models also included habitat condition (preserved

STDF area or converted landscape) as a fixed effect

and tree as a random effect. In these models, the

response variables were the proportion of (1) undam-

aged seeds; (2) aborted seeds; (3) pre-dispersal

predated seeds; and (4) seeds production.

The effect of habitat disturbance on seed germina-

tion was evaluated by comparing germination time

and seed germination percentage during 30 days

between habitat conditions. We calculated the mean

germination time (MGT) following Labouriau (1983)

for each condition. The germination speed was

evaluated with a regression analysis using Weibull

parametric survival distribution and survival function.

The number of germinated seeds was tested through a

GLM with Poisson error distribution and the response

variable was the habitat condition. All analyses were

performed in software R version 3.4.2 (R Develop-

ment Core Team 2017).

Results

Fruit and seed morphometry

A total of 598 fruits were sampled in each habitat

(1,196 in total) and 10,495 seeds were obtained in

STDFs area, whereas 10,686 seeds were sampled in
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human-converted habitat (21,181 seeds in total). All

fruits and seeds were used for morphometric analysis

(including undamaged and pre-dispersal predated

seeds). Habitat condition did not affect fruit length

(X2 = 0.10, df = 1, p = 0.75) or fruit width

(X2 = 2.50, df = 1, p = 0.11). However, fruit thick-

ness was larger in trees from preserved STDF

(X2 = 5.40, df = 1, p = 0.02). In contrast, none of

the seeds’ morphometric measures differed between

habitat condition (X2 = 0.07, df = 1, p = 0.79 for seed

length, X2 = 0.81, df = 1, p = 0.37 for seed width, and

X2 = 0.31, df = 1, p = 0.58 for seed thickness)

(Table 1).

Seed production and seed predation

There was no difference in seed production between

habitat conditions. Likewise, the number of undam-

aged seeds (X2 = 0.03, df = 1, p = 0.87), aborted

seeds (X2 = 1.19, df = 1, p = 0.27), predated seeds

(X2 = 0.51, df = 1, p = 0.48), and total seed produc-

tion (X2 = 0.14, df = 1, p = 0.71) were independent of

habitat condition (Table 2, Fig. 1). Trees from both

habitat conditions produced an average of 18 seeds per

fruit, of which 80–82%were undamaged or potentially

viable seeds, 8–9% were aborted seeds, and 9–11%

were predated (Fig. 1).

Seed germination

We did not observe any effect of habitat disturbance

on germination percentage (an average of 85% for

seeds from preserved STDF and 87% for seeds from

human-converted area, p = 0.78). However, seeds

from trees located at preserved STDFs germinated

almost twice faster (MGT = 2.4 ± 0.85 days), than

seeds from trees in the human-converted area (MGT =

4.09 ± 0.63 days; p = 0.003). Thus, in preserved

STDFs, 80% of seeds germinated after ca. 10 days,

while in the human-converted area, seeds took ca.

17 days to germinate (Fig. 2).

Discussion

In general, our findings suggest that habitat distur-

bance did not affect Enterolobium contortisiliquum

diaspore fate. Only fruit thickness was larger in trees

from preserved STDFs as well as its germination

speed was higher. However, the majority of studied

traits did not indicate a negative effect of landscape

conversion on the reproductive success of this tree

species. In fact, not all tree species are impacted by

land conversion in the same way (Henle et al. 2004;

Winfree et al. 2011).

The diaspore fate influences plant dispersal and

establishment (Westoby et al. 1996; Leishman et al.

2000; Moles and Westoby 2004). As seeds have

morphological traits in response to the environmental

conditions (Vázquez-Yanes and Orozco-Segovia

1993), we expected that fruit and seed morphometries

formed in the human-converted area would be smaller

and narrower. Anthropogenic habitat conversion

modify local climatic conditions, and these areas

become warmer and drier than natural habitats (Britter

and Hanna 2003; Frishkoff et al. 2015; Senior et al.

2017). Consequently, trees in human-converted area

would grow under stressful conditions when compared

to trees of preserved area. However, STDFs conver-

sion into pasture and agriculture only negatively

affected fruit thickness. Thus, environmental condi-

tions of the human-converted area (i.e., high incidence

Table 1 Morphometric measures (average ± SE) of fruits and seeds of trees in STDF and human-converted area. Asterisk indicates

significant differences between the parameters

Fruits Seeds

STDF Human-converted area STDF Human-converted

area

Length (mm) 67.03 ± 0.43 67.74 ± 0.45 12.38 ± 0.15 12.55 ± 0.25

Width (mm) 37.81 ± 0.25 40.49 ± 0.39 7.45 ± 0.13 7.20 ± 0.11

Thickness (mm) 13.27 ± 0.15 * 12.13 ± 0.14 * 5.13 ± 0.01 5.36 ± 0.42
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of radiation and extremes of temperature and humid-

ity) may not be stressors for E. contortisiliquum. As

observed for other STDF plant species, E. contor-

tisiliquum may have strategies to cope with drought

through better efficiency in water use, allowing them

to have physiological and morphological adjustments

at high temperatures and less water availability

(Pineda-Garcı́a et al. 2013; Lohbeck et al. 2015).

Our results also indicated that the number of seeds

per fruit of E. contortisiliquum was similar among

habitats. If habitat disturbance affects the number of

pollinia deposited in stigmas, as suggested by Aizen

and Feinsinger (1994a), it would be expected more

fruits and seed set in an undisturbed area. However, we

did not observe any effect of habitat disturbance on

seed production per fruit. This result may be related to

pollinators’ capacity to transfer a sufficient pollen

charge to maintain the same level of seed production,

regardless of the habitat condition, as discussed below.

Despite a lower density of trees in the converted

habitat, trees may not suffer from pollen limitation or

gene flow. Many studies highlight the ecological value

of remnant trees in converted landscapes to increase

population connectivity (Manning et al. 2006; Breed

et al. 2011). Thus, E. contortisiliquum populations

from both habitats may be well connected by gene

flow, which promotes similar progeny.

Although we did not study pollen gene flow or

progeny relatedness, our results suggest that pollina-

tion is not constrained by habitat conversion, as

undamaged and aborted seeds were similar in both

habitat conditions, as well as fruit and seed set. The

disturbed area is surrounding the LGSP; thus, polli-

nators may be dispersing among patches, favoring

more compatible crosses between unrelated trees.

Despite the lack of knowledge on E. contortisiliquum

Table 2 Number of undamaged, aborted, predated, and total of seeds production per fruit (average ± SE) of trees in STDF and

human-converted area

Undamaged seeds Aborted seeds Predated seeds Total of seeds

STDF 14.54 ± 0.05 1.27 ± 0.09 1.75 ± 0.09 17.55 ± 0.04

Human-converted area 14.36 ± 0.06 1.50 ± 0.10 2.01 ± 0.08 17.87 ± 0.04

Fig. 1 Proportion of aborted seeds, predated seeds, and undamaged seeds in STDF and human-converted area. Bars represent standard

error
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pollinators, flowers are apparently pollinated by moths

(Moreira et al. 2015), as observed for the congeneric

species E. cyclocarpum (Frankie et al. 2004; Hamrick

and Apsit 2004), andmoths can visit many trees during

a foraging route (Haber and Frankie 1989), promoting

gene flow between different areas. Considering that

approximately 20% of the progeny produced by the

congeneric species E. cyclocarpum is self-fertilized

(Rocha and Aguilar 2001b), an alternative explanation

is that E. contortisiliquum would promote self-polli-

nation, which would produce a similar number of

seeds among habitats.

Seed predation of E. contortisiliquum was not

affected by habitat disturbance, and both habitat

conditions exhibited similar percentage of pre-disper-

sal predated seeds. It is possible that habitat distur-

bance did not depress M. bicoloripes population and/

or the matrix surrounding the studied areas did not

constrain predator dispersal and, consequently, main-

tain the same pattern of seed attack. As pointed out by

Aguilar et al. (2012), the persistence of bruchid insects

on fragmented habitats may be due to the tight

evolutionary relationship with Fabaceae tree species

and the ability of bruchid beetles to remain nearby

adult trees throughout their life cycle, despite the

environmental condition. Despite fruit and seed pre-

dation is a process that affects plant reproductive

success (Schupp 1988), the effects of habitat conver-

sion on this antagonistic interaction have not been well

studied (Herrerı́as-Diego et al. 2008), and tree species

exhibit different responses (Cascante et al. 2002;

Chacoff et al. 2004; Herrerı́as-Diego et al. 2008;

Aguilar et al. 2012).

We found that the time of seed germination in E.

contortisiliquum is affected by habitat disturbance.

The mean germination time was significantly lower

for seeds from trees from preserved STDFs than for

seeds from trees from the human-converted area. The

faster germination of seeds in the preserved habitat

could be an important strategy to avoid seed viability

loss due to deterioration andmicroorganism attack. An

alternative explanation is that soil and/or humidity are

different among habitats assuming that the human-

modified area is warmer and drier (Britter and Hanna

Fig. 2 Accumulated percentage of seeds germination from trees in STDF and human-converted area
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2003; Frishkoff et al. 2015; Senior et al. 2017).

Agreeing with our results, progeny from the con-

generic species E. cyclocarpum trees in preserved

STDFs area took less time to germinate than trees

scattered in pastures (Rocha and Aguilar 2001b).

Although the mean time of seed germination in the

preserved habitat was almost two days faster, seeds

obtained from trees of both habitat conditions showed

the same germination rate. It is expected that seeds

produced by scattered trees would suffer more

inbreeding (Nason and Hamrick 1997) and, conse-

quently, a reduction in germination percentage (Bruna

1999). As assumed before, it is possible that there is no

pollen limitation, and pollinators could be promoting

pollen flow and exogamic crosses between unrelated

trees, reducing inbreeding depression and pollen

limitation effects in scattered trees, which would

result in a similar percentage of germination.

For many years, researchers have evaluated the

effects of habitat disturbance on tree reproduction

(Nason and Hamrick 1997; Herrerı́as-Diego et al.

2006, 2008; Aguilar et al. 2019). However, not all

tropical trees species are impacted by habitat distur-

bance in the sameway (Quesada et al. 2004; Herrerı́as-

Diego et al. 2006; Neal et al. 2010). Despite our results

were obtained in a single site and only once, we

highlight the absence of negative habitat conversion

effects on E. contortisiliquum’s diaspores fate in this

study. Although, habitat disturbance may cause neg-

ative effects on plant reproduction, the long life-span

of trees may make them resilient to immediate

disturbance (Wilcock and Neiland 2002; Neal et al.

2010) and buffer populations against stochastic

events. From a conservation biology perspective, E.

contortisiliquum trees scattered in altered habitats of

tropical dry forests may serve as important stepping

stones for pollinator movement, ensuring gene flow

and connecting populations, rather than being consid-

ered a living dead (Janzen 1986). Local preservation

of these trees is essential to the maintenance of

mutualistic and antagonistic interactions important to

the biodiversity of tropical ecosystems.
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