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Abstract Two drivers of global change that affect

ecosystem function include wildland fire regimes

characterised by frequent, severe fires and increased

atmospheric nitrogen (N) deposition. However, their

combined effect on the post-fire recovery of Mediter-

ranean forests is still little known. We assessed the

interactive effects of two fire severities and N addition

on the rate and timing of seed germination of three

woody species with different post-fire regeneration

strategies in fire-prone forests: Pinus pinaster, an

obligate-seeder species, and two facultative-seeder

species, Pterospartum tridentatum (high-resprouting

and low-seeding ability) and Halimium lasianthum

(low-resprouting and high-seeding ability). Seeds

were subjected to six combinations of temperature

[control (no heat treatment), 60 �C (moderate fire

severity) and 120 �C (high fire severity) for 5 min]

and N fertilisation (without N and with addition of

4.17 g Nm-2 of solid granules of ammonium nitrate,

equivalent to three times the current estimate of

airborne N deposition in the study area) under

laboratory conditions. We found that N fertilisation

had a significant, negative effect on the rate of seed

germination of the three species under study. Addi-

tionally, we detected no differences in P. pinaster

germination among thermal treatments; while both P.

tridentatum and H. lasianthum had significantly

higher germination rates when submitted to high

fire-severity conditions. Moreover, the average time of

seed germination increased with N fertilisation for P.

pinaster but increased after the thermal treatments for

H. lasianthum. These results suggest that increased N

availability under intense wildfire regimes may hinder

post-fire seed germination, regardless of the species’

regeneration strategy, in fire-prone pine forests.

Keywords Atmospheric nitrogen deposition �
Germination � Halimium lasianthum � Pinus pinaster �
Pterospartum tridentatum

Introduction

Recurring disturbances such as wildfires affect the

dynamics of many ecosystems worldwide (Turner

2010) and exert a strong evolutionary pressure on

plants. As a consequence, numerous species have

acquired adaptive traits and mechanisms that confer

fitness benefits in repeatedly disturbed environments

such as Mediterranean fire-prone ecosystems (Pausas

and Keeley 2014). In these ecosystems, the post-fire

regeneration of plant species largely depends on their

ability to withstand high temperatures during fire
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(Paula and Pausas 2008) and tolerate repeated burning

(e.g. De las Heras et al. 2012), as well as on their

strategy for persisting after fire (i.e. essentially,

germinating or resprouting; Paula and Pausas 2008;

Pausas and Keeley 2014). Indeed, many woody

species in these fire-prone environments have heat-

tolerant or heat-stimulated germination (e.g. species

with physical dormancy; Moreira et al. 2010) that

require either a persistent soil/aerial seed bank or the

production of heat-resistant seeds (Paula and Pausas

2008; Rivas 2016; Trabaud and Oustric 1989). How-

ever, in recent decades, extreme fire events have

compromised the natural recovery and the resilience

of fire-prone ecosystems across the Mediterranean

basin (Doblas-Miranda et al. 2017; San-Miguel-Ayanz

et al. 2013 and references therein), with future

projections of increased fire extent, frequency, sever-

ity and seasonal duration due to climate change and

land use transformation (Moreira et al. 2011; Pausas

and Paula 2012; Pausas et al. 2008). Under these novel

conditions, there might be both a decrease in the

resprouting ability of plants and a failure of seeders

recruitment, thus altering plant species composition

and dominance (e.g. González-De Vega et al. 2016;

Moya et al. 2015; Taboada et al. 2017).

To date, many experiments have submitted seeds of

Mediterranean woody species to different thermal

shock treatments and have confirmed the key role of

heat intensity in post-fire germination (see review by

Paula and Pausas 2008). Nonetheless, many factors

beyond fire temperature influence both the loss of seed

dormancy and the rate of post-fire recruitment (e.g.

light and daily temperature fluctuations, Baskin and

Baskin 2001; smoke, Keeley and Pausas 2018; Mor-

eira and Pausas 2018; Moreira et al. 2010). Indeed,

changes in soil nutrient concentrations following fire

affect seed germination and seedling recruitment (e.g.

Calvo et al. 2008), especially in fire-prone ecosystems

(Mayor et al. 2016). In particular, enhanced soil

nitrogen (N) availability after fire (Henig-Sever et al.

2000; Marcos et al. 2009; Serrasolses and Vallejo

1999) could help breaking seed dormancy and

promoting post-fire germination (Thanos and Rundel

1995). But there is no consistent evidence for a

positive effect of the released soil N compounds on

seed germination after fire, as this effect might be life

form-specific, species-dependent or even inhibitory

(Bell et al. 1999; Luna and Moreno 2009; Pérez-

Fernández and Rodrı́guez-Echeverrı́a 2003).

Moreover, post-fire soil N availability in Mediter-

ranean environments is very likely influenced by the

elevated rates of atmospheric N deposition in this area

due to pollution (Garcı́a-Gómez et al. 2014; Ochoa-

Hueso et al. 2011). These anthropogenic N inputs are

currently one of the main threats to Mediterranean

ecosystems, leading to the loss of biodiversity and to

changes in structure and ecological function (Bobbink

et al. 2010; Calvo-Fernández et al. 2018; Jones et al.

2014; Ochoa-Hueso et al. 2013, 2014). Several long-

term experiments have demonstrated the interactive

effects of wildfires and N addition on soil chemistry

and microbiology (e.g. Green et al. 2013; Southon

et al. 2012), and on plant species richness and

community composition (e.g. Britton and Fisher

2007; Southon et al. 2012). Yet, to our knowledge,

no studies have assessed the response of post-fire seed

germination and seedling recruitment to increased

airborne N deposition in Mediterranean fire-prone

environments. Furthermore, how the combination of

novel wildfire regimes with even more frequent high-

severity fires and enhanced soil N availability might

affect the regeneration of Mediterranean ecosystems

remains undetermined. It is therefore essential to

investigate how the soil temperatures attained during a

fire and the rate of N loading jointly influence the post-

fire germination of coexisting species typical of

Mediterranean fire-prone ecosystems with different

regeneration strategies. This information will aid

understanding plant competitive interactions at early

successional stages after fire and support effective

post-fire management.

The aim of this study was to analyse the joint effect

of fire severity and increased atmospheric N deposi-

tion on the germination response of three typical

woody species (one tree and two shrubs), with

different post-fire regeneration strategies, from a

Mediterranean fire-prone forest ecosystem, i.e. Pinus

pinaster Ait., an obligate-seeder species (Tapias et al.

2001, 2004), and two facultative-seeder species,

Pterospartum tridentatum (L.) Willk. (high-resprout-

ing and low-seeding ability; Reyes et al. 2009) and

Halimium lasianthum subsp. alyssoides (Lam.) Greu-

ter (low-resprouting and high-seeding ability; Rivas

2016). To achieve this aim, we experimentally sim-

ulated under laboratory conditions (1) the tempera-

tures experienced during a wildfire by submitting the

seeds of the three species to three thermal treatments

(control, moderate- and high-severity wildfire) for the
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same exposure time; and (2) the current estimates of

airborne N deposition in the study area by the addition

of solid granules of ammonium nitrate to the seed

germination dishes. Following Keeley (2009) and Key

and Benson (2006), we use the term ‘fire severity’ to

indicate the magnitude of environmental change

caused by fire that is positively correlated with fire

intensity (i.e. the energy output from fire) and, thus,

with the soil temperatures attained during fire. As

such, this approach represents a continuation of a

previous study from our research group (Calvo et al.

2016) in which we demonstrated that seed provenance

and weight influence both the rate and timing of

germination and the early seedling growth of P.

pinaster. In particular, highly-serotinous P. pinaster

populations adapted to frequent fires have comparably

lighter seeds with lower heat tolerance (lower germi-

nation rates, higher germination times and lower

seedling lengths) than very low serotinous popula-

tions. Although our previous findings will help

restoration aimed at forest regrowth in fire-prone pine

areas, we still know very little about how post-fire

natural tree regeneration will cope with increased N

loading, which needs further research.

Based on prior studies, we expect to find: (i) no

significant differences in P. pinaster germination

among the thermal treatments (Calvo et al. 2016;

Martı́nez-Sánchez et al. 1995; Reyes and Casal 2008;

Torres et al. 2006), i.e. heat tolerance sensu Paula and

Pausas (2008); (ii) enhanced germination of P.

tridentatum seeds under both low and high fire-

severity treatments (Rivas et al. 2006; Valbuena et al.

2002), i.e. heat-stimulated germination sensu Paula

and Pausas (2008) and (iii) an increase in the

germination of H. lasianthum seeds only under the

high fire-severity treatment (Herranz et al. 1999;

Núñez et al. 2003; Trabaud and Oustric 1989;

Valbuena et al. 1992), i.e. heat-stimulated germina-

tion. Furthermore, we expect either no effect or a

negative effect of high N addition on the post-fire

germination of the three woody species studied under

the low fire-severity treatment (Bell et al. 1999; Pérez-

Fernández and Rodrı́guez-Echeverrı́a 2003). Addi-

tionally, we explore the interactive effects of high fire-

severity and N addition on seed germination due to the

potential complex effects of high fire-attained tem-

peratures on soil chemistry and enzymatic activities in

fire-prone pine ecosystems (Fernández-Garcı́a et al.

2019a, b).

Materials and methods

Seed material

Seeds were collected at Sierra del Teleno mountain

range (NW Spain; 42�1503400N/06�1201300W;

850–2100 m a.s.l.; 10% average slope), a landscape

dominated by maritime pine (P. pinaster) natural

forests with a tall (up to 1.5 m height) shrubby

understorey with Erica australis L., P. tridentatum

and H. lasianthum. The climate is Mediterranean with

an average annual rainfall between 650 and 900 mm,

mean annual temperature of 10 �C and 2–3 months of

summer drought. Soils are Cambisols, very sandy and

acidic (pH 4.66 ± 0.25) with low organic matter

content (Luis-Calabuig et al. 2002). Wildfires are very

frequent, typically caused by dry lightning storms [172

small fires (\ 500 ha) in 1974–2007; Santamarı́a

2015]. From 1978 to 2014, the number of fires that

occurred in the area ranged from 1 to 4 (four fire

recurrences identified from visual interpretation of 75

Landsat images and validation with official fire

reports; Fernández-Garcı́a et al. 2018). In 1998

(13–14 September, 3670 ha) and 2012 (19–21 August,

11,891 ha) two large high-severity wildfires burned

the area (Quintano et al. 2015, 2017) resulting in

undermined pine seedling recruitment and altered

plant species composition at the initial stages of

succession (Taboada et al. 2017): obligate-seeder

species dominated in areas burned by a single large fire

event, whereas resprouter species dominated after

repeated fires. Although P. pinaster forests in the

study area are highly adapted to intense crown fires

with more than 95% of the trees bearing serotinous

cones (Tapias et al. 2004), the current fire return

intervals (less than 10–15 years) hinder pine repro-

ductive maturity and favour high-flammability shrub-

lands, as in many areas of the western Mediterranean

basin (Baeza et al. 2007; Fernandes and Rigolot 2007;

González-De Vega et al. 2016).

We purchased P. pinaster seeds from the Forest

Germplasm Bank of the National Centre of Forest

Genetic Resources (Spanish Ministry of Agriculture,

Food and Environment). The mature cones from

which seeds were obtained had been harvested in

November 2015–May 2016 from pre-established

stands (1779 ha) within the study area. These estab-

lished stands are as long-lasting sources from which

seeds are collected by the administration for different
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purposes like research studies, conservation and

management activities (see further details in Calvo

et al. 2016). We collected P. tridentatum and H.

lasianthum seeds at the study area during summer

2016. After purchase or collection, we kept the seeds

in open paper bags, which allowed ventilation, at

10–15 �C in a dry place until they were used.

Thermal shock and nitrogen addition treatments

In November 2016, a total of 1200 seeds (i.e. 48

groups of 25 seeds) from each study species were

subjected to six combinations of temperature [control

(‘C’), 60 �C for 5 min (‘MS’) and 120 �C for 5 min

(‘HS’)] and N addition [without (‘N-’) and with N

(‘N?’)] treatments (i.e. eight replicates or groups of

25 seeds per species and treatment combination).

The temperatures and exposure time were selected

based on previous studies (Trabaud and Casal 1989)

and on the temperatures measured with thermocouples

at 1 cm depth during a prescribed burning (Valbuena

1995), to simulate heat exposure reached during a

moderate-(MS; 60 �C for 5 min) and a high-severity

(HS; 120 �C for 5 min) wildfire. We submitted the

seeds to the thermal shocks simultaneously, in pre-

heated ceramic capsules using a dry air oven. Just after

that, each group of 25 seeds per thermal treatment and

species was sown in a Petri dish (8.5 cm diameter,

63.61 cm2; 144 dishes in total) on four sheets of filter

paper saturated with demineralised water to prevent

desiccation.

Subsequently, we added 0.034 g of solid granules

of ammonium nitrate (i.e. 4.17 g N m-2) to half of the

germination dishes (i.e. to a total of 24 dishes per

species, and 8 dishes per thermal treatment and

species), equivalent to three times the current estimate

of airborne N deposition in the study area (European

Monitoring and Evaluation Programme 2016) and to

the highest predicted N input by 2050 for southern

Europe (Galloway et al. 2004). The addition of N to

the Petri dishes did not modify pH values remarkably

(all values ranged between 6.90 and 7). Solid granules

release ammonium and nitrate slowly over the soil

surface, and have been used in prior experiments

assessing the ecosystem responses to airborne N

deposition (e.g. Calvo-Fernández et al. 2018; Taboada

et al. 2018).

We placed the dishes in a controlled environment

cabinet at 20 ± 1 �C with photoperiods of 15-h light/

9-h dark using a fluorescent cold light source. We

watered the dishes two times per week, and inspected

them weekly to determine the rate and time of seed

germination. The selected temperature of 20 �C is

equivalent to that used in previous germination

experiments (Trabaud and Oustric 1989). According

to Côme (1970), germination was attained when the

radicle could be seen with the naked eye. In agreement

with the method proposed by Martı́nez-Sánchez et al.

(1995), the experiment ended after nearly 10 days

without germination. After application of the thermal

and N fertilisation treatments, we calculated (i) the

percentage of seed germination, and (2) the average

seed germination time.

We used the following formula by Côme (1970) to

calculate the average germination time (tm):

tm ¼ N1T1 þ N2. . .þ NnTn

N1 þ N2. . .þ Nn

where N1 is the number of seeds that have germinated

during time T1, N2 is the number of seeds that have

germinated between time T1 and time T2 and so on.

Data analysis

Separately for each species, we fit a generalised linear

model (GLM) and a linear model (LM) to test the

effects of the thermal shock and N fertilisation

treatments on the rate and time of seed germination,

respectively. The response variable in the GLM was

the percentage of seed germination, modelled follow-

ing a quasi-Poisson error distribution, using the log

link function, to account for overdispersion. The

response variable in the LM was the average germi-

nation time in weeks, modelled assuming a Gaussian

error distribution, using the identity link function. The

predictor variables in both the GLM and LM were

thermal shock treatment [i.e. control (C), 60 �C for

5 min (MS) and 120 �C for 5 min (HS)], N fertilisa-

tion treatment (N- and N?) and their interaction. The

interaction term was always retained in the models,

even when non-significant.

For each species, the GLM structure was:

Response variable (percentage of seed germina-

tion) * thermal shock 9 N treatment ? error.

Similarly, for each species, the LM structure was:

Response variable (average germination

time) * thermal shock 9 N treatment ? error.
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We obtained predicted values (mean and 95%

confidence intervals) of all the response variables in

the GLM and LM (i.e. the rate of seed germination and

the average germination time) for each species,

thermal shock treatment and N fertilisation treatment,

using the ‘predict()’ function.

All data analyses were carried out with R software,

version 3.3.1 (R Core Team 2016) using the ‘stats’,

and ‘MASS’ (Venables and Ripley 2002) packages.

Results

The percentages of seed germination of P. pinaster

after the thermal shocks (moderate- and high-severity)

were similar to those attained in the control treatment

(Fig. 1; Table 1). However, the addition of N caused a

statistically significant decrease (v2 = 9.67, P= 0.002)

in the rate of seed germination of this species in all

thermal treatments. Similarly, there were no signifi-

cant differences in the average seed germination time

of P. pinaster among thermal treatments but seed

germination time of this species was significantly

negatively (F = 6.27, P = 0.022) affected by N

addition, i.e. the average germination time consis-

tently increased after all thermal treatments due to N

fertilisation (Fig. 2; Tables 2, 3).

The rate of seed germination of P. tridentatum was

significantly lower (v2 = 166.21, P\ 0.001) in the

control and moderate-severity treatments than in the

high-severity one (Fig. 1; Table 1). There was also a

statistically significant decrease (v2 = 27.28,

P\ 0.001) in the percentage of seed germination of

this species after the addition of N in all thermal

treatments. However, we found no differences in the

average seed germination time of P. tridentatum

neither among thermal treatments nor between N

treatments (Fig. 2; Tables 2, 3).

In general, we obtained very low values of seed

germination for H. lasianthum. Nevertheless, the

percentage of seed germination of this species was

significantly higher (v2 = 53.04, P\ 0.001) in the

high-severity treatment than in the control and mod-

erate-severity ones (Fig. 1; Table 1). Moreover, no

seed germination was detected after the addition of N

in the control and moderate-severity treatments;

whereas the added N caused a significant decrease

(v2 = 44.02, P\ 0.001) in the rate of seed

Fig. 1 Model predicted values (mean ± 95% confidence

intervals) of the seed germination rate (%) of P. pinaster, P.

tridentatum and H. lasianthum after the thermal shock [control

(C), 60 �C for 5 min (MS) and 120 �C for 5 min (HS)] and N

fertilisation (N-and N?) treatments
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Table 1 Generalised linear model (GLM) results for the

effects of the thermal shock treatments [control (C), 60 �C for

5 min (MS) and 120 �C for 5 min (HS)]), N fertilisation

treatments (N-and N?) and their interaction on the rate (%) of

seed germination of P. pinaster, P. tridentatum and H.

lasianthum

Predictor variable Df Deviance Residual deviance P value

P. pinaster

Null 460.00

Thermal shock treatment 2 5.95 454.05 0.696

N treatment 1 79.31 374.74 0.002

Thermal shock treatment:N treatment 2 20.23 354.51 0.291

P. tridentatum

Null 1535.74

Thermal shock treatment 2 1058.35 477.39 < 0.001

N treatment 1 173.73 303.67 < 0.001

Thermal shock treatment:N treatment 2 9.67 294.00 0.468

H. lasianthum

Null 748.72

Thermal shock treatment 2 268.84 479.88 < 0.001

N treatment 1 223.12 256.76 < 0.001

Thermal shock treatment:N treatment 2 19.35 237.42 0.148

Residual deviance is the amount of variation not explained by the models. Residual degrees of freedom = 42. Significant P values (\
0.05) are in bold face. Df degrees of freedom

Fig. 2 Model predicted values (mean ± 95% confidence

intervals) of the average seed germination time (weeks) of P.

pinaster, P. tridentatum and H. lasianthum after the thermal

shock [control (C), 60 �C for 5 min (MS) and 120 �C for 5 min

(HS)] and N fertilisation (N-and N?) treatments
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germination in the high-severity treatment. We also

found a significant interaction (F = 4.08, P = 0.035)

between thermal treatment and N treatment for the

average seed germination time of this species (Fig. 2;

Table 3). Compared to the control, the average

germination time increased in the moderate- and

high-severity treatments without N addition; but only

in the high-severity treatment when N was added

(Fig. 2; Tables 2, 3).

Discussion

Under laboratory conditions, the germinative response

to the thermal treatments of the three woody species

tested was only partially as expected in relation to their

post-fire regeneration strategies. Firstly, the rate and

average time of seed germination of P. pinaster, an

obligate-seeder species, showed no significant differ-

ences when submitted to the two heat shocks simulat-

ing a moderate-(60 �C for 5 min) and a high-severity

(120 �C for 5 min) wildfire and the control treatment,

in agreement with our predictions and with earlier

studies (e.g. Martı́nez-Sánchez et al. 1995; Reyes and

Casal 2008; Torres et al. 2006).

In particular, our laboratory results are consistent

with previous findings indicating that seed germina-

tion of P. pinaster is not heat-stimulated (Álvarez et al.

2005, 2007; Escudero et al. 1999; Martı́nez-Sánchez

et al. 1995; Reyes and Casal 2001) and that seeds

tolerate temperatures lower than 130 �C and short

exposure times (Fernandes and Rigolot 2007, refer-

ences therein). Our studied population exhibits high

levels of serotiny (i.e. high percentage of trees bearing

serotinous cones) evolved under frequent crown fires

(Tapias et al. 2004) and low seed weights (Calvo et al.

2016) resulting in comparatively greater seed sensi-

tiveness to high temperatures and lower seed resis-

tance to fire than heavier seeds (Álvarez et al. 2007;

Escudero et al. 2000; Reyes and Casal 2001). Yet, it

has been amply proven that serotinous cones: (i) ensure

Table 2 Mean and standard deviation (SD) germination time

(weeks) for P. pinaster, P. tridentatum and H. lasianthum

P. pinaster P. tridentatum H. lasianthum

Mean SD Mean SD Mean SD

CN- 1.8 0.6 3.2 1.7 0.9 1.2

CN? 3.6 1.5 6.8 4.5 0.0 0.0

MSN- 2.6 0.5 4.2 2.7 3.5 3.5

MSN? 3.2 1.0 3.3 2.2 0.0 0.0

HSN- 2.2 0.5 6.5 1.0 3.9 0.7

HSN? 3.3 1.8 7.7 2.2 5.0 1.2

Thermal shock and N fertilisation treatment combinations:

CN- = control without N addition; CN?= control plus N

addition; MSN-= moderate fire severity without N addition;

MSN? = moderate fire severity plus N addition;

HSN- = high fire severity without N addition and

HSN? = high fire severity plus N addition

Table 3 Linear model

(LM) results for the effects

of the thermal shock

treatments [control (C),

60 �C for 5 min (MS) and

120 �C for 5 min (HS)], N

fertilisation treatments

(N-and N?) and their

interaction on the average

time (weeks) of seed

germination of P. pinaster,

P. tridentatum and H.

lasianthum

Significant P values (\
0.05) are in bold face

Df degrees of freedom

Predictor variable Df Sum of squares F value P value

P. pinaster

Thermal shock treatment 2 0.205 0.08 0.922

N treatment 1 7.866 6.27 0.022

Thermal shock treatment:N treatment 2 1.738 0.69 0.513

Residuals 18 22.597

P. tridentatum

Thermal shock treatment 2 45.986 3.37 0.057

N treatment 1 9.920 1.45 0.244

Thermal shock treatment:N treatment 2 19.779 1.45 0.261

Residuals 18 122.843

H. lasianthum

Thermal shock treatment 2 67.46 13.07 < 0.001

N treatment 1 7.27 2.82 0.111

Thermal shock treatment:N treatment 2 21.06 4.08 0.035

Residuals 18 46.47
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seed viability during a high-severity fire (Alexander

and Cruz 2012; Reyes and Casal 2002); (ii) promote

seed resistance (Moya et al. 2013; Salvatore et al.

2010); (iii) guarantee seed mechanical and thermal

protection (Fernandes and Rigolot 2007; Moya et al.

2008) and (iv) produce the massive discharge of seeds

several days after a wildfire (De las Heras et al. 2012),

delaying germination until optimal temperatures are

achieved at the surface level (Hernández-Serrano et al.

2013; Saracino et al. 1997). This advantageous fire-

adaptive strategy of the studied population with seeds

retained predominantly inside serotinous cones, there-

fore, ensures high levels of post-fire seed germination

and sufficient seedling recruitment to obtain adequate

natural tree regeneration after a single fire event

(Calvo et al. 2008; see also Fernández et al. 2008; Gil

et al. 2009; Rodrı́guez-Garcı́a et al. 2010).

Secondly, the rates of germination of P. tridentatum

and H. lasianthum were enhanced only when seeds

were exposed to the high fire-severity treatment (i.e.

heated seeds had greater germination than untreated

ones). Meanwhile we found no differences in the

average time of seed germination of P. tridentatum

between the two heat shocks and the control treatment,

but significantly greater germination time for H.

lasianthum after exposure to both the moderate- and

high-severity thermal shocks. Contrary to our expec-

tations and other findings (Rivas et al. 2006; Valbuena

et al. 2002; Vasques et al. 2012), P. tridentatum, a

facultative-seeder species with high-resprouting abil-

ity, had heat-stimulated germination rates just after

submission of the seeds to the highest temperatures

(120 �C for 5 min) under laboratory conditions, but

equal average germination times. This may indicate

that the light thermal shock (60 �C for 5 min) applied

to simulate a moderate-severity fire was insufficient to

promote significantly greater percentages and faster

times of seed germination of this species consistent

with Valbuena and Vera (2002).

In the case of H. lasianthum, a facultative-seeder

species with low-resprouting ability, the greater rates

of seed germination in response to the high fire-

severity treatment agreed with previous results on the

species (Herranz et al. 1999; Núñez et al. 2003;

Trabaud and Oustric 1989; Valbuena et al. 1992).

Whereas the slower germination times of the heated

seeds compared to the untreated ones possibly

revealed a delay in the start of germination after the

thermal treatments (Rivas 2016). All in all, our

laboratory-based findings only partially agree with

prior laboratory heat experiments from the Mediter-

ranean basin demonstrating that, in general, non-

resprouter species exhibit higher probabilities of fire-

stimulated germination and greater capacity to

increase their populations after fire than resprouter

species (Paula and Pausas 2008).

As predicted, the rate of seed germination of the

three species studied was reduced by the addition of N

in the unheated treatment as well as after application

of the two heat shocks simulating a moderate- and a

high-severity wildfire under laboratory conditions.

Correspondingly, we found either no effect (in case of

P. tridentatum) or a negative effect of N addition on

the average time of seed germination (i.e. greater

average germination times) after all thermal treat-

ments (in case of P. pinaster) or just after the high-

severity one (in case of H. lasianthum). Under the

current context of increased airborne N deposition

(Garcı́a-Gómez et al. 2014), these results might

indicate that the combination of high temperatures

during fire and improved N availability may hinder the

post-fire germinative response of a number of woody

species typical from Mediterranean fire-prone ecosys-

tems like the ones tested in our study. This may, in

turn, have an unprecedented effect on plant compet-

itive interactions and community composition follow-

ing fire (see Taboada et al. 2017; Vourlitis and

Pasquini 2009). Nonetheless, as our results were

obtained under the controlled conditions from a

laboratory experiment, they should be supported by

further field-based research on the key environmental

drivers of post-fire seed germination of woody species

in fire-prone ecosystems under elevated N availability.

Generally, the regrowth of Mediterranean pine

forests after a wildfire is attained by direct regener-

ation of the preceding plant community, owing to the

activation of resprouter species and to fire-stimulated

seed germination (Calvo et al. 2012; De las Heras et al.

2012; Pausas et al. 2008). Fast-growing resprouter

species are well adapted to frequent fire (Calvo et al.

2012; Pausas and Vallejo 1999); meanwhile obligate-

seeder species are benefited by high-severity fires

(Pausas and Keeley 2014) and high water limitation

(Moya et al. 2015). As discussed above, non-

resprouter species are thus highly tolerant to heat

exposure and have higher potential than resprouter

species to persist and even to increase their popula-

tions (i.e. owing to heat-stimulated germination) after
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extremely intense wildfires (Paula and Pausas 2008).

Therefore, unless fires occur at a return interval shorter

than the minimum required time for obligate-seeder

species to reach reproductive maturity (e.g. less than

10–15 years in case of P. pinaster; Fernandes and

Rigolot 2007; Tapias et al. 2001), they usually achieve

high rates of seed germination and seedling emergence

following fire (e.g.. Hernández-Serrano et al. 2013).

In the studied maritime pine forests adapted to dry

environments and low nutrient availability (Marcos

et al. 2018), the increase in soil fertility immediately

after fire (Calvo et al. 2008) together with the

improved post-burn environmental conditions (i.e.

high availability of space and low seed predation risk;

Hernández-Serrano et al. 2013) most likely result in

greater competition for light, water and nutrients

between gradually-recruited seedlings and fast-grow-

ing resprouter species (Calvo et al. 2013; Taboada

et al. 2017). Such fire-induced changes in plant

competitive interactions may overcome the potential

effects of enhanced airborne N availability on post-fire

seed germination, as the newly emerged seedlings and

the new shoots produced by resprouter species may

rapidly cause the depletion of nutrients in the upper

soil layer. Meanwhile obligate-seeder species usually

allocate nutrient resources to growth and rapid repro-

ductive maturity (Bell 2001; Rodrı́guez-Garcı́a and

Bravo 2013), resprouter species devote them to below-

ground storage structures to ensure survival after the

next fire (Knox and Clarke 2005, and references

therein). This might therefore imply that facultative-

seeder species with high-resprouting abilities like P.

tridentatum would be benefited at fertile sites with

elevated N loading, making them better competitors

than obligate seeders after frequent fires at short return

intervals (Clarke et al. 2005; Knox and Clarke 2005;

Reyes et al. 2009).

Moreover, themagnitude and direction of the effects of

high N inputs on the post-fire germination of Mediter-

ranean plant species may vary along moisture gradients

(Bell et al. 1999; see also Li et al. 2011) or depend on the

species’ light tolerance (Bell et al. 1999; Luna and

Moreno 2009). However, the underlying mechanisms

determining the role of elevated N availability on seed

germination after fire are still unclear. For instance, as

suggested by recent studies, enhanced airborne N loading

could influence seed production and early seedling growth

differently, either depending on the availability of soil

phosphorous (P) (Zhang et al. 2013) related to fire severity

(Fernández-Garcı́a et al. 2019a, b), or evenmediated by an

indirect effect of improved N loads on the maternal

environment (Li et al. 2011).

Finally, prior research has determined increased N

availability could have less of an effect on post-fire

seed germination in Mediterranean fire-prone envi-

ronments than other fire-related germination cues such

as smoke and charred wood (Pérez-Fernández and

Rodrı́guez-Echeverrı́a 2003, references therein). What

is more, under real-world scenarios, post-fire abiotic

conditions [e.g. absence of vegetation cover, increased

soil temperature fluctuations; Jaganathan (2015)]

could also interact with greater N loads caused by

atmospheric pollution. Thus, further work is needed to

disentangle the complex relations among the myriad

of factors potentially affecting the post-fire germina-

tive response of coexisting Mediterranean woody

species at fire-prone ecosystems under the current

context of elevated airborne N inputs.
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