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Abstract A critical stage in the establishment of

new individuals is seedling emergence and litter is a

main factor affecting this stage. Recent research found

that adults of Chuquiraga avellanedae are over-

dispersed. Among several mechanisms, this pattern

might be due to the negative influences of adults on

seedlings through root competition. We performed

field and glasshouse experiments to evaluate (i) the

effects of C. avellanedae leaf litter and root presence

on the emergence of conspecific seedlings, and (ii) the

effects of leaf litter type (C. avellanedae litter, inert

litter, no litter) and seed burial depth (seed at the

surface or buried) on the emergence of C. avellanedae

and Nassella tenuis (dominant grass) seedlings. The

field experiment demonstrated root competition from

adult plants on shrub seedlings, reducing seedling

emergence. However, the effect of root competition

did not differ between microsites (under-shrubs vs.

between-shrubs). We dismiss the effect of allelopathy

because inert litter (i.e., plastic leaves) had the same

negative effect as C. avellanedae litter, indicating a

mechanical effect. The glasshouse experiment

revealed a species-specific response of seedling

emergence. C. avellanedae litter limits the emergence

of conspecific seedlings but was neutral with regard to

the emergence of grass seedlings (N. tenuis). No

differences in root competition between microsites

and reduction of shrub seedlings by litter suggest that

the over-dispersed pattern found for C. avellanedae is

caused, at least partially, by litter effects on seedling

emergence.

Keywords Shrub leaf litter � Seedling emergence �
Root competition � Grass-shrub steppes � Over-
dispersed distribution � Microsite

Introduction

A critical stage for the establishment of new individ-

uals is seedling emergence (Fay and Schultz 2009). It

is generally accepted that desert shrubs facilitate the

establishment of new individuals by providing suit-

able microhabitats (Flores and Jurado 2003).
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However, in some cases, beneficial effects of shrubs

are counteracted by negative effects such as root

competition or allelopathy (Talamo et al. 2015). Litter

is a main factor affecting seedling emergence because

of its effects on the chemical and physical environ-

ments (Facelli and Pickett 1991b). Litter can exhibit

both positive and negative effects on plants (Xiong

and Nilsson 1999; Loydi et al. 2013, 2015). Increasing

water and nutrient availability are among the positive

effects (Carson and Peterson 1990; Brearley et al.

2003). In contrast, litter can negatively affect seedling

emergence due to allelopathy (Bonanomi et al. 2006),

acting like a mechanical barrier (Bosy and Reader

1995), reducing photon flux density (Facelli and

Pickett 1991a; Jensen and Gutekunst 2003) and soil-

seed contact (Chambers 2000; Liu et al. 2016).

Biotic interactions drive the structure and dynamics

of plant communities (Armas and Pugnaire 2005). In

arid ecosystems, plant cover is low and has a patchy

pattern (Aguiar and Sala 1999). The balance between

facilitation and competition is one of the factors

affecting that patchiness (Aguiar and Sala 1994;

Barbier et al. 2008). Nutrient enrichment, protection

against herbivores, and ameliorated microclimate

have been proposed as mechanisms behind positive

interactions (Aguiar and Sala 1999; Gomez-Aparicio

2008; Nogueira et al. 2018; Vaz et al. 2019). Given the

scarcity of water in these ecosystems, competition

mostly refers to root competition between emerging

seedlings and adult plants (Bisigato and Bertiller

2004a). Jurena and Archer (2003) found that the early

growth of shrub seedlings was lower in treatments

without root exclusion than in treatments where the

roots of neighbors were excluded.

In north-eastern Patagonia the characteristic vege-

tation is a mosaic of herbaceous and shrub steppes

where Chuquiraga avellanedae Lorentz (quilembai) is

the dominant shrub and Nassella tenuis (Phil.) Bark-

worth (flechilla) is the dominant grass (Beeskow et al.

1995). Adults of C. avellanedae exhibit an over-

dispersed spatial pattern (i.e., they are more separated

in space than expected by chance), suggesting that at

some stage of their life cycle they are subjected to

negative plant interactions (Casalini and Bisigato

2018). This species produces a large mass of leaf

litter with a high concentration of secondary metabo-

lites (Campanella and Bertiller 2008), which may

inhibit seedling emergence, and competition between

emerging seedlings and established vegetation may

also affect seedling recruitment (Bisigato and Ber-

tiller, 2004a, b). Our first objective was to evaluate the

effects of C. avellanedae leaf litter and root presence

on the emergence of conspecific seedlings. We

performed a field experiment to test the hypothesis

that shrub emergence was negatively affected by C.

avellanedae litter and/or root presence. Our second

objective was to evaluate the effects of leaf litter type

(C. avellanedae litter, inert litter, no litter) and seed

burial depth (seed at the surface or buried) on the

emergence of C. avellanedae and N. tenuis (grass)

seedlings, and whether the effects are similar for the

two species.We performed a glasshouse experiment to

test the hypothesis that the effect of shrub litter on

seedling emergence is allelopathic, that the burying of

the seeds favors the emergence of seedlings, and that

the effect of litter is similar for the two species.

Material and methods

Site description

The study site is located in north-eastern Patagonia

(Argentina), 60 km southeastern Puerto Madryn

(42�550S, 64�330W). The annual mean temperature is

12.7 �C and mean precipitation is 259.3 mm

(1995–2004 and 2011–2014) (Campanella et al.

2016). The mean annual wind velocity at 10 cm

above ground level is 4.6 m s-1 (Beeskow et al.

1995). Continuous grazing is practiced in paddocks

greater than 2500 ha with a mean stocking rate of 0.3

sheep ha-1 (Chartier and Rostagno 2006). Wild

herbivores, such as guanacos (Lama guanicoe), maras

(Dolichotis patagonum) and lesser rhea (Rhea pennata

pennata) are present but at very low densities. C.

avellanedae is considered an unpalatable species

(Siffredi 2012). Dominant soil in the study area is a

Xeric Calciargid with a Xeric Haplocalcid as the

subdominant soil (Chartier and Rostagno 2006). The

characteristic vegetation is a mosaic of herbaceous and

shrub steppes where C. avellanedae is the dominant

shrub and N. tenuis is the dominant grass. In fact, these

species represent 86.3% and 45.5% of total shrub and

total grass cover, respectively (Beeskow et al. 1995).
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Chuguiraga avellanedae description

Chuquiraga avellanedae Lorentz (Asteraceae) is an

evergreen shrub typical of the Patagonian region

(Bisigato et al. 2016). It has a hemispherical shape and

reaches 1 m in height (Bertiller et al. 1991). This

species exhibits a peak in biomass growth in Septem-

ber (Campanella and Bertiller 2009). The reproduction

period occurs in the austral summer (Campanella and

Bertiller 2008). Fruit maturation and achene disper-

sion take place during February (Bertiller et al. 1991).

Leaf litterfall occurs throughout the year with a peak

in July. Mean leaf litter production is 92 g m-2

canopy year-1 (Campanella and Bertiller 2010).

Cover of C. avellanedae litter, visually estimated in

7 9 7 cm quadrats, was higher under C. avellanedae

canopies than in-between shrubs. In fact, litter was

almost absent from between-shrubs areas (under-

shrubs: 81.5% ± 2.5%, between-shrubs: 0.7% ±

0.2%). The litter depth under C. avellanedae adults in

the field was 1.11 ± 0.08 cm thick (mean ± SE),

measured with a ruler. The wind rarely moves the litter

once it reaches the ground below C. avellanedae

plants because of its dense canopy (Campanella and

Bertiller 2008).

Field experiment

We performed a field seed sowing experiment to

evaluate the effect of litter and root competition on

seedling emergence. We conducted an experiment

with two crossed factors: microsite (under-shrub with

accumulated litter and between-shrubs without litter

but with sparse grass cover) and root competition

(with and without). We randomly selected 4 sites of

the herbaceous steppe with shrubs community at a

mean distance of 370 m ± 43 (SE) from each other

(range = 320–459 m). At each site, we randomly chose

six shrubs (Fig. 1). For each shrub, two microsites

were selected: (1) under-shrub (with high litter

accumulation) and (2) between-shrubs (with no litter).

In each microsite, we randomly located one circular

micro-plot of 10 cm diameter (12 circular micro-plots

in each site). At half of the micro-plots, we inserted a

PVC tube of 10 cm diameter and 20 cm length into the

soil, to exclude root competition from neighboring

plants (Bisigato and Bertiller 2004b). The final

experimental layout was 2 microsites 9 2 levels of

root competition 9 4 sites 9 3 micro-plots. Ten seeds

per micro-plot were sown in May at a depth of 1.5 cm

(Cipriotti and Aguiar 2015). In under-shrub micro-

sites, we carefully removed the litter layer, buried the

seeds, and then returned the litter layer to its place.

Soil characteristics between the two microsites (un-

der-shrubs and between-shrubs) did not differ

(Table S1). Monitoring was performed with a monthly

frequency from June to December. Emergence was

calculated as the proportion of seedlings emerged

from sown seeds.

Glasshouse experiment

We performed a glasshouse experiment to evaluate the

possible allelopathic effect that litter has on seedling

emergence. In this experiment, we also included seeds

of the dominant grass species,N. tenuis. We conducted

a fully-crossed experiment with 3 factors: species (two

levels: C. avellanedae and N. tenuis), litter type (3

levels: C. avellanedae litter, inert litter and no litter)

and seed burial depth (two levels: on the surface (seeds

placed on top of soil or litter layer, depending on the

treatment) and sown at 1.5 cm depth). The glasshouse

experiment had 6 pots per treatment resulting in 72

pots in total (2 species 9 3 litter type 9 2 depth of

sown9 6 pots). Pots were 8 cm in diameter and 10 cm

in height. All pots were filled with dry soil. The soil

was collected from the top 10 cm of several inter-

shrub areas, sieved through a 2-mm mesh and

homogenized. We decided to use inter-shrub soil to

control for the possible accumulation of litter

leachates in soil. In litter addition treatments including

C. avellanedae and inert litter, we added 1 cm litter

layer. Pots were randomly arrayed in the glasshouse

and re-randomized periodically during the

experiment.

Natural leaf litter was collected in May below 10 C.

avellanedae plants. In the case of inert litter, we used

plastic that mimicked the size and shape of natural leaf

litter (Liu et al. 2016). Enhanced emergence in both

natural and plastic litter with respect to controls

without litter indicates positive physical effects (such

as reduced evaporation), while decreased emergence

in both kinds of litter is a sign of negative physical

effects (e.g., acting as a mechanical barrier). Higher

emergence in natural litter than in plastic litter can be

attributed to positive chemical effects (such as nutrient

release from litter) while the opposite suggests neg-

ative chemical (e.g., allelopathic compounds) or
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biological (e.g., fungus or pests) effects (Facelli and

Pickett 1991b; Rotundo and Aguiar 2005).

Seeds were collected in the previous summer

(February). Seed germination was evaluated in Petri

dishes at the laboratory. The mean germination

percentages were 83% and 69.2% for C. avellanedae

and N. tenuis, respectively. We used 20 seeds per pot

in the case of C. avellanedae while for N. tenuis we

used 30 seeds per pot. Emergence was calculated as

the percent proportion of seedlings emerged from

sown seeds per pot. Seedlings were removed after

emergence to avoid competition among emerged and

emerging seedlings. The experiment started in

September and lasted two-and-a-half months, which

was after three weeks without emergence. Every day

we checked the pots for emergence. Pots were

maintained at field capacity through regular watering.

Statistical analysis

In the field experiment, differences in emergence

(proportional data) were evaluated by Generalized

Linear Models (GLM) using a binomial distribution

with logit link function. Microsite and root

competition were included as fixed factors in the

model. Following the hierarchical structure of the

design, we used a Generalized Linear Mixed Model

(GLMM) including the micro-plots nested within sites

as a random factor. However, we decided to remove

the random effect because it did not significantly

improve the model (v2 = 0.37, P = 0.95). In the

glasshouse experiment, we used Generalized Linear

Models (GLM; binomial errors, logistic link). Species

were separately analyzed. Litter type (with three

levels) and seed burial depth (with two levels) were

considered as fixed factors. In the two cases, we first

fitted a full model taking into consideration all main

effects and their interactions. We then reduced the full

models by successive removal of non-significant

interactions. The adequacy of the models was checked

(Zuur et al. 2009) and analyses were performed in R

(v. 3.5.0, R Core Team 2018), using the lme4 package

(Bates et al. 2015).

Shrub

grass

Shrub

grass

Fig. 1 Schematic representation of the field experiment in one

of the four selected sites. The distances among sites were 370 m.

In a distance ranging between 3 and 5 m, six shrubs were

randomly chosen. At each shrub, two microsites were defined:

(1) under-shrub with high litter accumulation (indicated with

gray ovals) and (2) between-shrubs, without litter accumulation.

Between-shrubs microsites were located 50 cm outside the edge

of the canopy. In each microsite, we delimited one micro-plot

(indicated with small ovals), i.e., 12 micro-plot in each site. At

half of the micro-plots, we pressed into the soil a PVC tube of

10 cm diameter and 20 cm length (indicated with cylinders), to

avoid root competition from neighboring plants
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Results

Field experiment

Seedling emergence was lower under-shrubs than in-

between shrub areas without litter accumulation (Z =

3.92, P\ 0.0001, Fig. 2; Table S2). C. avellanedae

emergence was greater in the treatments without root

competition in both microsites (Z = - 3.44, P \
0.0001). The interaction between microsite and root

competition was not statistically significant (Z = 1.16,

P = 0.17).

Glasshouse experiment

Emergence from buried seeds was greater in both

species (Z = - 4.23, P\0.0001 and Z = - 17.75, P\
0.0001 for C. avellanedae and N. tenuis, respectively;

Fig. 3 and Tables S3 and S4) than unburied seeds. In

N. tenuis, seedling emergence was greater for inert

litter than in the treatment with Chuquiraga litter (Z =

- 1.71, P\ 0.0001) (Fig. 3a). However, no differ-

ences in emergence were found between the treatment

without litter and both litter treatments (Z = 1.71, P =

0.08 and Z = 1.32, P = 0.18 for inert and Chuquiraga

litter, respectively). By contrast, seedling emergence

by the shrub species was lower in litter treatments than

in the treatment without litter (Z = 2.70, P = 0.007 and

Z = 3.22, P = 0.001 for inert and Chuquiraga litter,

respectively; Fig. 3b). As we did not find differences

in the emergence of C. avellanedae between the two

types of litter (Chuquiraga and inert litter, Z =- 0.61,

P = 0.54) and emergence was lower than without litter,

we discard the effect of allelopathy and conclude that

the effect of litter is mechanical.

Discussion

Both experiments indicate that C. avellanedae litter

suppresses conspecific seedling emergence. Other

studies have reported suppression of conspecifics by

plant litter in mangroves (Chapman and Feller 2011),

grasslands (Hovstad and Ohlson 2009), sclerophyllous

forests (Cavieres et al. 2007), and crops (Singh et al.

1999). Different mechanisms have been proposed to

explain litter effects on conspecific seedlings: the

presence of allelopathic/toxic compounds such as

cyanohydrin (Cavieres et al. 2007) and fragmented

self-DNA (Mazzoleni et al. 2015), the formation of a

mechanical barrier (Facelli and Pickett 1991b), and

changes in light quantity and/or quality (Facelli and

Pickett 1991a). Likewise, indirect effects of litter such
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as those mediated by a high abundance of pathogens

and/or herbivores were reported by some authors

(Facelli and Pickett 1991c). We discard the effect of

allelopathy and pathogens or herbivores because inert

litter had the same effect as the Chuquiraga litter and

because we found no evidence of fungi or insect attack

on emerging seedlings. Likewise, shading did not limit

seedling emergence since our glasshouse experiment

showed the greatest emergence when seeds were

buried. Thus, C. avellanedae litter had a mechanical

effect on seedlings instead of chemical effects. This

result is consistent with the general finding that the

effect of litter on emergence is physical rather than

biological or chemical (Xiong and Nilsson 1999; Liu

et al. 2016), especially in litter comprising leaves of

evergreen species because of longer residence time

(Facelli and Picket 1991b; Xiong and Nilsson 1999).

The glasshouse experiment revealed a species-

specific response to litter effects on seedling emer-

gence. C. avellanedae litter limited the emergence of

its own seedlings but was neutral with regard to the

emergence of the grass seedlings. This species-speci-

fic interaction may be due to differences in the growth

rate of seedlings (Westoby et al. 1996). Other studies

have revealed species-specific responses to litter that

can be attributable to traits such as seedling morphol-

ogy. In general, grasses are less prone to suppression

by litter (Facelli and Pickett 1991b; Barrit and Facelli

2001).

At first glance, strong conspecific negative effects

of litter are maladaptive. Similar results in other

species have been attributed to the competitive

pressure between parent and offspring in polycarpic

species (Hovstad and Ohlson 2009). When this

conflict is present, it selects for mechanisms that

enhance spatial and temporal dispersal. Indeed, ach-

enes of C. avellanedae have a pappus that enables

long-distance dispersion (Andersen 1993).

More emergence from buried seeds is consistent

with previous research findings that seedling emer-

gence is greater when seeds are buried in the soil than

when are on the soil surface or within the litter layer

(Fowler 1986a; Facelli and Pickett 1991b; Ghermandi

1995; Chambers 2000; Rotundo and Aguiar 2005).

Several studies have demonstrated the importance of

good soil-seed contact for seedling emergence (Fowler

1986a; Chambers 2000; Liu et al 2016). Moreover,

seed size/shape also determines the ability of seeds to

germinate and emerge; small-seeded species do better

on the soil surface in comparison to heavier seeded

species (Merino-Martı́n et al. 2017). Consistently, N.

tenuis presents smaller seeds and higher emergence on

the soil surface with respect to C. avellanedae

(average seed weights were 1.13 ± 0.05 mg vs. 14

± 0.2 mg, respectively).

Our field experiment proved the existence of root

competition by adults on shrub seedlings, causing

reduced seedling emergence. However, this competi-

tion was equally important at both microsites. Inter-

shrub areas on the steppe are colonized by tussock

grasses (mostly Nassella tenuis). In this community,

the average distance among grasses is 20 cm (Chartier

et al. 2013). Since the root system of N. tenuis is very

shallow (first 30 cm of soil, Bertiller et al. 1991), this

species has the potential to compete with shrub

seedlings (Busso 1997). Evidence of root competition

between established plants and seedlings has been

previously reported (Aguiar et al. 1992; Callaway

et al. 1996; Rey Benayas et al. 2007). In fact, root

competition is a frequent phenomenon in arid ecosys-

tems (Fowler 1986b; Goldberg and Barton 1992;

Cipriotti and Aguiar 2005), and Cipriotti and Aguiar

(2015) found that it is as intense under shrub-

dominated patches as between them.

In contrast to our results, most previous studies

carried out in Patagonia showed no effect (Defossé

et al. 1997; Bosco et al. 2015) or a positive effect

(Rotundo and Aguiar 2005; Franzese et al. 2009;

Bosco et al. 2015, 2018) of litter on seedling emer-

gence and establishment. Most of these studies

evaluated the effects of grass litter on grass emergence

and establishment. Only Bosco et al. (2018) and

Franzese et al. (2009) evaluated litter effects on shrub

emergence and establishment. These researchers

found that the effects of litter are species-specific.

While the emergence of Larrea divaricata and

Senecio bracteolatus were enhanced by litter (Bosco

et al. 2015; Franzese et al. 2009, respectively), the

emergence of Atripex lampa and Schinus johnstonii

were reduced and unaffected, respectively (Bosco

et al. 2015). Litter quantity is not the reason for the

difference between our study and the previous one

because we used 1 cm depth litter as in Bosco et al.

(2015). Thus, the contrast between our results and

those previously obtained in Patagonia can only be due

to differences in litter type. Chuquiraga avellanedae

has both the highest leaf mass area (216.27 g m-2)

and leaf area (61.89 mm2) among shrubs in NE
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Patagonia (Campanella and Bertiller 2008). Large,

heavy leaves can be a more difficult mechanical

barrier for seedlings to traverse than small and light

leaves (Winn 1985). In support of the latter, Xiong and

Nilsson (1999) found that grass litter had weaker

effects than tree and forb litter on seedlings.

Over-dispersed (or regular) patterns in desert

shrubs have been commonly ascribed to competition

(Fowler 1986b). Our results demonstrate the existence

of an alternative mechanism: negative conspecific

effects of plant litter. Some authors have noted that

competition can be confounded by negative litter

effects (Xiong and Nilsson 1999). However, as far as

we know, this mechanism has not been previously

proposed as influencing intra-specific spatial patterns

and over-dispersed distributions.

Although our work shows unequivocal evidence of

conspecific effects of C. avellanedae litter on seedling

emergence, future studies should consider aspects not

contemplated in this work. For example, it remains to

be determined if early differences in emergence are

maintained over time. Likewise, as climate can

influence interactions among plants (Cipriotti and

Aguiar 2015), our field experiment should be repeated

under different climatic conditions. Annual precipita-

tion during the year of the study was 32% below long-

term average. However, lower precipitation during the

field experiment agrees with climate change scenarios

for northern Patagonia which indicates a reduction in

total precipitation by the end of the twenty-first

century (IPCC 2007).

In conclusion, our field experiment proved the

existence of root competition by adult plants on shrub

seedlings, reducing seedling emergence. However, the

effect of root competition did not differ between

microsites. On the other hand, both experiments

showed that litter reduces the emergence of C.

avellanedae. These results, no differences in root

competition between microsites and reduction of

shrub seedlings by litter, suggest that the over-

dispersed pattern found for C. avellanedae is due, at

least partially, to mechanical effects of litter on

seedling emergence. Considering that shrubs are

long-lived and their litter decomposes at slow rates,

their negative effect on seedling emergence could

have important consequences for plant population and

vegetation dynamics in temperate herbaceous steppes.
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