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Abstract In this paper, a case is made for the use of

model-based approaches for the analysis of commu-

nity data. This involves the direct specification of a

statistical model for the observed multivariate data.

Recent advances in statistical modelling mean that it is

now possible to build models that are appropriate for

the data which address key ecological questions in a

statistically coherent manner. Key advantages of this

approach include interpretability, flexibility, and effi-

ciency, which we explain in detail and illustrate by

example. The steps in a model-based approach to

analysis are outlined, with an emphasis on key features

arising in a multivariate context. A key distinction in

the model-based approach is the emphasis on

diagnostic checking to ensure that the model provides

reasonable agreement with the observed data. Two

examples are presented that illustrate how the model-

based approach can provide insights into ecological

problems not previously available. In the first exam-

ple, we test for a treatment effect in a study where

different sites had different sampling intensities,

which was handled by adding an offset term to the

model. In the second example, we incorporate trait

information into a model for ordinal response in order

to identify the main reasons why species differ in their

environmental response.

Keywords Community-level modelling � Fourth-
corner problem � Model checking � Multivariate

analysis � Ordination � Species distribution models

Introduction

In ecology, a core concern historically has been the

study of how community structure changes in response

to changes in the environment. A key tool in such

studies has been abundance data simultaneously

collected on a suite of taxa to make inferences about

communities at particular locations. We refer to these

data as multivariate abundance data. In this paper, we

will review analysis methods that involve specifying a

statistical model for the observed multivariate abun-

dance data (hereafter ‘‘model-based approach’’). This

Communicated by P. R. Minchin and J. Oksanen.

D. I. Warton (&) � J. Stoklosa
School of Mathematics and Statistics and Evolution &

Ecology Research Centre, The University of New South

Wales, Sydney, NSW 2052, Australia

e-mail: David.Warton@unsw.edu.au

S. D. Foster � P. K. Dunstan
CSIRO’s Wealth from Oceans Flagship, Hobart, TAS,

Australia

S. D. Foster

CSIRO’s Division of Computational Informatics, Hobart,

TAS, Australia

G. De’ath

Australian Institute of Marine Science, Cape Ferguson,

QLD, Australia

123

Plant Ecol (2015) 216:669–682

DOI 10.1007/s11258-014-0366-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11258-014-0366-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11258-014-0366-3&amp;domain=pdf


is a difficult problem because the number of taxa may

be large and often exceeds the number of sites

sampled, and because the data often have a large

proportion of zeros, typically rendering classical

multivariate techniques (Anderson 2003) inappropri-

ate. Some important first steps towards model-based

approaches to multivariate analysis were made by

David Goodall and contemporaries in the develop-

ment of Gaussian ordination (Gauch et al. 1974;

Goodall and Johnson 1982), although the method only

specified a model for mean response, and stopped

short of specifying a plausible distribution for the

observed abundance data.

Over the last half century, technological advances

and improvements in computational power have

facilitated extraordinary changes in both the theory

and practice of statistics. A conspicuous example

known to many plant ecologists is Markov Chain

Monte Carlo (MCMC) methods, which readily enable

Bayesian inference for complex ecological models

(e.g. Cressie et al. 2009). But exciting advances have

been made in non-Bayesian analysis also. In the

context of community analyses, changes in technology

are driving a movement towards model-based

approaches to multivariate analysis, Bayesian and

non-Bayesian, with recent years seeing the develop-

ment of many such tools for use with multivariate

abundance data (ter Braak et al. 2003; Gelfand et al.

2005; Elith and Leathwick 2007; Yee 2010; Dunstan

et al. 2011; Ives and Helmus 2011; Wang et al. 2012;

Foster et al. 2013; Pledger and Arnold 2014). These

methods are typically computationally intensive, but

have a number of advantages, including the flexibility

to tailor models more closely to the properties of the

data and to the research questions of interest. We

believe model-based approaches are a significant new

movement which can provide important new insights

into community structure not previously available.

A particular area where model-based approaches

are developing rapidly is in the species distribution

modelling literature, where model-based approaches

are widely used in single-species gradient modelling

(Elith and Leathwick 2009). Extensions of such

methods to the multivariate case enable simultaneous

inference across an assemblage of species (Ovaskai-

nen and Soininen 2011, for example), and study of the

reasons why species differ in their response to

gradients (such as in Pollock et al. 2012). Such

extensions are often referred to as community-level

models (Ferrier and Guisan 2006), and are somewhat

synonymous with model-based approaches to multi-

variate analysis as we describe here.

While the model-based paradigm is a central thrust

ofmodern statistical science, approaches tomultivariate

analysis in ecology previously used are a significant

departure from this, typically being based on: (1)

matrices of pairwise dissimilarities (Anderson 2001, for

example), (2) generalisations of correspondence ana-

lysis (ter Braak 1986), or (3) redundancy analysis

(Legendre and Legendre 2012). All these methods are

purely algorithmic, in the sense that they are defined via

algorithms rather than via models, they do not explicitly

take into account the statistical properties (i.e. inher-

ently random nature) of the data, and the link to theory

or testable hypotheses is weak. Not accounting for the

statistical properties of data can have important conse-

quences, when the properties of the data interact with

the method; for example, when strong mean–variance

trends are present but unaccounted for (Warton et al.

2012). Not having the capacity to explicitly link to

theory also can have important consequences, with

opportunities missed for insight into ecological struc-

ture and process. If methods based on pairwise dissim-

ilarities are the only ones considered then the research

questions that can be reliably answered are constrained;

questions regarding a species’, or group of species’, the

presence or abundance at a site are difficult to answer in

such a framework. The main reason for the departure

from a model-based approach, as stated in Anderson

(2001) and elsewhere, is that suitable models had not

been designed to handle multivariate abundance data.

This may have been true in the past, but it is not true any

longer.

In this paper, wemake the case for the use of model-

based approaches to multivariate analysis of commu-

nity data, and advantages of this approach are outlined,

from both the ecological and statistical perspectives.

In our opinion, model-based approaches improve our

understanding of community ecology by explicitly

accounting for the uncertainty inherent in ecological

data, by a clear specification of the assumptions of the

analysis, and by offering the ability to make formal

inference. The steps in a model-based approach to

analysis are explained, with an emphasis on key

features arising in a multivariate context. Examples

are presented that illustrate how a model-based

approach can provide insights into ecological prob-

lems not previously available.
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Model-based approaches for ecological questions

A model-based approach to analysis is defined in this

paper as one which involves the specification of a

statistical model for the data that were observed, in

order to explicitly answer ecological questions. Mod-

elling the observed data (or more precisely, the

underlying data-generating mechanism) is a key

distinction compared to analysis methods which start

with summary statistics calculated from the observed

data, such as pairwise measures of dissimilarity

(Anderson 2001, for example). A statistical model

has an explicit mathematical representation that

accounts for the systematic variation in the data (the

signal) as well as the randomness in the data (noise).

The systematic variation is what the analyst usually

wants to extract from the data, while the randomness is

an inherent property of all ecological data that needs to

be accounted for in order to see the signal. This allows

a clear understanding of when the data supports our

hypothesis and when it does not. A model-based

approach is already widely used in ecology for

univariate analysis (e.g. Clark 2007; Bolker et al.

2009; Cressie et al. 2009; Zuur et al. 2010), and until

recently, multivariate analysis has seemingly been an

exception to the rule. However, a number of model-

based approaches to multivariate analysis have

recently been proposed, as summarised in Table 1a.

Use of such a statistical model has a number of direct

benefits, including interpretability, flexibility and

efficiency, as explained below.

Interpretability

When the observed data have been modelled directly,

model outcomes can be interpreted in the context of

the observed data and inferences can be made about

the processes underpinning what is observed. Impor-

tant ecological relationships can be directly quantified

and important quantities can be predicted (under

current and future scenarios). Further, any analysis

tool will work better in some situations than others,

and an advantage of models is that they involve clearly

stating assumptions and hence identifying the condi-

tions under which they can be expected to work well.

Such assumptions can be checked during data

analysis.

Flexibility

A variety of different types of data can be modelled,

and a variety of different types of research questions

can be answered, using readily available modelling

tools. There is the capacity to explicitly incorporate

Table 1 Examples of (a) Model-based software packages on R that can handle multivariate data (b) Common distributions for

different response types

Purpose Software Example reference

(a) Model-based software on R

Constrained ordination, predictive modelling VGAM Yee (2010)

Hypothesis testing for multivariate data mvabund Wang et al. (2012)

Classifying species by environmental response speciesMix Hui et al. (2013)

Classifying sites by species and environmental data RCPmod Foster et al. (2013)

Classifying sites and species without environmental data from author Pledger and Arnold (2014)

Predictive modelling lme4 and other GLMM software Ives and Helmus (2011)

Data type Distribution (link) Example reference

(b) Example distributions that can be used for responses of different types

Presence/absence Binomial (logit) Dunstan et al. (2011)

Count Poisson or negative binomial (log) Wang et al. (2012)

Ordinal Multinomial (logit; ‘‘Proportional odds’’) Sect. 3.2

Biomass Tweedie (log) Dunstan et al. (2013)

In principle, any distribution in (b) can be used in combination with models in (a), although different packages have different

functionalities
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ecological theory into models (e.g. Etienne 2007;

Clark 2007), and one has the capacity to choose

between competing theories (model selection) as well

as to generate new ecological theories from data.

Efficiency

Formal inference is enabled through well-established

statistical theory, and when the model provides a good

fit to data, this theory typically offers optimality

properties (Anderson 2003) suggestive of good per-

formance. Desirable statistical properties, including

high efficiency compared to alternatives, have been

demonstrated empirically for model-based approaches

to multivariate analysis in ecology (Warton 2011;

Warton et al. 2012).

The process of model-based analyses is structured,

sequential (Fig. 1) and well-established (e.g. Neter

et al. 1996). A key point of distinction for a model-

based approach to algorithmic approaches is the

pivotal role of data properties in informing the method

of analysis ultimately used. Specifically, the properties

of the data determine the type of model proposed, and

diagnostic tools are used to gauge how well the model

reflects the data, as described later. The diagnostic step

is very important as it indicates potential improve-

ments to the model (Fig. 1) such that model assump-

tions better reflect data properties (e.g. accounting for

overdispersion), which ultimately produces a more

robust and defensible inference.

A second important point of difference from

algorithmic approaches concerns the strength of the

connection between the research question and the

analysis method. The research question is typically

embedded explicitly in the model used for analysis—

for example, as a parameter to be estimated. Conclu-

sions that are drawn from analysis then can involve

specific, quantitative answers to the research question

(‘‘formal inference’’). An explicit connection between

an analysis approach and the research question is

typically not possible without specifying a model, and

thus conclusions drawn from algorithmic methods of

analysis can be somewhat opaque.

The steps in a model-based analysis, as described in

Fig. 1, will be discussed in the following sections—

these same steps also apply to Bayesian analyses, but

with some additional considerations concerning prior

specification.

Identifying the ecological question

The motivation for any ecological study can usually be

framed in terms of answering one or two key

questions. Correctly identifying the question(s) and

formalising them within a statistical framework

focuses on questions that can be resolved using data.

The questions, once specified, not only determine how

the data should be collected or selected for analysis,

but they also influence how the data should be

analysed.

The number of possible questions is limited only by

our imagination, and our understanding of community

ecology. However, four common types of analysis

objective, which have different implications for ana-

lysis methodology are: (1) Testing of a hypothesis

concerning ecological theory developed prior to data

collection (a priori); (2) Determining which of a set of

predictors best characterise species responses; (3)

Prediction of the values of a variable of ecological

importance, typically in areas that do not have

observed data (e.g. mapping species richness in a

geographic region, Sousa et al. 2006); and (4)

Exploring the nature of the relationship between

environmental variables and abundance.

Sometimes there are multiple analysis objectives,

implying multiple analyses of the same data. This is

usually permissible but should be done cautiously—in

Fig. 1 Flow of model-based analysis. Each ellipse refers to

understanding an aspect of the modelling process. EDA stands

for ‘‘exploratory data analysis’’. See Sect. 2 for details on any of

these analysis steps
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particular, in the case of testing hypotheses (1) note the

hypotheses need to be specified a priori and not

derived from the data used for testing, otherwise

inferences will be invalid (typically, with grossly

inflated Type I Errors). A similar caution also applies

to estimation of model coefficients and coverage

probabilities for subsequent confidence intervals—

they are biassed when the coefficients for which

inference is desired have not been specified a priori,

but have instead been chosen from a broader set of

potential model terms.

Data

The second key component to a model-based approach

is the data that can be used to answer the ecological

question. In statistical terms, data are often categorised

as either response or predictor variables. The response

variable(s) are those of primary interest, and in this

paper, are measures of abundance (e.g. counts,

percentage cover, biomass and semi-quantitative rat-

ings) or the presence/absence for each taxon. Proper-

ties of the response variable(s) are typically key to

determining how the data are ultimately analysed.

Predictor variables can take many forms. They can

include variables implied by the study design, envi-

ronmental variables directly measured in the field and

sometimes the presence/abundance of other species.

For example, if an experiment was performed using a

randomised complete block experimental design, then

between block variation should be accounted for in the

model.

Exploratory data analysis (EDA)

Prior to fitting the model, it is advisable to do some

preliminary analyses to identify the key properties of

data that need to incorporated into amodel. This is often

referred to as exploratory data analysis (EDA) after

Tukey (1977). Failure to explore data prior to analysis

was recently highlighted by Steel et al. (2013) as the

first of a set of common statistical errors in ecology.

Often unusual or unexpected data occur in a data

set, and these need to be queried to see if they represent

reality or are generated from an error of one kind or

another. Sometimes, predictor variables are strongly

skewed and require transformation prior to modelling,

to ensure that values in the tail of the distribution do

not exert undue influence. Note that, this does not have

the same unwanted consequences as transforming the

response variables can (e.g. O’Hara and Kotze 2010;

Warton and Hui 2011).

It is important during EDA to try to stay ‘‘close to

the data’’, and given that the observed data are to be

modelled, it is properties of the observed data that

need to be queried. As such, bivariate scatterplots and

boxplots of the observed data can detect patterns that

might be missed by more abstract visualisation tools

such as ordination diagrams (Warton 2008).

Choice of model

The precise model used for analysis depends on both

the question being addressed and the data at hand.

How the ecological question informs model choice

A given dataset can be analysed in different ways,

depending on the ecological question. A simple

example familiar to many readers will be a set of

paired measurements of a quantitative variable. Such a

dataset could be analysed using a t test (to compare

means), linear regression (to predict one from the

other) or a major axis (to test for agreement), amongst

other approaches. The objective of the study has a key

role in guiding the type of analysis to be undertaken.

Four common types of objective were listed

previously, and each of these corresponds to a

different approach to analysis: (1) Hypothesis testing

When there is an a priori hypothesis to test; (2)Model

selection Determining which predictors best charac-

terise species response; (3) Predictive modelling To

predict the values of a response variable; (4) Descrip-

tion To explore and describe the main patterns in

response, typically without formal inference.

How the data informs model choice

A number of different properties of data affect the type

of model used, and this section focuses on two key

properties of multivariate abundance data: (1) the

distribution of each of the response variables (the

‘‘abundance’’ property) and (2) correlation between

responses (the ‘‘multivariate’’ property).

When thinking about what type of distribution to

specify in the model, the key consideration is to try to

accurately model the response variable(s), in our case,

the multivariate abundances. The reason we are
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primarily interested in the response variable in

regression is that we typically condition on predictors,

e.g. given that mean temperature at a site is 20 degrees

Celsius, what species are we likely to find. This

conditioning has the consequence that predictors are

not treated as random, and hence we can focus on

constructing a plausible statistical model for the

multivariate abundances alone, irrespective of the

distribution of predictors.

When analysing multivariate abundance data, the

distribution of each response variable typically con-

tains many zeros, because not all taxa are observed at

all sites. Such data also tends to exhibit a strong mean–

variance relationship (Warton et al. 2012), which

arises partly as a result of the large number of zeros in

the data. This strong mean–variance relationship is a

key property of the data (which we can think of this as

the ‘‘abundance’’ property) which needs to be

accounted for in analysis. Precisely how it is

accounted for depends on what form the data arise

in—as counts, presence/absence, biomass, etc, and

some example statistical distributions are listed in

Table 1b. Note that one distribution that is conspic-

uously missing from Table 1b is the normal distribu-

tion. The normal distribution assumes a constant

mean–variance relationship, which is rarely plausible

for multivariate abundance data under any transfor-

mation, given the high frequency of zeros.

A second key property of multivariate abundances

is correlation across taxa (the ‘‘multivariate’’ prop-

erty). Classical regression modelling approaches

assume observations are conditionally independent—

that is, beyond similarities inferred by site character-

istics, knowing the value of a response variable at a

site gives no useful information for predicting the

values of any other response. Community ecology

offers an important exception to this when modelling

multi-species data—species often interact, so when

data on multiple taxa are collected from a single site,

they should in the first instance be assumed to be

correlated.

Correlation may arise not only across taxa, but also

across measurements within taxa, due to spatial or

temporal autocorrelation (Cressie et al. 2009). Even

when there is thought to be little autocorrelation in the

response, it can arise when predictor variables omitted

from the model themselves exhibit autocorrelation.

Key tools for handling correlation in non-normal

data include generalised linear mixed models (Bolker

et al. 2009) and generalised estimating equations

(Warton 2011). But a particular difficulty in commu-

nity ecology is that typically there are many variables

(because many different taxa are observed)—this is a

very difficult problem to handle statistically, because

unless some constraints are imposed on the form of

correlation in the data, the number of pairwise

interactions between species explodes to unmanage-

able numbers very quickly, e.g. if 100 taxa are

observed, then there are almost 5000 possible pairwise

correlations between taxa. A key opportunity in

community ecology is the development of parsimoni-

ous models for multi-taxa correlation that can be used

to specify realistic, fully parametric models for

multivariate abundance data. Early attempts (for

example, the random site effect in Jamil et al. 2013,

which induces equal correlations between all pairs of

species) are perhaps overly simplistic and cannot

claim to offer plausible models for species interaction.

This difficult issue hashistorically been circumvented

in multivariate ecology using design-based inference

(Manly 2007), i.e. taking correlation into account at the

inference stage and not in the original model specifica-

tion. This is achieved by resampling rows of correlated

observations (Anderson 2001) across (independent)

sites, to ensure community-level inferences are valid

for correlated data, even when the correlation has not

been correctly accounted for. Recently, the mvabund

package for R (Wang et al. 2012) used this approach in a

model-based context, where a model describes the

environmental response of each taxon, then rows (sites)

are resampled to ensure valid inference, despite corre-

lation across taxa. Such an approach is suitable for

hypothesis testing,but in the context of variable selection

and predictive modelling, cross-validation is perhaps

better suited to the same purpose—predictive perfor-

mance on test data could be used as the criterion for

choosing between competing models, as in Hui et al.

(2013). By putting all (correlated) responses from a site

in the same test/traininggroup, subsequent inferences are

robust to correlation, as was the case previously for row

resampling.

Design-based approaches can be extended to han-

dle spatial or temporal correlation, by grouping

observations at different sites into blocks of related

sites which are then treated as sampling units. This is

known as block resampling (Lahiri 2003) or block

cross-validation, and it can ensure valid inference if

observations have negligible correlation across
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blocks. The importance of block cross-validation has

recently being recognised in the species distribution

modelling literature (Wenger and Olden 2012).

Checking the model

A key step to ensure valid and robust inference is to

perform model diagnostics, i.e. viewing the data

through a lens defined by the model. If the model fails

to fit the data, then these diagnostic checks should

highlight this fact. Some well-known tools for this

purpose include residual plots, prediction to hold-out

samples, comparison of competing models using

information criteria (Burnham and Anderson 1998)

and more controversially (Shuster 2005), goodness-of-

fit tests. Diagnostic checks can be constructed for all

the model types and can be tailored to inspect particular

aspects of the model (e.g. Foster and Bravington 2011).

Residual plots are widely used in univariate least

squares regression to assess model assumptions (sensu

Draper and Smith 1998). What many readers will not

realise is that these same principles can be used for any

parametric model, including multivariate ones. A very

general definition of residuals was proposed by Dunn

and Smyth (1996), which they referred to as random-

ised quantile residuals. These residuals come exactly

from a standard normal distribution, if the model fitted

is exactly correct. Surprisingly, this result remains true

even when the original response data are discrete or

present/absent, as seen later. Code to construct Dunn–

Smyth residuals plots in common settings is available

in the mvabund package (Wang et al. 2012), and we

recommend such plots as an excellent starting point

when checking model assumptions.

If fitting a model using Bayesian estimation, then an

additional consideration that applies at this point is

checking the priors that were put on parameters, e.g.

via posterior probability checking (Gelman et al.

2013). If using simulation approaches for model

fitting, such as Markov Chain Monte Carlo, an

additional consideration is checking that the algorithm

used to fit the model has converged, for which

diagnostic tools are also generally available (Gelman

et al. 2013).

Interpretation

The final step in the flow diagram of Fig. 1 involves

studying analysis outcomes and how they relate to the

original research question. It is worth noting that all

analysis outputs are estimated with uncertainty.

Repeating the survey or experiment that generated

the data would lead to different data hence non-

identical estimates. Thus, output should always be

interpreted jointly with estimates of uncertainty (e.g.

using confidence intervals for parameter estimates).

Fortunately, such estimates of uncertainty are rou-

tinely provided in statistical modelling output, an

important point of difference from some algorithmic

approaches to analysis. Steel et al. (2013) review other

common issues regarding the interpretation step.

Examples

Vegetation restoration and invertebrate

communities

This dataset comes from a survey of the effects of

vegetation restoration efforts on invertebrate commu-

nities, analysed in Warton and Hudson (2004, data

from Anthony Pik). Invertebrates were sampled at

eight sites subjected to vegetation restoration efforts,

and at two additional control sites not subject to

restoration. Invertebrates were used as bioindicators,

i.e. to measure success of restoration efforts. It was of

interest to determine if and how invertebrate commu-

nities differ between control and treatment sites.

Invertebrates were sampled in pitfall traps—five

pitfalls being set out at each site. Unfortunately, only

four pitfalls were recovered from one of the sites.

Invertebrates were classified in order and aggregated

across samples for analysis, and the ensuing dataset

consisted of abundance counts of 35 orders of

terrestrial invertebrates across the 10 sites.

Objective

Is there an effect of restoration efforts on invertebrate

communities? If such an effect was detected, the next

obvious step would be to study the nature of the effect.

Data

Counts of invertebrates classified to the ordinal level,

where in each site, invertebrates were collected in 4–5

pitfall traps. Because data were counts, a Poisson or
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negative binomial distribution was used. Because a

different number of pitfall traps was used at each site,

the sampling intensity varied and needed to be taken

into account for analysis. This was done by including

an offset in the model, equal to the logarithm of the

number of pitfall traps collected at each site.

Exploratory data analysis

The mean–variance relationship in the data was

visualised by plotting sample variance against sample

mean for each treatment group and each taxonomic

group (Fig. 2a). A strong increasing pattern was

Fig. 2 Analysis of the

vegetation restoration

abundance data. a Mean–

variance relationship, each

point representing the

sample mean and variance

of a species in a treatment

group; Residual plots for

log-linear models fitted

assuming the data are

b Poisson and c negative
binomial in distribution;

d species-level treatment

effects on invertebrate

abundance, with mean

abundance in each treatment

(y-axis) plotted against

univariate test statistic

(likelihood ratio statistic,

�2 logK;, x-axis) for each
invertebrate order. In a,
there is a curvilinear trend

and points tend to be above

the one-to-one line. In b,
there is a fan-shape pattern,

no longer evident in c. a–
c all suggest data are
overdispersed compared to

the Poisson distribution, and

better modelled by the

negative binomial. In d, the
orders with strongest

evidence of a treatment

effect appear in the right

half of the plot, and for most

these, there was a substantial

increase in abundance after

vegetation restoration

efforts
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observed, with the variance often much larger than the

mean, and suggesting data were overdispersed. Thus,

we consider a negative binomial model in the analyses

below.

Many species were rare, with 11 taxonomic

groups found only once in the 10 sites (singleton

groups). We removed such groups on the grounds

that they provide negligible information about the

effect of treatment (ensuing sensitivity analyses

confirmed these species had negligible effect on

results). This left 24 species at ten sites, so the data

were highly multivariate, and conventional

approaches to modelling correlation between

response variables were not possible.

Model The primary question of interest involved

testing the a priori hypothesis of no effect of

restoration efforts on invertebrates. As such, this

question is most naturally addressed using a hypoth-

esis testing framework. The R package mvabund

(Wang et al. 2012) was developed for precisely this

purpose—to provide a suite of model-based tools for

testing multivariate hypotheses. We used the many-

glm function (Wang et al. 2012) to fit negative

binomial regressions to each invertebrate order, with

an offset for the number of pitfall traps at a site.

Likelihood ratio statistics were calculated for each

order to test the effect of the restoration treatment. As a

community-level measure of treatment effect, we

summed the likelihood ratio statistics (‘‘sum-of-LR’’

statistic, Warton et al. 2012). To account for correla-

tion, in abundance across taxa we used the PIT-trap, a

bootstrap method operating on probability integral

transform residuals (effectively, Dunn–Smyth residu-

als). The PIT-trap was recently developed and dem-

onstrated to have good performance when resampling

abundance data with many zeros (Warton andWang in

review). We estimated P values from 999 bootstrap

resamples.

Check Plots of Dunn–Smyth residuals against fitted

values (Fig. 2c) exhibited little pattern, and hence

there was little evidence of departure from model

assumptions. In contrast, we also fitted a Poisson

distribution to the data and observed a fan-shaped

pattern in the ensuing residual plot (Fig. 2b). This

suggested that the mean–variance relationship would

not have been adequately modelled by a Poisson

distribution. In particular, there was greater sample

variation in larger counts (i.e. overdispersion) relative

to the Poisson.

Interpretation The global test statistic was

�2 logK ¼ 78:3, with P ¼ 0:016, suggesting good

evidence of an effect of restoration on invertebrate

communities. A plot of mean abundance for each

treatment group against the univariate likelihood ratio

statistic suggested there were six invertebrate orders

that exhibited evidence of a treatment effect—Blatto-

dea, Coleoptera, Amphipoda, Acarina, Collembola

andDiptera (Fig. 2d). These six invertebrate orders all

had unadjusted univariate P values that were signif-

icant at the 0.05 level, and collectively they accounted

for 65 % of the deviance explained by restoration.

Therefore, they were our main target in terms of

understanding the nature of the restoration effect.

Blattodea had the strongest evidence of an effect,

being absent from all eight restored sites but present,

albeit in low abundance, at both the control sites. In the

remaining five orders with evidence of a treatment

effect, there was a substantial increase in mean

abundance (7-fold or more) following restoration

efforts. Amphipods were completely absent from both

the control sites.

Species traits in dune meadows

The second example is the well-known Dutch Dune

Meadow data set from Jongman et al. (1987),

consisting of semi-quantitative abundances of 28 plant

species sampled at 20 sites. While initial analyses of

this dataset (Jongman et al. 1987) related plant species

abundance to environmental variables only, an addi-

tional matrix of species trait data is available as online

supplementary materials for Jamil et al. (2013). We

will make use of this trait dataset to try to understand

why response to environmental variables differs

across species.

Objective

Which species traits explain interspecific differences

in environmental response?

Data

Abundances were recorded using the Domin scale, a

variation on Braun–Blanquet scale which categorises

species abundance on an ordinal scale between 0

(completely absent) and 10 (present everywhere). This

suggests some form of ordinal regression is
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appropriate, and so we used a proportional odds

model. Five environmental variables and five species

trait variables were available for use in the models.

Exploratory data analysis

Quantitative predictor variables were typically right-

skewed, and thus all were log-transformed prior to

analysis, which has the advantage of putting them on

the proportional scale.

Model

A proportional odds model was used since the

response variable was ordinal.

The proportional odds model included main effects

terms for environmental and species trait variables,

and importantly, their interaction. The interaction

between environmental and trait variables was of

primary interest, this term explains how interspecific

variation in environmental response can be explained

by differences in functional traits across species. This

general approach has been independently proposed by

a few authors (Pollock et al. 2012; Jamil et al. 2013;

Brown et al. 2014), and has interesting connections to

the fourth-corner problem (Jamil et al. 2013; Brown

et al. 2014).

In addition to the trait effects, we considered

whether to include in the model a random species

intercept term, and random species�environment

interaction terms, to soak up variation in abundance

not explained by traits.

These models were fitted using the clm and clmm

functions from the ordinal package on R (Chris-

tensen 2013).

Rather than having a specific hypothesis to test

concerning interactions, the objective is better

described as variable selection, i.e. which interactions

of environmental and trait variables are useful for

predicting abundance.

Forward selection was used to screen the predictor

variables to include in analyses. This suggested that

only five of the predictor variables were useful in

predicting abundance—one environmental variable

(management type) and four species trait variables

(specific leaf area, height, leaf dry matter concentra-

tion and lifespan). Linear terms for each of these

variables appeared to be sufficient, as no quadratic

terms were selected in stepwise procedures.

Given that we only considered one environmental

variable and four species traits, there were four

possible types of interaction that could be included

in the model, and again we used forward selection to

choose an interpretable model (Draper and Smith

1998). To account for correlation between species, we

chose the final model along the forward selection path

by cross-validation, where sites were randomly allo-

cated to test/training groups. The validity of the

method requires sites to be independent, but not

species within sites. Our cross-validation procedure

computed the log-likelihood for test observations

using a 90:10 training:test split (i.e. assigning two

sites at random to the test sample), and averaging

results over 50 different choices of test sample.

Check

No trend was found in residual plots (not presented).

Interpretation

The maximum value of the log-likelihood for test data

was achieved by a model with just two interaction

terms, representing the interactions between manage-

ment type and each of specific leaf area (SLA) and

height (Fig. 3a). That is, the variables specific leaf area

and plant height appear to be useful in explaining

interspecific differences in response to the land

management. Plots of these interactions suggest that

a flat, slightly negative relationship between abun-

dance and each of SLA and height for sites in

conservation reserves, but steeper increasing relation-

ships in most other situations (Fig. 3b, c). That is, taller

plants with ‘‘thinner’’ leaves (larger SLA) tended to be

found on the farmed sites.

The model with maximum log-likelihood for test

data was a mixed effects model with a random intercept

term for species. This model had a substantially higher

predictive log-likelihood than its fixed effect only

counterpart (�627.6 vs �655.6), but was not appre-

ciably improved on by additionally including random

species terms for the management effect. This sug-

gests that there was some interspecific variation in

abundance that was not adequately explained by traits.

However, inclusion or exclusion of this species effect

did not affect outcomes of variable selection, models

with and without a species effect both selecting

interaction terms with SLA and height, and the fixed
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effects model producing an interaction plot similar to

Fig. 3b, c.

Jamil et al. (2013) analysed the same dataset but as

presence–absence, and using a different model and

procedure for variable screening. This led them to

characterise environmental response not using man-

agement type, but instead looking at the effects of two

soil properties (moisture and manure content). These

two variables (and especially manure content) are

correlated with management type and thus are likely to

be picking up the same trend as our analyses. They did,

however, find that their soil variables were related to

the same species traits (height and specific leaf area) as

in our analyses. Interestingly, the variables we found

to be important corresponded well with the results of

their ordination (Jamil et al. 2013, Fig. 4).

One difference in the methodology we used as

compared to Jamil et al. (2013) is that we analysed

ordinal data rather than reducing the data to presence–

absence, and it is natural to ask whether there was any

additional benefit from doing so. We have compared

the coefficients and their estimated standard errors

between a logistic regression of the presence/absence

data and a proportional odds model of the ordinal

response. (Table 2). Estimated coefficients were

broadly similar. While the standard errors should be

interpreted with caution, since they did not take into

account species interactions, they were indicative of a

slight improvement in efficiency from using the

ordinal data in analyses. Most interaction terms have

a smaller standard error by 10–20 % in the ordinal

analysis, because the inclusion of additional

Fig. 3 Analysis of the dune

meadow ordinal data using

mixed effects proportional

odds logistic regression with

a random intercept term for

species. a Predictive

performance under cross-

validation of models of

different complexity; and

interaction plot for b the

SLA:Management

interaction and c the
Height:Management

interaction. Order in which

interaction terms were

added was decided by

forward selection, and a

two-term model was

optimal, with interactions as

in b–c. ‘‘Main effects only’’

indicates a model with main

effects for all five of the

predictors used in this

analysis. BF biological

farming, HF hobby farming,

NM natural conservation

management, SF standard

farming
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information on relative abundance improved the

accuracy of model estimates. This kind of comparison

would have been more difficult without the use of

models, as it is not obvious how to compare algorith-

mic analyses of the presence/absence vs ordinal data.

Discussion

While historically, a model-based approach to multi-

variate analysis has not been feasible in ecology that

time has passed and there are now a range of tools

available that can be used for model-based analysis.

Specifying and estimating a statistical model for

multivariate data have a number of advantages, most

strikingly their interpretability and the flexibility to

handle a range of data types, study design features and

research objectives. They have also been demon-

strated to have better properties than methods cur-

rently used in ecology, with a mismatch between the

analysis method and the statistical properties of the

data being analysed often having dramatic conse-

quences for algorithmic approaches to multivariate

analysis (Warton et al. 2012).

A key current challenge in community-level ana-

lysis is the development of realistic models for

interspecies correlation that are sufficiently parsimo-

nious to be estimable from multivariate abundance

data under the dual challenges of sparsity (many zeros)

and high dimensionality (many taxa). Until such

methods are developed and demonstrated to be

capable of accurate inference for high-dimensional

data a design-based approach to inference is encour-

aged, e.g. resampling rows for hypothesis testing or

cross-validation of sites for predictive modelling. We

do not need to throw out the model-based paradigm,

when we do not have a good model for species

correlation. Rather, we can use independent units in

the study design as a robust basis for inference, despite

possible failure of assumptions about interspecies

correlation.

There is a vast array of different types of

questions that can be asked about the community–

environment association. Some of these are new,

while others are novel adaptations of historical

questions. In both the cases, an explicit and direct

method to answer them, using available data, is to

utilise advances in statistical modelling (e.g. Gelfand

et al. 2005; Dunstan et al. 2011; Ovaskainen and

Soininen 2011; Foster et al. 2013; Pledger and

Arnold 2014). The model-based approach has many

scientific advantages, as we have outlined. However,

it also has the advantage that it enables ecologists to

leverage the main thrust of statistical science that

has developed substantially in recent years. Model-

based approaches offer exciting potential by provid-

ing the capacity to answer ecological questions more

directly, potentially opening up the field of commu-

nity ecology to a deeper focus on underlying

processes.
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Table 2 Estimated coefficients (and standard errors) for

environment-trait interaction terms in each of a mixed effects

proportional odds model fitted to ordinal data, and a mixed

effects logistic regression fitted to the presence/absence data,

with a random intercept term for species

Interaction term Ordinal Presence/absence

MagHF � SLA -0.91502 (1.27797) -0.61612 (1.49153)

MagNM � SLA -4.62628 (1.24162) -4.78519 (1.41440)

MagSF � SLA -0.02506 (1.33266) -0.42832 (1.49756)

MagHF � Height 0.65523 (0.36257) 0.92039 (0.43448)

MagNM � Height -0.26979 (0.36418) 0.07702 (0.42826)

MagSF � Height 0.77657 (0.37041) 0.98282 (0.43903)

Notice the coefficient estimates are broadly similar, but the standard errors are consistently smaller, when analysing ordinal data

(because more information is available for use in modelling)
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