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Abstract The questions ‘‘Will the environment sur-

rounding moorlands become refugia for a Japanese

subalpine coniferous species, Abies mariesii Mast., after

climate change?’’ and ‘‘How does the spatial resolution

of a species distribution model affect the global

warming predictions?’’ have been discussed in this

study. This study was conducted at Hakkoda Mountains,

the northern side of Honshu Island, Japan. We con-

structed 50-m mesh model using a climate variable, two

topography variables and two variables relating to

moorlands. We applied the model to eight global

warming scenarios, including decreasing or non-

decreasing scenarios of moorlands. We also con-

structed a coarse-resolution model at approximately

1-km resolution and compared the model predictions

with the fine ones. The results showed that the coarse-

resolution model tended to overestimate the range of

suitable habitats for A. mariesii. On the other hand, some

suitable habitats around moorlands could only be

predicted by the fine-resolution model. The fine-

resolution model indicated that the peripheries of the

moorlands are the most important potential refugia for

A. mariesii on Hakkoda Mountains. Although these

suitable areas were notable in the ?2�C scenario, all

suitable habitats completely disappeared in the ?4�C

scenario. We concluded that it would be effective to

conserve the A. mariesii populations around moorlands
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which are likely to persist after global warming, as well

as moorlands themselves. This assessment could only be

achieved by fine-resolution models that incorporate

non-climatic variables including topography and moor-

land-related variables with climatic variables. In con-

trast, a coarse-resolution model overestimated the

suitable habitats whilst underestimating potential local

refugia. Thus, fine-resolution models are more effective

for developing practical adaptation of conservation

measures.

Keywords Adaptive conservation measures �
Classification tree model � Grain size �
Potential habitat � Species distribution models �
Moorlands

Abbreviations

AUC Area under curve

CT Classification tree

DEM Digital elevation model

DWS Deviance weighted scores

HAmap Hakkoda Abies mariesii map

PRS Summer (May–September) precipitation

PRW Winter (December–March) precipitation

ROC Receiver-operating characteristics

TN Terminal node

WI Warmth index

Introduction

Recent global warming is strongly affecting terrestrial

ecosystems by shifting the ranges of plant and animal

species poleward and upward (IPCC 2007). An increas-

ing number of studies on the upward shift of the range of

plants in alpine ecotones have been conducted in Europe

and North America (Beckage et al. 2008; Lenoir et al.

2008). Climate change is expected to decrease or even

eliminate the habitats of alpine and subalpine plants

because these plants are isolated on high mountains

(Horikawa et al. 2009). Thus, these plants are particu-

larly sensitive to global warming (Smith et al. 2009).

Many studies have predicted the effects of climate

change on the distributions of wild plants and vegeta-

tion (Araújo et al. 2005; Huntley et al. 1995; Iverson

and Prasad 1998; Thuiller et al. 2005). However, most

of these predictions are based on coarse-grained (e.g.

50 km) climate surfaces or idealized scenarios with

uniform warming, which fail to consider spatially

heterogeneous warming at local and landscape scales

(Ashcroft et al. 2009). Trivedi et al. (2008) also

suggested that recent large-scale modelling studies

may overestimate the ability of montane plant species

to adapt to global warming because the input climate

data had coarse resolution and were biased against their

cold, high altitude habitats. Finer resolution studies in

Japan have used a Japanese grid coding system,

referred to as ‘Third Mesh’ in Japan, to predict

potential refugia for some dominant species (e.g. stone

pine: Horikawa et al. 2009; beech-dominant forests:

Matsui et al. 2009; dwarf bamboo: Tsuyama et al.

2011). Each of Third Mesh cells measures 3000 latitude

by 4500 longitude (*1 9 1 km2), which was defined by

the Geospatial Information Authority of Japan (Japan

Map Center 1998). However, because elevational

variation in a 1-km cell is significantly large in

Japanese complex and precipitous mountainous areas,

the variance of the temperature in a 1-km cell must be

large. Therefore, 1-km resolution (i.e. using one

representative value per 1-km cell) is still insuffi-

cient for practical conservation management including

adaptive measures at a regional or local scale. In

addition, the influences of geographical factors, such as

topography, are hardly ever incorporated (Matsui et al.

2004b). In general, higher resolution spatial analysis is

more realistic. However, at a certain point, high-

resolution analysis becomes difficult due to constraints

in the availability of high-resolution data. Neverthe-

less, since global warming is inevitable (IPCC 2007),

high-resolution predictions at a regional or local scale

are needed to develop practical adaptive measures.

In this study, we predicted the effect of global

warming on a subalpine coniferous species, Abies

mariesii, on Hakkoda Mountains, Japan. According to

Nogami (1994), who estimated the changes in vege-

tation zones according to a warmth index (WI) (Kira

1977), a temperature increase of 2�C would reduce the

area of Japanese subalpine coniferous forests to about

a quarter of their current range. This drastic change is

due to the lower elevation of the Japanese mountains

compared with the other continents, which limits the

upward shift of the trees. Consequently, it is important

to determine the effects of global warming on these

trees to develop conservation measures.

Abies mariesii is the dominant subalpine coniferous

species in subalpine areas of Honshu Island. Since

A. mariesii has extended its distribution into the

moorland below its lower elevation range limit
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(Yamanaka et al. 1988), moorlands may be local refugia

for A. mariesii in a warmer climate. A fine-resolution

model is needed to verify this type of refugia. We

determine potential refugia as the locations where

species would survive after climate change according to

fine-resolution species distribution models. We address

the following questions: (1) Can the peripheries of the

moorlands be potential refugia for A. mariesii? (2) Is the

fine-resolution model effective to predict such local

refugia?

Methods

Study area and distribution data

The study area was 20 9 15 km2 and extended across

the Hakkoda Mountains that are south of Aomori City in

Aomori Prefecture, Japan (latitude: 40�330 to 40�440 and

longitude: 140�470 to 140�570) (Fig. 1). The elevation of

this area ranged from 183 to 1,585 m. Japanese beech

(Fagus crenata), a deciduous broadleaf tree, is the

dominant tree species up to about 900 m. A. mariesii is

the dominant tree species in the subalpine zone at

elevations above 1,000 m. The Japanese stone pine

(Pinus pumila) grows at elevations over 1,400 m. Many

patches of moorlands are found in depressions of

volcanic ash from a massive eruption in the Pleistocene

epoch (Koike et al. 2005; Murach and Ulrich 1988). The

Hakkoda Mountains have some of the deepest snow in

the world. The maximum snow depth, annual mean

temperature and annual precipitation at the Sukayu

station (Fig. 1) are 3–5 m, 4–6�C and 1,300–2,300 mm,

respectively (Japan Meteorological Agency; http://

www.jma.go.jp/jma/indexe.html). Most of the land

above 700 m has been designated as a national park,

although there are also a few farms or tree plantations

(Fig. 2a). Human impact on the natural vegetation has

been minimal, particularly for the subalpine forests.

Abies mariesii is a subalpine coniferous species

endemic to Japan that has adapted to habitats with

heavy snowfall (Kaji 1982; Sugita 1990). Although

A. mariesii was not dominant during the last glacial

period, when snowfall was light, its distribution has

expanded since snowfall began to increase in the

Hypsithermal period (Morita 1985). Since other sub-

alpine coniferous species gradually became extinct,

many subalpine forests in Japan, particularly those in

snowy regions, now consist only of A. mariesii.

Therefore, if local extinction of A. mariesii occurs on

Fig. 1 Locations of the study area (boxed) at Hakkoda Mountains, Japan and four meteorological stations (stars). The background

shows the Landsat Enhanced Thematic Mapper (ETM) image (Sep 2000, 30-m resolution) for this area
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Hakkoda Mountains, no other subalpine coniferous

species could replace it. However, the distribution of

A. mariesii also extends into the moorlands at lower

elevations (Yamanaka et al. 1988), suggesting that

these sites could be refugia in warmer climates.

We created a distribution map of A. mariesii on

Hakkoda Mountains (Hakkoda A. mariesii map, HA-

map: Fig. 2a) based on aerial photographs taken in

October 1996 and September 2003 as detailed in Online

Resource S1. We transformed the HAmap to presence

absence data at 50-m mesh and Third Mesh resolutions.

We excluded the areas of farms or tree plantations

(Fig. 2a) from them and used as the response variables at

each scale.

Environmental variables for the Third Mesh model

Although plant distribution is mainly affected by

temperature and soil moisture content, Japanese trees

usually do not suffer serious water deficits because there

is sufficient rainfall throughout most of Japan. There-

fore, since temperature is the most important factor

for plant distribution in Japan (Nogami 1994), the

WI proposed by Kira (1977) is frequently used in studies

of Japanese plants. WI, defined as the annual sum

of positive differences between monthly mean

temperatures and ?5�C, is a measure of the effective

warmth for plants during their growing season. Summer

(May–September) precipitation (PRS) is an index of the

water supply during the growing season. Likewise,

winter (December–March) precipitation (PRW) is an

index of the accumulation of snow in cold regions.

Third Mesh model was constructed only by WI

(33.5–71.5), PRS (599–1,155 mm) and PRW (548–

1,009 mm) because, at this resolution, topography was

not described meaningfully (Matsui et al. 2004b).

Current climatic data for Third Mesh cells were obtained

from the Japan Meteorological Agency (1996), which

provides monthly climatic temperature and precipita-

tion for 1953–1982 and 1953–1976, respectively.

Environmental variables for the 50-m mesh model

In the 50-m mesh model, WI was the only climatic

variable, which was based on downscaled tempera-

tures from the Third Mesh climatic data sets as

followed (Online Resource S2 Fig. 5). Temperature

data at the Third Mesh resolution (Japan Meteorolog-

ical Agency 1996) were downscaled to 50-m mesh

resolution by using the method of Zimmermann and

Kienast (1999). In brief, we first calculated the

monthly linear lapse rates at the study area, based on

Fig. 2 Horizontal and

vertical distribution of

presence cells (a dotted
polygons, b black dots) and

absence cells (a outside of

the black dotted polygons,

b grey dots) for A. mariesii
based on aerial photographs.

The number of presence or

absence cells was 106 and

120 at Third Mesh

resolution, respectively, and

18,200 and 70,975 at the

50-m mesh resolution,

respectively. a The brown
colour shows the

topography of the study

area; darker shades indicate

higher elevations. Hatched

areas depict the areas of

farms or tree plantations.

(Color figure online)
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the average monthly temperature and elevation data at

four meteorological stations (Fig. 1) Second, the

elevation and temperature data at Third Mesh resolu-

tion were resampled to 50-m mesh resolution and

smoothed with a circular filter having a 450 m (nine

50-m mesh cells) radius, respectively (i.e. Temp3rd and

Elev3rd). Finally, we calculated 50-m mesh resolution

temperature data (Temp50) for each month according

to the following equation:

Temp50 ¼ Temp3rd þ LðElev3rd � Elev50Þ

where Temp3rd is the temperature at 50-m mesh

resolution derived from Third Mesh temperature, L is

lapse rates of the month, Elev50 is the 50-m mesh

elevation data obtained from the Digital elevation

model (DEM) (Geographical Survey Institute 2000)

and Elev3rd are the elevation at 50-m mesh resolution

derived from Third Mesh DEM. We did not use

precipitation data in the 50-m mesh model because a

method for downscaling them has not been established

yet (Charles et al. 2007) and predicting future precip-

itation has high uncertainty (Mearns et al. 1997).

In addition to the WI, we used two topographical

variables, slope and aspect, calculated from the Elev50.

To test our working hypothesis that the peripheries of

the moorlands can be potential refugia for A. mariesii,

we added the Euclidean distance from each cell to the

nearest moorlands as the explanatory variable in the

50-m mesh model. In this procedure, the current

distribution of the moorlands was identified in the same

way as the HAmap (Online Resource S3 Fig. 6a).

According to our pre-analysis using the variables

mentioned above, high omission errors occurred inside

the moorlands. Thus, we added another explanatory

variable that indicates the location inside or outside the

moorlands. Namely, WI (29.1–76.3), slope (0�–48�),

aspect (eight categorical data), distance from moorland

(50–7,900 m) and moorland P/A (presence/absence)

were used in the 50-m mesh model. These variables

were generated by using the Spatial Analyst tools in

ArcGIS version 9.2 (ESRI, Redlands, USA).

Modelling framework

To construct a species distribution model, we used a

classification tree (CT) (Clark and Pregibon 1992), a

binary partitioning algorithm that recursively splits a

data set into subsets based on a single predictor

variable, which is chosen to minimize the deviance of

the response variables, until each subset is relatively

homogeneous. The advantages of CT include (De’ath

and Fabricius 2000) (1) the ability to use different types

of response variables; (2) the capacity for interactive

exploration, description, and prediction; (3) invariance

to transformations of explanatory variables and (4)

straightforward graphical interpretation of complex

results involving interactions.

The most appropriate tree size in CT was obtained

after cross-validation to avoid overfitting or underfitting

the model (Clark and Pregibon 1992). Deviance weighted

scores (DWS), defined as the sum of the reduction of

deviance between parent nodes and the children nodes

generated by each predictor variable (Matsui et al.

2004a), were calculated to evaluate the contribution of

each predictor variable to the model. For these analyses,

we used R 2.8.0 (R Development Core Team 2008).

The area under the curve (AUC) value, which was

derived from the receiver-operating characteristic

(ROC) analysis (Metz 1978), was used for validating

model performance. AUC was calculated according to

bootstrap methods (Efron 1979). That is, we compared

the predicted presence absence data with validation

data that randomly selected from the study data with

replacement for 100 times and calculated the mean and

SD values of AUC. AUC values range between 0.5 (the

model has no discrimination ability) and 1.0 (perfect

discrimination) (Zweig and Campbell 1993). Although

AUC has been commonly used for validating SDMs,

some problems were pointed out (e.g. Lobo et al. 2008)

including that the approach tend to overestimate the

model fit because spatial autocorrelation inherently

exists between the training and validation data sets

(Morin and Thuiller 2009).

ROC analysis can also provide useful information

for selecting an appropriate probability threshold by

describing the trade-off between correctly predicting

the occurrence of a species (true positive) and incor-

rectly predicting the presence of the species (false

positive) (Pearce and Ferrier 2000). Pearson et al.

(2004) stressed the importance of minimizing the

number of sites with observed presence predicted as

being unsuitable, and proposed three response catego-

ries: suitable, marginal and unsuitable habitats. We

divided the predicted potential habitats into the

following three categories defined by Tsuyama et al.

(2008), which are similar to those of Pearson et al.

(2004); (1) suitable habitats, defined as the areas where
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the predicted probability of occurrence was greater

than the probability threshold; (2) marginal habitats,

defined as the areas with a probability of occurrence

greater than or equal to 0.01 but less than the

probability threshold and (3) non-habitats, defined as

areas that were neither suitable nor marginal.

Climate change scenarios

We analysed four temperature increase scenarios at the

Third Mesh and 50-m mesh resolutions. Each scenario

only differed in the increase of the daily average

temperature of each month (?1, ?2, ?3 or ?4�C).

Because future climate scenarios based on general

circulation model simulations have too coarse spatial

resolutions (ca. at 100–450-km resolutions) to use for a

local study, we did not use them. To make more

realistic predictions in the 50-m mesh model, we

prepared two moorland scenarios, namely fixed and

decreased. In the fixed scenario, we assumed that the

current distributions of moorlands do not change

during climatic warming. In contrast, the decreased

scenario modelled reductions in moorland distribution

during climatic change. We developed the latter

scenario by constructing a CT model of moorlands as

detailed in Online Resource 3. As a result, we modelled

eight future scenarios for the 50-m mesh model and

four future scenarios for the Third Mesh model.

Results

Distribution data of A. mariesii

The study area was divided into 294 cells of the Third

Mesh and 117,261 cells of the 50-m mesh resolution.

There were 106 presence cells and 120 absence cells at

the Third Mesh resolution and 18,200 presence cells and

70,975 absence cells at the 50-m mesh resolution. The

areas of farms or tree plantations that were excluded

from analysis comprised 68 cells of the Third Mesh and

28,086 cells of the 50-m mesh resolution (Fig. 2a).

Performance of the Third Mesh and 50-m mesh

models of A. mariesii

The CT diagram for A. mariesii based at the Third Mesh

resolution had three terminal nodes (TNs) (Fig. 3a). The

mean and standard deviation for the AUC value of the

CT were 0.966 and 0.0119, respectively. The AUC

value was considered to be ‘excellent’ according to the

criteria established by Swets (1988) and Thuiller et al.

(2003). The ROC analysis indicated that the optimal

threshold probability was 0.689. The WI variable

accounted for all of the DWS.

The CT diagram for A. mariesii at the 50-m

resolution had nine TNs (Fig. 3b). The mean and

standard deviation for the AUC value of the CT were

0.930 and 0.000768, respectively, which was consid-

ered to be ‘excellent’ (Swets 1988; Thuiller et al.

2003). The optimal threshold probability was 0.384.

The DWS were as follows: WI (86.8%), slope (5.4%),

aspect (3.0%), distance from moorlands (2.4%) and

moorland P/A (presence/absence) (2.3%).

Current potential habitats and their changes

with climate change scenarios

For the current climate (Fig. 4a), the Third Mesh

model showed higher probabilities of occurrence and

larger suitable and marginal habitats than those of the

50-m mesh model. The suitable habitats for A. mariesii

were predicted to shift to higher altitudes and be

divided into two populations in the northern and

southern areas (Fig. 4b–d). In the ?1�C scenario

(Fig. 4b), the Third Mesh model predicted larger

suitable habitats than those of the 50-m mesh model. In

the ?2�C scenario (Fig. 4c), the 50-m mesh model

predicted some areas of suitable habitats at TN D that

were outside those of the Third Mesh model. These

areas were located in the vicinity of the moorlands. In

the ?3�C scenario (Fig. 4d), the summits of high

mountains were predicted to be suitable habitats by

both models. However, all suitable habitats completely

disappeared in both models in the ?4�C scenario.

We compared the areas of potential habitats pre-

dicted by the 50-m mesh model in the fixed and

decreased moorland scenarios (Fig. 4; Table 1). In the

?2�C scenario, the area of suitable habitat for

A. mariesii was predicted to be 126.1 ha in the fixed

scenario and 76.4 ha in the decreased scenario

(Table 1). In the ?1, ?2 and ?3�C scenarios, the

suitable area in the fixed scenario was larger than the

decreased scenario by 26.9 ha (8.63%), 49.7 ha (39.4%)

and 0.3 ha (20%), respectively. In the ?3 and ?4�C

scenarios, the suitable areas were predicted to become

very small in both moorland scenarios (0.0–1.5 ha).
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Discussion

Effects of environmental variables

on the distribution of A. mariesii

WI was the only explanatory variable in the Third

Mesh model (Fig. 3a) because neither PRS nor PRW

were effective. This may have been the result of the

limited sample size in this model that prevented any

significant difference from being found in the presence

or absence cells. Another possible explanation is that

the precipitation data at regional scales were less

accurate than those at the Japanese Archipelago scale.

In the 50-m mesh model, the most important

explanatory variable was also WI. In the CT (Fig. 3b),

the first divergence at WI = 46.5 was the most impor-

tant and this value is in close agreement with that

estimated by Nogami and Ohba (1991) (WI = 47) for

the boundary between the distributions of A. mariesii

and beech (F. crenata) in the Japanese Archipelago

scale.

The second most important explanatory variable

was slope. Our result that gentler slopes were

associated with higher distribution probabilities

(Fig. 3b) may be related to snow gliding, the process

by which snow on a slope moves along the ground.

Snow gliding, which occurs on open slopes with

inclinations[15� (Leitinger et al. 2008), causes great

pressure on trees. The divergence of the slope variable

in the 50-m mesh model was 17.5�, which suggests

that snow gliding pressure affects the distribution of

A. mariesii.

The third most important explanatory variable in

the 50-m mesh model was aspect (Fig. 3b). Our result

that the distribution probability was lower on the east

slope may be due to the detrimental effect of

snowdrifts, which are formed by winter monsoons

that approach from the northwest. A. mariesii cannot

survive the extreme pressure of a snowdrift because it

cannot adopt a creeping growth form (Shidei 1956). In

addition, the growth periods of A. mariesii shorten in

areas with deep snow deposits.

Finally, the suitable habitats of TN D in the CT for

the 50-m mesh model (Fig. 3b) merits discussion. The

location of these habitats suggested that the peripher-

ies of the moorlands are potential refugia for

Fig. 3 Diagrams of the CT for A. mariesii at the Third Mesh

(a) (*1 9 1 km2) and 50-m mesh (b) resolutions. The con-

ditions, occurrence probabilities, and number of Third Mesh

cells (n) are shown at all nodes. If the condition is met, the left

branch is followed; otherwise the right branch is followed. The

length of the vertical lines below each true–false split

corresponds to the change in the magnitude of deviance between

parent and children nodes. a Three TNs are labelled A–C. The

WI was used as an explanatory variable; however, other climatic

variables were not included in this model. b Nine TNs are

labelled A–I. The WI, slope, aspect, distance from moorland and

moorland presence/absence (P/A) were used as explanatory

variables; however, other environmental variables were not

included in this model
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A. mariesii on Hakkoda Mountains, even if it is located

in the warm area where beech (F. crenata) dominates.

Previously, Yamanaka et al. (1988) suggested that if

A. mariesii did not have any competitors at lower

elevations, it might have extended its range. In fact,

A. mariesii has a higher tolerance for the perhumid soil

environment of the moorland than beech (Sugita 1992),

which would enable A. mariesii to thrive around the

moorland even at higher WI values. Murach and Ulrich

(1988) observed a similar relationship between the

European beech (F. sylvatica) and Norway spruce

(Picea abies) and showed that the root growth of

F. sylvatica is much more sensitive to low pH than that

of P. abies. Thus, the growth of beech trees is strongly

inhibited by acid mineral soils (Marschner 1991). In

our study, the periphery of the moorlands prevented the

growth of beech trees and consequently provided the

potential habitats for A. mariesii.

Fig. 4 Predicted distributions of potential habitats for

A. mariesii at the 50-m mesh and Third Mesh resolutions in

the current climate (a) and future climate change scenarios

[?1�C (b), ?2�C (c), and ?3�C (d)] with fixed (top) and

decreased (bottom) moorland scenarios. The key in the lower
left corner shows the type of habitat, occurrence probability, and

area corresponding to the habitat for each TN at the Third Mesh

resolution (Fig. 3a) and the 50-m mesh resolution (Fig. 3b). For

the 50-m mesh resolution, the habitats are shown in different
colours. For the Third Mesh resolution, the habitats correspond-

ing to TNs A and B are hatched or solid, respectively, whilst that

for TN C covers the remaining area. (Color figure online)

Table 1 Changes in three types of habitat for A. mariesii from the current climate to the four climate warming scenarios in two types

of moorland scenarios, as predicted by the 50-m mesh model

Temperatures Current Moorland fixed scenarios (�C) Moorland decreased scenarios (�C)

?1 ?2 ?3 ?4 ?1 ?2 ?3 ?4

Suitable habitat area (ha) 645.4 311.7 126.1 1.5 0.0 284.8 76.4 1.2 0.0

Marginal habitat area (ha) 506.1 316.5 128.2 24.1 0.0 343.5 177.9 24.4 0.0

Non habitat area (ha) 1780.1 2303.3 2677.3 2905.9 2931.5 2303.3 2677.3 2905.9 2931.5
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Resolution of species distribution models

The estimates of the probability of occurrence by

Third Mesh model were greater than those of the 50-m

mesh model, particularly in the current climate

(Fig. 4a). Coarse-resolution models are susceptible

to this type of overestimation because cells with even a

small area of occurrence of a species are treated as

presence cells. On the other hand, the Third Mesh

model partly underestimated the suitable habitats of

A. mariesii, especially in the ?2�C scenario (Fig. 4c).

In this scenario, some predicted suitable habitats of

TN D in the 50-m mesh model were located outside

those of the Third Mesh model (Fig. 4c). The fine-

resolution models could involve the effects of topog-

raphy and some very local environmental gradients

like the peripheries of the moorlands, which enabled

us to detect local refugia that coarse-resolution models

have overlooked. The Third Mesh model also under-

estimated the locations near the summit (Fig. 4d).

Coarse-resolution models tend to represent the

altitude of the summit lower than the fine-resolution

ones, causing cool areas to be overlooked as suitable

habitats. Incorporating various factors into fine-

resolution models according to each species, more

potential refugia may be found.

Although most subalpine areas in Japan are

protected as nature conservation areas, their fragile

ecosystems are very sensitive to climate warming

(Nogami 1994; Tanaka et al. 2009). One of the most

important adaptation measures for these ecosystems

would be to protect the refugia. Coarse-resolution

models may not be able to address such issues on a

regional or local scale.
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Araújo MB, Thuiller W, Williams PH, Reginster I (2005)

Downscaling European species atlas distributions to a finer

resolution: implications for conservation planning. Glob

Ecol Biogeogr 14:17–30

Ashcroft MB, Chisholm LA, French KO (2009) Climate change

at the landscape scale: predicting fine-grained spatial

heterogeneity in warming and potential refugia for vege-

tation. Glob Change Biol 15:656–667

Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins

T (2008) A rapid upward shift of a forest ecotone during

40 years of warming in the Green Mountains of Vermont.

PNAS 105:4197–4202

Charles SP, Bari MA, Kitsios A, Bates BC (2007) Effect of

GCM bias on downscaled precipitation and runoff pro-

jections for the Serpentine catchment, Western Australia.

Int J Climatol 27:1673–1690

Clark LA, Pregibon D (1992) Tree-based models. In: Chambers

JM, Hastie TJ (eds) Statistical models in S. Wadsworth &

Brooks/Cole Advanced Books & Software, Pacific Grove,

pp 377–419

De’ath G, Fabricius KE (2000) Classification and regression

trees: a powerful yet simple technique for ecological data

analysis. Ecology 81:3178–3192

Efron B (1979) Bootstrap methods: another look at the jack-

knife. Ann Stat 7:1–26

Geographical Survey Institute (2000) Digital map 50 m grid

(elevation). Geographical Survey Institute, Tsukuba

Horikawa M, Tsuyama I, Matsui T, Kominami Y, Tanaka N

(2009) Assessing the potential impacts of climate change

on the alpine habitat suitability of Japanese stone pine

(Pinus pumila). Landsc Ecol 24:115–128

Huntley B, Berry PM, Cramer W, McDonald AP (1995) Special

paper: modelling present and potential future ranges of

some European higher plants using climate response sur-

faces. J Biogeogr 22:967–1001

IPCC (2007) In: Parry ML, Canziani OF, Palutikof JP, Linden

PJ, Hanson CE (eds) Climate Change 2007: impacts,

adaptation and vulnerability. Contribution of Working

Group II to the fourth assessment report of the intergov-

ernmental panel on climate change. Cambridge University

Press, Cambridge, p 976

Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree

species following climate change in the eastern United

States. Ecol Monogr 68:465–485

Japan Map Center (1998) Numerical map user guide, 2nd

version. Japan Map Center, Tokyo

Japan Meteorological Agency (1996) Climate normals for

Japan. Japan Meteorological Agency, Tokyo

Kaji M (1982) Studies on the ecological geography of subalpine

conifers: distribution pattern of Abies mariesii in relation to

the effect of climate in the postglacial warm period. Bull

Tokyo Univ For 72:31–120

Kira T (1977) A climatological interpretation of Japanese vegeta-

tion zone. In: Miyawaki A, Tuexen R (eds) Vegetation science

and environmental protection. Maruzen, Tokyo, pp 21–30

Koike K, Toshikazu T, Chinzei K, Miyagi T (2005) Regional

geomorphology of Japanese Islands, geomorphology of

Tohoku region, vol 3. University of Tokyo Press, Tokyo
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